用户名: 密码: 验证码:
动态认知无线电网络的自适应QoS保障机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于日益增长的无线接入业务需求以及授权频谱的低利用率现状,使得认知无线电和动态频谱接入技术成为下一代通信网络(即认知无线电网络,Cognitive radio network,CRN)的核心技术。CRN通过机会式的频谱接入来获得巨大的无线带宽,从而提高频谱利用率。然而,CRN没有固定的工作频带以及调制方式,这些传输参数取决于频谱感知、频谱切换、频谱共享以及频谱管理等过程。为了在CRN上实现多媒体传输,本文从上述四个过程出发逐步展开课题的研究。
     首先,本文提出了一种基于空时数据挖掘和压缩感知的联合频谱感知算法。频谱感知是认知无线电区别于传统无线电的关键技术,感知无线电环境是实现认知无线电传输的基础。由于CRN布置在一定的空间内,不同的簇可能具有不同的稀疏频谱,在联合频谱感知过程中不适合进行信息共享,这一课题目前在联合频谱感知领域没有被很好地解决。本文提出使用基于狄利克雷过程(Dirichlet process, DP)的分层贝叶斯模型来实现感知数据的自动分组,将具有同一稀疏频谱的簇自动分到同一组。在每个组内,可以进行信息共享并实施分层贝叶斯推理得出共享的超参数。因此,基于DP的分层贝叶斯模型充分利用了空间分集信息对感知数据进行非参数分组。然而,顺序采集的压缩感知数据在时间上也是相关的。为了进一步提高频谱判决的精确度,本文采用隐藏马尔科夫模型来描述隐藏的信道状态与顺序采集的压缩感知数据之间的关系,并使用维特比算法来获得最终的超参数以及更高精确度的频谱判决。仿真实验表明空时数据挖掘算法在恢复信号的归一化均方误差、正确检测概率、虚警概率等方面的性能均优于目前的几种频谱感知算法。
     其次,为了通过频谱切换来保证多媒体应用的服务质量(Quality of Service, QoS),必须对无线电环境进行周期性检测。然而,频谱感知必将引入额外的时延。因此,本文将频谱切换与频谱感知进行联合跨层设计,具体为多媒体传输的自适应频谱感知周期和数据包分配方案。频谱感知周期在本文中定义为相邻频谱感知的时间间隔,并假设次要用户(Secondary user, SU)的频谱感知是周期性的。本文充分考虑主要用户(Primary user, PU)的数据包到达特性,并建立了频谱感知周期与剩余数据包数、频谱感知周期与剩余时间之间的数学模型。如果SU传输多媒体数据包过程中,PU重新占用传输信道,那么SU需要切换信道,并利用新选择的信道在剩余时间内继续传输剩余数据包。因此,较小的剩余数据包数和较大的剩余时间将确保更多的多媒体数据包在要求的时延内到达接收端,从而提高了多媒体应用的QoS性能。基于上述的两个数学模型,为单信道链路推导出了最优的频谱感知周期,为多信道链路给出了信道选择、最优的频谱感知周期、最优的数据包分配策略之间的权衡关系。在多信道链路的情况下,最优的频谱感知周期和最优的数据包分配策略(固定链路选择的信道数)由Hughes-Hartogs和离散粒子群算法(discrete particle swarm optimization, DPSO)的联合算法给出。图像和视频传输仿真实验验证了本文提出的算法给出的信道选择、最优化频谱感知周期、最优的数据包分配策略的正确性和有效性。
     再次,为了在簇内同其它SU在上行链路中公平地分享可利用频谱资源,本文针对基于非连续正交频分复用技术的认知无线电网络提出了一种分布式、协作式以及填充式的频谱共享机制,并为SU的每个数据包选择最佳的子载波、发射功率以及调制方式。传统的动态分配策略通常假设所有SU通过公共控制信道(Common control channel, CCC)来进行大量重要信息交换,实现协作的频谱共享。为了避免大量信息进行交换,本章提出将机器学习(基于狄利克雷分布的全贝叶斯模型)应用于频谱共享机制(即智能跨层分配策略)。为了研究簇内的目标SU,本文将簇内其它SU等效为一个虚拟SU并使用基于狄利克雷分布的全贝叶斯模型来学习该虚拟SU的子载波分配策略等信息。并且,将学习结果用于估计任一信道的队列时延小于最大忍耐时延的概率。为了计算SU的吞吐量,本文引入了时间窗口来精确定义。时间窗口准确地描述了发射功率一定时,可以同时并行传输的数据包个数。最后,通过最大化基于时延和吞吐量的效用函数,得出智能跨层分配策略,并可以为SU的每一个数据包产生最优的子载波选择、功率以及调制方式分配方案。数据仿真和视频传输的仿真实验验证了智能跨层分配策略的正确性和有效性,且仿真结果与理论值相互吻合以及视频质量优于其它两种典型的动态分配策略。
     最后,本文研究了频谱管理和路由的跨层设计,并提出了面向链路稳定和信道容量的路由协议。本文针对高速运动的CRN,其快速运动的SU将不断改变网络拓扑结构并使得通信链路不能长时间保持稳定,从而有可能降低端到端的QoS性能以及增加路由协议的复杂度。本文针对联合搜救模型(如进行搜救的无人机),具体研究内容包括:(1)提出使用鸟群觅食模型来描述参与联合搜救的SU的运动特征,并估计出链路稳定概率;(2)根据各个SU的可用信道以及链路稳定概率,提出一种综合考虑节点度、簇内成员到簇头的平均跳数和信道切换次数的分簇算法;(3)根据分簇算法形成的基于簇结构的CRN,提出两种CCC选择方案:节点收缩和DPSO算法。簇头间的CCC以及网关节点的选取,综合考虑了任意两个簇头间的平均传输时延以及CCC的吞吐量;(4)针对快速运动的SU和不断改变的网络结构,提出一种基于链路稳定及信道容量的联合路由选择和信道分配的路由协议。仿真实验结果表明:(1)本文提出的CCC算法具有较高的吞吐量以及较小的传输时延;(2)与其它典型的路由协议相比,本文提出的路由协议具有较好的平均端到端时延和投包率性能。
The dramatic increase in wireless access services and low spectrum utilization existing in licensed channels necessitate a new communication paradigm (i.e., cognitive radio network, CRN), whose key techniques are cognitive radio and dynamic spectrum access. Through opportunistic spectrum access, CRN can improve the spectrum utilization. However, CRN do not have a fixed channel and modulation type, and its transmission parameters are determined by spectrum sensing, spectrum mobility, spectrum sharing and spectrum management processes. To realize multimedia transmissions over CRN, this paper will consider the above four processes in our research.
     First, a cooperative spectrum sensing algorithm is proposed, which integrals compressive sensing (CS) and the spatial-temporal data mining method. The spectrum sensing which tries to aware the radio enviroment is the basic function to realize services over CRN, which is the main difference from traditional wireless communications. Since the CRN is deployed in a certain area, different clusters may have different sparseness spectrum states and is not appropriate for information sharing in data mining, which has not been addressed very well in the spectrum sensing field. Hence, in our cooperative spectrum sensing, the Dirichlet process (DP) prior is employed to make an automatically grouping among different clusters. In each group, the Bayesian inference is used for information sharing and one common sparseness hyper-parameters is discovered in each group. Hence, the DP prior is very suitable to our heterogenous CRN and collects the spatial information of the CS data. Moreover, the sequential CS data are not independent to each other. To exploit the time-domain relevance among sequential CS observations, the hidden markov model is employed to describe the relationship between hidden subcarrier state and sequential CS data, and the Viterbi algorithm is used to find out the final hyper-parameters and make a high resolution spectrum decision for each secondary user (SU). Simulation results show that our proposed algorithm successfully exploits the spatial-temporal relationship to obtain higher spectrum sensing performance in terms of normalized mean square error, probability of correct detection, and probability of false alarming compared with some recent research works.
     Second, the spectrum mobility is used to guarantee the quality of service of multimedia application, and the spectrum sensing is necessary to detect the radio enviroment. However, spectrum sensing will cause extra delay. Hence, the optimal spectrum sensing frequency and packet loading schemes are discussed in this paper, which integrals spectrum sensing in spectrum mobility management. Here the sensing frequency means how frequently a CR user detects the radio enviroment, and the spectrum sensing is assumed to operated periodly. This paper well considers the packet arrive rate of PU and derives the math model between the sensing frequency and the number of remaining packets that need to be sent, as well as the relationship between sensing frequency and the new channel availability time during which the CRN user is allowed to use a new channel (after the current channel is re-occupied by primary users) to continue packets transmission. Hence, a smaller number of remaining packets and a larger value of new channel availability time will help to transmit more multimedia packets within a required delay and thus a higher QoS. Then by using the above relationship models, we select appropriate sensing frequency under single channel case, and study the trade-offs among the number of selected channels, optimal sensing frequency and packet-loading scheme under multi-channel case. The optimal sensing frequency and packet-loading solutions for multi-channel case are obtained by using the combination of Hughes-Hartogs and discrete particle swarm optimization (DPSO) algorithms. Our experiments of image and video packets transmission demonstrate the validity of our sensing frequency selection and packet loading schemes.
     Thrid, to fairly share the available spectrum resource of the uplink in each cluster, a distributed, cooperative and overlay spectrum sensing mechanism called cognitive cross-layer scheduling scheme is proposed for non-contiguous orthogonal frequency-division multiplexing based CRN, which can generate the optimal subcarrier selection, power and modulation allocation for each multimedia packet from SU. Conventional dynamic scheduling schemes assume significant information exchange among all SUs through a common control channel (CCC), to realize cooperative spectrum sharing. To avoid such a heavy traffic information exchange, a cognitive method to learn the traffic profile is proposed in our spectrum sharing mechanism. From the viewpoint of the target SU, the other SUs in the cluster can be grouped as a virtual SU, and the target SU uses the Dirichlet-prior based fully Bayesian model to update the statistical distribution of subcarrier selection strategy profile of the virtual SU. Moreover, such a statistical distribution is used to estimate the probability of queue waiting time less than a threshold. To learn the throughput performance of SU, the time window is introduced to accurately define the throughput of SUs. The time window can clearly demonstrate how many packets can be transmitted simultaneously over multiple subcarriers, compared with the required packets transmission rate. Finally, maximizing the delay and throughput-based utility function, the cognitive cross-layer scheduling scheme generates the optimal subcarrier selection, power and modulation allocation for each multimedia packet. The data and real video transmission are simulated to validate the correctness of our cognitive cross-layer scheduling schemes. The simulation results match with theoretical analysis very well, and the reconstructed video quality using our proposed scheduling scheme is superior to the other two recently proposed schemes.
     Last, the cross-layer design of spectrum management and routing design is considered, and a stability-capability oriented routing protocol is proposed. In high-mobility CRNs, the fast topology changes decrease the stability of transmission link and the end-to-end QoS performance and thus the complexity of routing scheme. In this paper, the cooperative searching (i.e., unmanned aerial vehicle, UAV) scenario is considered, and (1) a realistic mobility model is proposed to describe the movement of highly mobile airborne nodes (i.e., UAVs), and estimate the link stability performance based on node movement patterns; (2) a CRN topology management scheme based on a clustering model is also proposed which considers radio link availability, and the cluster-heads (CHs) are selected based on the node degree level, average number of hops and channel switching from member nodes to the CH; (3) two new CCC selection schemes are proposed, which are based on the node contraction concept and the DPSO algorithm. The inter-cluster control channels and gateways are selected from the CHs, considering the average delay of control information transmission between two CHs as well as the total throughput of control channels; (4) a novel routing scheme is proposed that tightly integrates with channel assignment scheme based on the node capacity for the high mobility scenario. Our simulation results show that our proposed CCC selection scheme has high throughput and small transmission time. Compared to other popular CRN routing approaches, our proposed routing scheme achieves lower average end-to-end delay and higher packet delivery ratio.
引文
1 L. Rainie. Internet, Broadband, and Cell Phone Statistics. Pew Research Center, 2010: 1-14
    2 I. F. Akyildiz, W. Lee, M. C. Vuran, S. Mohanty. Next Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: a Survey. Computer Networks. 2006, 50(13): 2127-2159
    3 H. Zheng. 10 Emerging Technologies: Cognitive Radio. Technology Review. 2006: 61-62
    4 http://www.fcc.gov/sptf/reports.html
    5 K. R. Chowdhury, M. D. Felice. SEARCH: A Routing Protocol for Mobile Cognitive Radio Ad-hoc Networks. Computer Communications. 2009, 32(18): 1983-1997
    6 C. Cormio, K. R. Chowdhury. A survey on MAC protocols for cognitive radio networks. Ad Hoc Networks. 2009, 7(7): 1315-1329
    7刘晓雪,郑宝玉,季薇.认知无线电网络中基于协作中继的资源分配算法.信号处理. 2010, 26(10): 1441-1448
    8张敏,韦岗,何春雄,王洪江.基于不同分组层策略的认知无线电网络的性能.华南理工大学学报(自然科学版). 2010, 38(2): 101-105
    9 N. M. Aripin, R. A. Rashid, N. Ahmad, et al. Cross Layer Design of Multimedia Transmission Over Cognitive Radio UWB Multiband OFDM System. International Graduate Conference on Engineering and Science, Johor Bharu, Johor, Malaysia, 2008: 1-10
    10袁福,郑林华,袁继兵.认知无线电网络中协同中继的中断性能分析.系统仿真学报. 2010, 22(11): 2715-2718
    11滑楠,曹志刚.认知无线电网络动态QoS保证机制研究.计算机工程与应用. 2010, 46(6): 3-9
    12 T. Yücek, H. Arslan. A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications. IEEE Communications Surveys & Tutorials. 2009, 11(1): 116-130
    13 R. Tandra, A. Sahai. Fundamental Limits on Detection in Low SNR under Noise Uncertainty. IEEE International Conference on Wireless Networks, Communications and Mobile Computing, Maui, Hawaii, USA, 2005: 464-469
    14 S. Shankar, C. Cordeiro, K. Challapali. Spectrum Agile Radios: Utilization and Sensing Architectures. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, 2005:160-169.
    15朱江,黄本雄,王芙蓉,张波.认知无线电网络中的一种新型协作频谱感知方法.小型微型计算机系统. 2010, 31(2): 193-197
    16 M. Ghozzi, F. Marx, M. Dohler, et al. Cyclostationarity-Based Test for Detection of Vacant Frequency Bands. The 1st IEEE International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Mykonos Island, Greece, 2006: 1-5
    17 F. Zeng, C. Li, Z. Tian. Distributed Compressive Spectrum Sensing in Cooperative Multihop Cognitive Networks. IEEE Journal of Selected Topics in Signal Processing. 2011, 5(1): 37-48
    18郭晨,彭涛,王玮,等.认知无线电网络的检查协作频谱感知技术.吉林大学学报(工学版). 2009, 39(增刊1): 337-342
    19 M. R. Duarte, M. B. Wakin, D. Baron, et al. Universal Distributed Sensing via Random Projections. IEEE International Conference on Information Processing in Sensor Networks, Nashville, TN, USA, 2006: 177-185
    20 Y. Wang, A. Pandharipande, Y. Polo, et al. Distributed Compressive Wide-Band Spectrum Sensing. IEEE International Conference on Information Theory and Applications, San Diego, CA, USA, 2009: 178-183
    21 M. E. Yildiz, T. C. Aysal, K. E. Barner. In-Network Cooperative Spectrum Sensing. The 17th European Signal Processing Conference, Glasgow, Scotland, 2009: 1-5
    22 Z. Li, F. R. Yu, M. Huang. A Distributed Consensus-Based Cooperative Spectrum Sensing Scheme in Cognitive Radios. IEEE Transactions on Vehicular Technology. 2010, 59(1): 383-393
    23 J. A. Bazerque, G. B. Giannakis. Distributed Spectrum Sensing for Cognitive Radio Networks by Exploiting Sparsity. IEEE Transactions on Signal Processing. 2010, 58(3): 1847-1862
    24 Z. Tian. Compressed Wideband Sensing in Cooperative Cognitive Radio Networks. IEEE Global Telecommunications Conference, New Orleans, LA, USA, 2008: 1-5
    25 L. Xiao, S. P. Boyd, S. J. Kim. Distributed Average Consensus with Least-Mean-Square Deviation. Journal of Parallel and Distributed Computing. 2007, 67(1): 33-46
    26 I. D. Schizas, A. Ribeiro, G. B. Giannakis. Consensus in Ad Hoc WSNs with Noisy Links-Part I: Distributed Estimation of Deterministic Signals. IEEE Transactions on Signal Processing. 2008, 56(1): 350-364
    27 G. Ganesan, Y. Li. Cooperative Spectrum Sensing in Cognitive Radio Networks.IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, 2005: 137-143
    28 G. Ganesan, Y. Li. Cooperative Spectrum Sensing in Cognitive Radio, Part II: Multiuser Networks. IEEE Transactions on Wireless Communications. 2007, 6(6): 2214-2222
    29 C. Sun, W. Zhang, K. B. Letaief. Cluster-Based Cooperative Spectrum Sensing in Cognitive Radio Systems. IEEE International Conference on Communications, Glasgow, Scotland, 2007: 2511-2515
    30 Q. Zhao, L. Tong, A. Swami. Decentralized Cognitive MAC for Dynamic Spectrum Access. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, 2005: 224-232
    31 Q. Zhao, L. Tong, A. Swami, et al. Decentralized Cognitive MAC for Opportunistic Spectrum Access in Ad Hoc Networks: A POMDP Framework. IEEE Journal of Selected Areas in Communications. 2007, 25(3): 589-600
    32 M. Gandetto, C. Regazzoni. Spectrum Sensing: A Distributed Approach for Cognitive Terminals. IEEE Journal on Selected Areas in Communications. 2007, 25(3): 546-557
    33 C. Sun, W. Zhang, K. B. Letaief. Cooperative Spectrum Sensing for Cognitive Radios under Bandwidth Constraints. IEEE Wireless Communications and Networking Conference, Hong Kong, China, 2007: 1-5
    34 E. J. Candès, J. Romberg, T. Tao. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Transactions on Information Theory. 2006, 52(2): 489-509
    35 S. Ji, D. Dunson, L. Carin. Multitask Compressive Sensing. IEEE Transactions on Signal Processing. 2009, 57(1): 92-106
    36 Y. Qi, D. Liu, D. Dunson, et al. Multi-Task Compressive Sensing with Dirichlet Process Priors. ACM International Conference on Machine Learning, Helsinki, Finland, 2008: 768-775
    37丁汉清,杨家玮,赵志远.认知无线电网络中频谱感知性能分析.计算机科学. 2010, 37(3): 125-127
    38宋红梅,刘传清.基于认知无线电网络的频谱切换技术性能研究.南京工程学院学报(自然科学版). 2010, 8(2): 30-35
    39王海涛,江瑾尧.认知无线电网络中的频谱感知技术及面临的挑战.数据通信. 2010, 2: 20-24
    40邱晶,周正.认知无线电网络中的分布式动态频谱分配.北京邮电大学学报. 2009, 32(1): 69-72
    41洪浩然,吴伟陵.认知无线电网络频谱竞标和定价.北京邮电大学学报. 2010, 33(5): 136-140
    42 V. Brik, E. Rozner, S. Banarjee. DSAP: A Protocol for Coordinated Spectrum Access. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, 2005: 611-614
    43 L. Ma, X. Han, C. C. Shen. Dynamic Open Spectrum Sharing MAC Protocol for Wireless Ad Hoc Network. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, 2005: 203-213
    44 J. Zhao, H. Zheng, G. H. Yang. Distributed Coordination in Dynamic Spectrum Allocation Networks. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, 2005: 259-268
    45吴非,陈劼,廖楚林,等.认知无线电网络中基于需求的多小区频谱分配算法.计算机应用. 2008, 28(1): 14-16
    46 C. Peng, H. Zheng, B. Y. Zhao. Utilization and Fairness in Spectrum Assignment for Opportunistic Spectrum Access. Mobile Networks and Applications. 2006, 11(4): 555-576
    47 N. Nie, C. Comaniciu. Adaptive Channel Allocation Spectrum Etiquette for Cognitive Radio Networks. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, 2005: 269-278
    48蒋师,屈代明,吴露露,等.动态频谱接入技术的分类和研究现状.通信技术. 2008, 41(11): 20-22
    49 J. Huang, R. A. Berry, M. L. Honig. Spectrum Sharing with Distributed Interference Compensation. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, 2005: 88-93
    50 L. Khalid, A. Anpalagan. Effect of Sensing Errors on Wideband Cognitive OFDM Radio Networks. IEEE 25th Queen’s Biennial Symposium on Communications, Kingston, Ontario, Canada, 2010: 273-277
    51 A. Dutta, D. Saha, D. Grunwald, et al. SMACK - A SMart ACKnowledgment Scheme for Broadcast Messages in Wireless Networks. ACM SIGCOMM Conference, Barcelona, Spain, 2009: 15-26
    52 S. Feng, H. Zheng, H. Wang, et al. Preamble Design for Non-contiguous Spectrum Usage in Cognitive Radio Networks. IEEE Wireless Communications and Networking Conference, Budapest, Hungary, 2009: 1-6
    53 B. Kelley, E. Rivas. OFDM Location-Based Routing Protocols in Ad-HocNetworks. IEEE Wireless Hive Networks Conference, Austin, TX, USA, 2008: 1-5
    54 W. S. Wong, C. E. Tan. Ad Hoc Wireless Routing Schemes based on Adaptive Modulation in OFDM Broadband Networks. IEEE International Symposium on Information Technology, KLCC, Malaysia, 2008: 1-7
    55 R. Wang, V. K. N. Lau, L. Lv, et al. Joint Cross-Layer Scheduling and Spectrum Sensing for OFDMA Cognitive Radio Systems. IEEE Transactions on Wireless Communications. 2009, 8(5): 2410-2416
    56 H. P. Shiang, M. V. D. Schaar. Queuing-Based Dynamic Channel Selection for Heterogeneous Multimedia Applications over Cognitive Radio Networks. IEEE Transactions on Multimedia. 2008, 10(5): 896-909
    57 H. Zheng, L. Cao. Device-Centric Spectrum Management. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, 2005: 56-65
    58 H. Kushwaha, Y. Xing, R. Chandramouli, et al. Reliable Multimedia Transmission over Cognitive Radio Networks Using Fountain Codes. Proceedings of the IEEE. 2008, 96(1): 155-165
    59 J. Acharya, H. Viswanathan, S. Venkatesan. Timing Acquisition for Non Contiguous OFDM based Dynamic Spectrum Access. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Chicago, Illinois, USA, 2008: 1-10
    60 T. Camp, J. Boleng, V. Davies. A Survey of Models for Ad Hoc Network Research. Wireless Communication & Mobile Computing. 2002, 2(5): 483-502
    61 S. Leng, L. Zhang, H. Fu, et al. Mobility Analysis of Mobile Hosts with Random Walking in Ad Hoc Networks. Computer Networks. 2007, 51(10): 2514-2528
    62 M. Sanchez, P. Manzoni. ANEJOS: A Java Based Simulator for Ad Hoc Networks. Future Generation Computer Systems. 2001, 17(5): 573-583
    63 D. Johnson, D. Maltz. Dynamic Source Routing in Ad Hoc Wireless Networks. Kluwer Academic Publishers, 1996: 153-181
    64 E. Royer, P. M. Melliar-Smith, L. Moser. An Analysis of the Optimum Node Density for Ad Hoc Mobile Networks. IEEE International Conference on Communications, Helsinki, Finland, 2001: 857-861
    65 Z. Haas. A New Routing Protocol for Reconfigurable Wireless Networks. IEEE International Conference on Universal Personal Communications, San Diego, CA, USA, 1997: 562-565
    66 B. Liang, Z. Haas. Predictive Distance-Based Mobility Management for PCS Networks. Joint Conference of the IEEE Computer and CommunicationsSocieties, New York, NY, USA, 1999: 1377-1384
    67 M. S. Hossain, M. Atiquzzaman. Stochastic Properties and Application of City Selection Mobility Model. IEEE Global Telecommunications Conference, Honolulu, Hawaii, USA, 2009: 1-6
    68 A. B. McDonald, T. F. Znati. A Mobility-Based Framework for Adaptive Clustering in Wireless Ad Hoc Networks. IEEE Journal on Selected Areas in Communications. 1999, 17(8): 1466-1487
    69 D. Baker, A. Ephremides. The Architectural Organization of a Mobile Radio Network via a Distributed Algorithm. IEEE Transactions on Communications. 1981, 19(11): 1694-1701
    70 A. K. Parekh. Selecting Routers in Ad Hoc Wireless Networks. International Conference on Intelligent Tutoring Systems, Montreal, Canada, 1994: 1-18
    71 F. D. Tolba, D. Magoni, P. Lorenz. A Stable Clustering Algorithm for Highly Mobile Ad Hoc Networks. The 2nd International Conference on Systems and Networks Communications, Cap Esterel, French Riviera, France, 2007: 1-6
    72 M. Ma, D. H. K. Tsang. Joint design of spectrum sharing and routing with channel heterogeneity in cognitive radio networks. Physical Communication. 2009, 2(1): 127-137
    73韩小博,罗涛. Ad Hoc认知无线电网络中基于博弈论的公共信道建立算法.电子学报. 2010, 38(7): 1699-1704
    74 T. Chen, H. Zhang, M. D. Katz, et al. Swarm Intelligence Based Dynamic Control Channel Assignment in CogMesh. IEEE International Conference on Communications Workshops, Beijing, China, 2008: 123-128
    75 K. Bian, J. Park. Segment-Based Channel Assignment in Cognitive Radio Ad Hoc Networks. The 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Orlando, USA, 2007: 327-335
    76 T. Chen, H. Zhang, G. Maggio, et al. Topology Management in CogMesh: A Cluster-Based Cognitive Radio Mesh Network. IEEE International Conference on Communications, Glasgow, Scotland, 2007: 6516-6521
    77 G. Lei, W. Wang, T. Peng, et al. Routing Metrics in Cognitive Radio Networks. The Fourth IEEE International Conference on Circuits and Systems for Communications, Shanghai, China, 2008: 265-269
    78 G. Zhu, I. F. Akyildiz, G. Kuo. STOD: A Spectrum-Tree Based On-Demand Routing Protocol for Multi-hop Cognitive Radio Networks. IEEE Global Telecommunications Conference, New Orleans, LA, USA, 2008: 1-5
    79 G. Cheng, W. Liu, Y. Liu, et al. Spectrum Aware On-demand Routing in Cognitive Radio Networks. IEEE International Symposium on New Frontiers inDynamic Spectrum Access Networks, Dublin, Ireland, 2007: 571-574
    80薛楠,周贤伟,林琳,等.基于最短时延的认知无线电网络安全路由算法.计算机科学. 2010, 37(1): 68-71
    81 A. K. Yau, P. Komisarczuk, P. D. Teal. C2net: A Cross-Layer Quality of Service (QOS) Architecture for Cognitive Wireless Ad Hoc Networks. Australasian Telecommunication Networks and Applications Conference, Adelaide, Australia, 2008: 306-311
    82 E. Gelenbe, P. Liu, J. Lainé. Genetic Algorithms for Route Discovery. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics. 2006, 36(6): 1247-1254
    83 R. Lent. Linear QoS Goals of Additive and Concave Metrics in Ad Hoc Cognitive Packet Routing. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics. 2006, 36(6): 1255-1260
    84 Q. He, H. Zhou. Research on the Routing Algorithm Based on QoS Requirement for Cognitive Radio Networks. IEEE International Conference on Computer Science and Software Engineering, Wuhan, China, 2008: 1114-1117
    85 Y. T. Hou, Y. Shi, H. D. Sherali. Spectrum Sharing for Multi-Hop Networking with Cognitive Radios. IEEE Journal on Selected Areas in Communications. 2008, 26(1): 146-155
    86 Y. Shi, Y. T. Hou, S. Kompella. A Cross-Layer Approach to Multi-Hop Networking with Cognitive Radio. IEEE International Conference on Military Communications, San Diego, CA, USA, 2008: 1-7
    87 X. Jing, D.Raychaudhuri. Spectrum Co-existence of IEEE 802.11b and 802.16a networks using CSCC Etiquette Protocol. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, 2005: 243-250
    88李翠然,赵佳颖.认知无线电网络的基于QoS的自适应频谱分配策略.铁道学报. 2010, 32(3): 61-65
    89 H. Khalife, S. Ahuja, N. Malouch, et al. Probabilistic Path Selection in Opportunistic Cognitive Radio Networks. IEEE Global Telecommunications Conference, New Orleans, LA, USA, 2008: 1-5
    90曾志民,刘琦,冯春燕,等.认知无线电网络自适应带宽分配机制及性能分析.北京邮电大学学报. 2009, 32(1): 39-42
    91李洋,董育宁,张晖.认知无线电网络QoS保障技术综述.南京邮电大学学报(自然科学版). 2010, 30(5): 88-94
    92 Z. Quan, S. Cui, A. H. Sayed. Optimal Linear Cooperation for Spectrum Sensingin Cognitive Radio Networks. IEEE Journal of Selected Topics in Signal Processing. 2008, 2(1): 28-40
    93 M. E. Tipping, A. Faul. Fast Marginal Likelihood Maximisation for Sparse Bayesian Models. International Workshop on Artificial Intelligence and Statistics, Key West, Florida, USA, 2003: 1-8
    94 S. Ji, Y. Xue, L. Carin. Bayesian Compressive Sensing. IEEE Transactions on Signal Processing. 2008, 56(6): 2346-2356
    95 J. A. Tropp, A. C. Gilbert. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory. 2007, 53(12): 4655-4666
    96罗义军,李劲,仇佩亮.联合判决估计在软判决Viterbi译码中的应用.电子与信息学报. 2004, 26(9): 1426-1432
    97 H. Ishikawa. Transformation of General Binary MRF Minimization to the First-Order Case. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2011, 33(6): 1234-1249
    98马志垚,陈巍,曹志刚.认知无线电网络中基于检测概率的主用户定位算法.北京邮电大学学报. 2009, 32(2): 14-19
    99马志垚,曹志刚.认知无线电网络用户合作机会接入方案的研究.电子学报. 2009, 37(4): 678-683
    100 J. Borges, M. Levene. Evaluating Variable-Length Markov Chain Models for Analysis of User Web Navigation Sessions. IEEE Transactions on Knowledge and Data Engineering. 2007, 19(4): 441-452
    101 J. Wang, F. Wang, C. Zhang, et al. Linear Neighborhood Propagation and its Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009, 31(9): 1600-1615
    102 H. M. Lu, D. Zeng, H. Chen. Prospective Infectious Disease Outbreak Detection Using Markov Switching Models. IEEE Transactions on Knowledge and Data Engineering. 2010, 22(4): 565-577
    103彭涛,郭晨,王文博.认知无线电网络高能效协作频谱感知技术.北京邮电大学学报. 2010, 33(4): 93-96
    104 X. G. Xia. Precoded and Vector OFDM Robust to Channel Spectral Nulls and with Reduced Cyclic Prefix Length in Single Transmit Antenna Systems. IEEE Transactions on Communications. 2001, 49(8): 1363-1374
    105马志垚,曹志刚.分布式认知无线电网络用户有效吞吐量的优化.清华大学学报(自然科学版). 2008, 48(4): 506-509
    106朱江,徐斌阳,李少谦.一种基于马尔可夫决策过程的认知无线电网络传输调度方案.电子与信息学报. 2009, 31(8): 2019-2023
    107 R. T. Sheu, J. L. C. Wu. Performance Analysis of Rate Control with Scaling QoS Parameters for Multimedia Transmissions. IEE Proceedings Communications. 2003, 150(5): 361-366
    108 H. Kushwaha, R. Chandramouli. Secondary Spectrum Access with LT Codes for Delay-Constrained Applications. The 4th IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, 2007: 1017-1021
    109 D. Cabric, S. M. Mishra, D. Willkomm, et al. A Cognitive Radio Approach for Usage of Virtual Unlicensed Spectrum. The 14th IST Mobile Wireless Communications Summit, Dresden, Germany, 2005: 1-4
    110颜志,张兴,王文博.认知无线电网络中用户行为建模综述.数字通信. 2009, 36(4): 16-19
    111郭晨,彭涛,王文博.认知无线电网络中合作频谱感知机制的优化.电子与信息学报. 2009, 31(7): 1525-1530
    112郭彩丽,曾志民,冯春燕,等.一种认知无线电网络中的新型主动频谱选择算法.西安电子科技大学学报(自然科学版). 2008, 35(6): 1121-1126
    113 H. Su, X. Zhang. Opportunistic MAC Protocols for Cognitive Radio Based Wireless Networks. IEEE 41st Annual Conference on Information Sciences and Systems, Baltimore, MD, USA, 2007: 363-368
    114 T. A. Weiss, F. K. Jondral. Spectrum Pooling: An Innovative Strategy for the Enhancement of Spectrum Efficiency. IEEE Communications Magazine. 2004, 42: 8-14
    115 J. Apostolopoulos, T. Wong, W. Tan, et al. On Multiple Description Streaming With Content Delivery Networks. The 21st Annual Joint Conference of the IEEE Computer and Communications Societies, New York, NY, USA, 2002: 1736-1745
    116卢前溪,王文博,傅龙,等.认知无线电网络子载波和功率分配.北京邮电大学学报. 2008, 31(4): 102-106
    117 http://iphome.hhi.de/suehring/tml/
    118 H. Rahul, N. Kushman, D. Katabi, et al. SWIFT: A Narrowband-Friendly Cognitive Wideband Network. MIT Computer Science and Artificial Intelligence Laboratory Technical Report, 2010: 1-14
    119 H. Rahul, F. Edalat, D. Katabi, et al. Frequency-Aware Rate Adaptation and MAC Protocols. The 15th Annual International Conference on Mobile Computing and Networking, Beijing, China, 2009: 193-204
    120 H. Rahul, N. Kushman, D. Katabi, et al. Learning to Share:Narrowband-Friendly Wideband Networks. ACM SIGCOMM Conference, Seattle, WA, USA, 2008: 147-158
    121 Q. Guan, F. R. Yu, S. Jiang, et al. Prediction-Based Topology Control and Routing in Cognitive Radio Mobile Ad Hoc Networks. IEEE Transactions on Vehicular Technology. 2010, 59(9): 4443-4452
    122 C. S. Chang, D. S. Lee, C. L. Yu. Generalization of the Pollaczek-Khinchin Formula for Throughput Analysis of Input-buffered Switches. The 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, Florida USA, 2005: 960-970
    123赵摇煜,蔡皖东.一种面向观点挖掘的多粒度话题情感联合模型.西安电子科技大学学报(自然科学版). 2011, 38(3): 181-188
    124 J. H. Zhou, N. Zhang. An Implementation Method of QoS Filtering for Real-Time Video Multicast. China Cable Television. 2004, 13: 6-9
    125何世彪,苏志广,敖仙丹,等.基于频谱感知信息的认知无线电网络功率密度约束问题.重庆邮电大学学报(自然科学版). 2008, 20(2): 127-131
    126 M. Pan, R. Huang, Y. Fang. Cost Design for Opportunistic Multi-Hop Routing in Cognitive Radio Networks. IEEE International Conference on Military Communications, San Diego, CA, USA, 2008: 1-7
    127滑楠,曹志刚.认知无线电网络路由研究综述.电子学报. 2010, 38(4): 910-918
    128赵知劲,徐世宇,郑仕链,等.基于二进制粒子群算法的认知无线电决策引擎.物理学报. 2009, 58(7): 5118-5125
    129 C. Peng, H. Zheng, B. Y. Zhao. Utilization and Fairness in Spectrum Assignment for Opportunistic Spectrum Access. Mobile Networks and Applications. 2006, 11(4): 555-576
    130 M. Ma, D. H. K. Tsang. Joint Spectrum Sharing and Fair Routing in Cognitive Radio Networks. The 5th Annual IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, 2008: 978-982
    131 A. B. McDonald, T. F. Znati. A Path Availability Model for Wireless Ad-Hoc Networks. IEEE Wireless Communications and Networking Conference, New Orleans, LA, USA, 1999: 35-40
    132 S. Jiang, D. He, J. Rao. A Prediction-based Link Availability Estimation for Mobile Ad Hoc Networks. The 20th Annual Joint Conference of the IEEE Computer and Communications Societies, Anchorage, AK, USA, 2001: 1745-1752
    133 X. Wu, E. Bertino. An Analysis Study on Zone-Based Anonymous Communication in Mobile Ad Hoc Networks. IEEE Transactions on Dependableand Secure Computing. 2007, 4(4): 252-265
    134 H. Cheng, J. Cao, X. Wang, et al. Stability-Aware Multi-Metric Clustering in Mobile Ad hoc Networks with Group Mobility. Wireless Communications and Mobile Computing. 2009, 9(6): 759-771
    135 A. A Kai, R. H. Jan. The r-Neighborhood Graph: An Adjustable Structure for Topology Control in Wireless Ad Hoc Networks. IEEE Transactions on Parallel and Distributed Systems. 2007, 18(4): 536-549
    136 A. Ephremides, J. E. Wieselthier, D. J. Baker. A Design Concept for Reliable Mobile Radio Networks with Frequency Hopping Signaling. Proceedings of the IEEE. 1987, 75(1): 56-73
    137薛楠,周贤伟,林琳,等.性能优化的认知无线电网络安全路由选择算法.系统工程与电子技术. 2009, 31(11): 2756-2760
    138 Y. Liu, X. Gu. Skeleton-Network Reconfiguration Based on Topological Characteristics of Scale-Free Networks and Discrete Particle Swarm Optimization. IEEE Transactions on Power Systems. 2007, 22(3): 1267-1274
    139 J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. IEEE International Conference on Neural Networks, Perth, WA, Australia, 1995: 1942-1948
    140 Y. Liu, X. Gu. Reconfiguration of network skeleton based on discrete particle-swarm optimization for black-start restoration. IEEE Power Engineering Society General Meeting, Montreal, Que, Canada, 2006: 1-7
    141 M. X. Gong, S. F. Midkiff. Distributed Channel Assignment Protocols: A Cross-Layer Approach. IEEE Wireless Communications and Networking Conference, New Orleans, LA, USA, 2005: 2195-2200
    142 M. X. Gong, S. F. Midkiff, S. Mao. Design Principles for Distributed Channel Assignment in Wireless Ad Hoc Networks. IEEE International Conference on Communications, Seoul, Korea, 2005: 3401-3406
    143 H. Ma, L. Zheng, X. Ma, et al. Spectrum Aware Routing for Multi-hop Cognitive Radio Networks with a Single Transceiver. The 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Singapore, 2008: 1-6
    144 G. Cheng, W. Liu, Y. Li, et al. Joint On-demand Routing and Spectrum Assignment in Cognitive Radio Networks. IEEE International Conference on Communications, Glasgow, Scotland, 2007: 6499-6503
    145 Z. Yang, G. Cheng, W. Liu, et al. Local Coordination Based Routing and Spectrum Assignment in Multi-hop Cognitive Radio Networks. Mobile Networks and Applications. 2008, 13(1-2): 67-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700