用户名: 密码: 验证码:
基于射频识别技术的室内定位算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在情境感知服务技术领域,服务对象的位置信息是最重要的环境参数之一,决定着情境服务能否有效、准确的施行。业已成熟的GPS系统能够为情景感知服务提供精度小于5m的室外位置信息,然而建筑物的屏蔽作用令其室内定位精度大打折扣,过高的系统成本使其直接应用于室内环境也存在困难。近年来,基于无线传感器网络、超宽带、红外线、射频识别等技术的室内定位研究开展得如火如荼,尤其是射频识别技术,凭借非接触、非视距、短时延、高精度、传输范围大和成本低等优点已成为室内定位技术的主要选择。
     目前,基于射频识别技术的室内定位算法的定位依据主要是阅读器检测到的信号收信场强。典型代表是LANDMARC算法,通过引入参考标签动态捕捉环境信息替代阅读器的离线数据,比较参考标签和待定位标签在多个阅读器上的收信场强差异,基于场强欧式距离选取近邻参考标签,利用残差加权算法确定待定位标签的物理位置,LANDMARC算法不仅降低了系统成本,提高了系统的环境适应能力,而且具有比较理想的室内定位精度。尽管如此,LANDMARC系统仍存在一些缺陷和不足:如非测距算法使得算法精度有限、定位精度受制于参考标签布设密度等。本文在详细分析LANDMARC算法特性及室内环境中的时间延迟信道模型的基础上,对射频识别定位算法进行了深入研究,主要内容包括以下几个方面:
     (1)针对LANDMARC算法中TTBDA的定位精度较低的问题,提出了一种基于加权欧式算子的改进定位算法,引入基于待定位标签及参考标签收信场强值的加权欧式算子调整各个阅读器的定位信息可靠性,算法在几乎不影响TTCDA (Tracking Tags Covered by Detection Area,处于监测区域内并被有效覆盖定位标签)的定位精度前提下,对TTBDA的定位精度有了较大的提升。
     (2)针对LANDMARC算法的定位精度受制于参考标签部署密度的问题,提出了基于子区域动态二次回归插值的VIRE改进定位算法。算法首先提出一种子区域选取机制以实现虚拟参考标签的动态引入,然后提出一种基于二次曲线回归的插值算法估计虚拟参考标签的收信场强值,并利用历史校正机制进一步客服偶然误差。相比于VIRE算法,改进算法对于AGVs系统及多个定位目标位置集中的情形,能够有效降低插值计算量,并且具备更好的定位精度。
     (3)对于室内环境中各区域特性(如目标出现概率、障碍物分布等)差异较大的情况,针对LANDMARC算法中采用网格状均匀部署有源参考标签难以保证全局定位精度的问题,基于联合高斯分布的目标概率模型和Keenan-Motley模型确定优化函数,提出了一种基于改进粒子群算法的寻优策略,实现对有源参考标签的优化部署。
     (4)考虑到LANDMARC系统中的非测距定位机制使得算法定位精度难以进一步提高的问题。以收发信号的相位差作为定位依据,提出了一种适用于ISO/IEC 18000-6C标准的UHF RFID室内定位机制,引入双频副载波克服整周期模糊度并降低采样率要求,并提出欠采样条件下的相位差估计方法及测距机制,结合全相位FFT谱分析的“相位不变性”获取接收端信号相位信息并测距。
As an environmental factor in context-aware system, the target location information plays an important role in governing the effectiveness and accuracy of situation-dependent services. However, typical positioning system GPS is not available for the indoor localization due to its high costs and shielding effect caused by the buildings, though a fully-fledged solution to the outside localization. Hence,the research of the indoor location sensing systems based on WSN, UWB, IF attract lots of attention in the past decade. Among others, RFID provide an excellent approach with its advantages of non line of sight, the non-contacting and low cost.
     Currently, most indoor location systems based on RFID technology utilize received signal strength indicator to locate objects. LANDMARC algorithm, a common example, reduces system cost and improves the environmental suitability by introducing the active reference tags to replace the reader. After calculating the Euclidian distance in signal strength between a tracking tag and each reference tag, the algorithm chooses k nearest reference tags and uses their coordinates to locate the tracking tag. Compared with other location algorithms, LANDMARC achieves a better overall accuracy of position. However , LANDMARC still faces some drawbacks and disadvantages. On the basis of the analysis of LANDMARC algorithm and building the channel model toward time delay, the major research of this dissertation specifically stated as follows:
     (1) To investigate the location accuracy of TTBDA (Tracking Tags near the Boundary of Detection Area) is not as good as that of TTCDA (Tracking Tags Covered by Detection Area), an optimized ranging location algorithm was proposed. By introducing the weighted factor, the algorithm rectifies the received signal strength indication values’credibility on each reader. Simulation results showed that the proposed algorithm achieves a higher accuracy and better environmental suitability towards TTBDA compared with LANDMARC.
     (2) In order to solve the location accuracy of LANDMARC being restricted by the number of reference tags, an enhanced VIRE location algorithm based on Subregion Dynamic Quadratic Regression Interpolation (SDQRI) was proposed. The enhanced algprothm suggests a subregion selcetion mechanism to introduce vitual reference tags dynamically, and puts forward an interpolation algorithm on the basis of quadratic regression to compute the RSSI values of VRTual reference tags. The historical information of localization is utilized to rectify the accidental error as well. Compared with VIRE algprithm, the enhanced algorithms enjoy the less amount of interpolation calculation in the AGVs system and in the case of the tracking tags highly centralized. Simulation results also demonstrated that the location accuracy of optimized algorithm is better.
     (3) Since the uniform arrangement of the reference tags is not applicabale in rhe case that the probability occurrence of each area differs greatly, or obstacles like wall and partition exist, an event-based occurrence probability based on the multi-gaussian distribution model and Keenan-Motley model was proposed to establish the optimization problem.An improved PSO optimizing mechanism was suggested to solve the optimization problem. Simulation results showed that the proposed algorithm outperforms the arrangement and layout adopted by genetic algorithm
     (4) Considering the accuracy of LANDMARC system being restricted by the range free mechanism, a location algorithm using 915MHZ UHF signal was proposed. Dual frequency subcarriers were introduced to overcome the ambiguity of whole cycles and reduce the demands of sample rate. On the basis of spectrum analysis of All-Phase FFT, a mechanism was put forward to estimate the phase difference so as to achieve the ranging information with under-sampling.Simulation results showed that the proposed algorithm possesses a higher accuracy and stability.
引文
[1] LIU Hui, DARABI H. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transaction on Systems, Man, and Cybernetics III, 2007, 37(6): 1067~1080.
    [2] Vossiek M, Wiebking M, Gulden L. Wireless Local Positioning-Concepts, Solutions, Applications. In: Proceedings of IEEE Wireless Communication and Networking Confenrence, New Orleans, USA, 2003.219~224.
    [3]樊昌信,徐炳祥,吴成柯等,通信原理,北京:国防工业出版社,2001.78~107
    [4] John G. Proakis, Masoud Salehi, Communication systems engineering(叶芝慧,赵新胜),北京:电子工业出版社,2002.622-627.
    [5] Bernard Sklar, Digital communications: Fundamentals and Application(徐平平,宋铁成,叶芝慧),北京:电子工业出版社,2002.458~489.
    [6]啜钢,王文博,常永宇等,移动通信原理与系统,北京:北京邮电大学出版社,2005.16~61.
    [7]周贤伟,认知无线电,北京:国防工业出版社,2008.292-294.
    [8] Hightower J, Borriello G. Location systems for ubiquitous computing. Computer, 2001, 34(8):57~66.
    [9]杨大成,移动传播环境,北京:机械工业出版社,2003.105~146.
    [10]谢益溪,无线电波传播原理与应用,北京:人民邮电出版社2008.205~209.
    [11]曹轶超,无线电定位算法及目标运动分析:[博士学位论文],南京;东南大学,2009.
    [12]叶蔚,室内无线定位研究,华南理工大学,硕士学位论文,2010.
    [13] Engee P.K. The global positioning system: Signals, measurements and performance. International Journal of Wireless Information Networks,1994,2(1): 83~105.
    [14]范平志,邓平,刘林,蜂窝网无线定位,北京:电子工业出版社,2002.45-78.
    [15] Harter A, Hopper A, Steggles P, et al. The anatomy of a context—aware application. Telematics And Informatics, 2002, 8(2): 187~197.
    [16] Barkhuus L, Dey A. Is context-aware computing taking control away from the user? Three levels of interactivity examined. In: Proceedings of the 5th International Conference on Ubiquitous Computing, 2003.159-166 .
    [17] Per E. Pedersen et al. Understanding mobile commerce end user adoption: a triangulation perspective and suggestions for an exploratory service evaluation framework, In: Proceedings of the 35th Hawaii International Conference on System Sciences, 2002.8-16.
    [18] Werb J, Lanz1 C. Designing a positioning system for finding things and people indoors. IEEE Spectrum,1998,35(9): 71-78.
    [19] Stallings W. Wireless Communications and Networks. Beijing: Publishing House of Electronics Industry, 2006.112-135.
    [20] Stallings W, Data and computer communications(王海,张娟,蒋慧),北京:电子工业出版社,2002,622-635.
    [21] ISO/IEC. Information technology—Radio frequency identification for item management—Part 6:Parameters for air interface communications at 860 MHz to 960 MHz, ISO/IEC 18000-6:2004 FDAM 1:2006(E)T. F. Bechteler, H. Yenigun, 2-D Localization and Identification Based on SAW ID-Tags at 2.5 GHz, IEEE Transactions on Microwave Theory and Techniques, 2003,7(2): 1584~1590.
    [22] Want R, Hopper A, Falcio V, et a1. The active badge location system. ACM Transactions on Information Systems, 1992, 10(1): 91~102.
    [23] Harter A, Hopper A, Steggles P, et al. The anatomy of a context aware application. In: Proceedings of the 5th Ann Intl Conf Mobile Computing and Networking, New York: ACM Press, 1999: 59~68.
    [24] Priyantha N.B, Chakraborty A, Balakrishnan H. The Cricket location support system. In: Proceedings of the 6th ACM Annual International Conference on Mobile Computing and Networking, Boston, USA, 2000: 32~43.
    [25] Bahl, P, Padmanabhan V.N. RADAR: An in building RF-based user location and tracking system. In: Proceedings of INFOCOM 2000. 19th Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000: 775~784.
    [26] M. Youssef, A. Agrawala, A. Udaya Shankar. WLAN location determination via clustering and probability distributions. In: Proceedings of 2010 IEEE International Conference on Pervasive Computing and Communications, Texas USA. 2003.143~151.
    [27] M. Youssef, A. K. Agrawala. Handling samples correlation in the Horus system. In: Proceedings of IEEE INFOCOM 2004, Hong Kong, 2004(2).1023~1031.
    [28] R. Battiti, T. L. Nhat, A. Villani. Location-aware computing: A neuralnetwork model for determining location in wireless LANs. Technical. Repprt. DIT-02~0083, 2002.
    [29] A. Haeberlen, E. Flannery, A. M. Ladd, et a1. Practical robust localization over large-scale 802.11 wireless networks. In: Proceedings of MobiCom '04 Proceedings of the 10th annual international conference on Mobile computing and networking, New York, USA, 2004.70~84.
    [30] S. Siddiqi, G. S. Sukhatme, A. Howard, Experiment in Monte-Carlo localization using WiFi signal strength. In: Proceedings of the International Conference on Advanced Robotics, Combra, Portugal, 2003. 210~223.
    [31] P. Kontkanen, P. Myllym¨aki, T. Roos, et a1. Topics in probabilistic location estimation in wireless networks. In: Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Barcelona, Spain, 2004(2).1052~1056.
    [32] A. Teuber, B. Eissfeller. A two-stage fuzzy logic approach for wireless LAN indoor positioning. In: Proceedings IEEE/ION Position Location and Navigation Symposium. California, USA, 2006.730~738
    [33] B. Ottersten, M. Viberg, P. Stoica, et a1. Exact and large sample ML techniques for parameter estimation and detection in array processing. In: Proceedings of Radar Array Processing, New York, Springer-Verlag, 1993.99~151.
    [34] A. Kotanen, M. Hannikainen, H. Leppakoski, et a1. Experiments on local positioning with Bluetooth, In: Proceedings of the International Conference on Information Technology: Computers and Communications, 2003. 297~303.
    [35] Technical Description of DC Magnetic Trackers, Ascension Technology Corp, Burlington, Vt, 2001.
    [36] John Krumm, Steve Harris, Brian Meyers, Multi-camera multi-pers on tracking for easy living. In: Proceedings of third IEEE International Workshop Visual Surveillance, Piscataway, NanJing, China,2000. 3~10.
    [37] Klaus Finkenzeller ,射频识别技术RFID-handbuch Grundlagen und praktische anwendungen induktiver funkanlagen, transponder und kontaktloser chipkarten(吴晓峰,陈大才),北京:电子工业出版社,2006.333.
    [38]游战清,无线射频识别(RFID)与条码技术,北京:机械工业出版社, 2007.316-317.
    [39]游战清,无线射频识别技术(RFID)理论与应用,北京:电子工业出版,社2004.285~289.
    [40]郎为民,射频识别(RFID)技术原理与应用,北京:机械工业出版社, 2006.
    [41] Klaus Finkenzelle,射频识别(RFID)技术——无线电感应的标签和非接触IC卡的原理与应用(陈大才),北京:电子工业出版社,2001.
    [42]张新程,物联网关键技术,北京:人民邮电出版社,2011.286~289.
    [43]谭民,刘禹,曾隽芳,RFID技术系统工程及应用指南,北京:机械工业出版社,2007.32~53.
    [44] Jari-Pascal Curty,无源超高频RFID系统设计与优化(陈力颖,毛陆虹)北京:科学出版社,2008.31~52.
    [45]周晓光,王晓华,王伟,射频识别(RFID)系统设计、仿真与应用,北京:人民邮电出版社,2008.176~292.
    [46]宁焕生,张彦编,RFID产品研发及生产关键技术,北京:电子工业出版社,2007. 10~130.
    [47]刘岩,RFID通信测试技术及应用,北京:人民邮电出版社,2010.201-202
    [48]宁焕生,王炳辉,RFID重大工程与国家物联网,北京:机械工业出版社,2010.3~46.
    [49]王军虎,无源定位系统中的参数测量技术:[硕士学位论文],长沙;国防科技大学,2004.
    [50] J. Zhou, J. Shi. RFID Localization Algorithms and Applications—a Review, Journal of International Manufacturing, Netherlands, Springer Press, 2008. 695~707.
    [51] T. Sanpechuda, L. Kovavisaruch, A Review of RFID Localization: Applications and Techniques, In: Proceedings of 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, 2008(2):769~772.
    [52] Daniel M.D, The RF in RFID: Passive UHF RFID in Practice, Newnes, British Library, 2007. 83~123.
    [53] Werb J, Lanzl C. Designing a positioning system for finding things and people indoors, IEEE Spectrum, 1998, 35(9): 71– 78.
    [54] Hightower J, Want R, Borrlello G. SpotON: An Indoor 3D Location Sensing Technology Based on RF Signal Strength. Seattle, USA: Department of Computer Science and Engineering, University of Washington, 2000.
    [55] L. Ni, Y. Liu, Y. Lau, et al. LANDMARC: Indoor Location Sensing Using Active RFID, In: Proceeding of the 1st International Conference on Pervasive Computing, Texas, USA, 2003. 407~415.
    [56] Hihnel D, Burgard W, Fox D, et al. Mapping and Localization with RFID Technology. Proceeding of IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2004.1015~1020.
    [57] Hori T, Wada T, Ota Y, et al. A Multi-Sensing-Range Method for Position Estimation of Passive RFID Tags. In: Proceeding of IEEE International Conference on Wireless and Mobile Computing, Networking and Communication, Avignon, France, 2008.208~238.
    [58]王小辉,汪云甲,张伟,基于RFID的室内定位技术评述,传感器与微系统,2009,28(2):1~7.
    [59]孙瑜,范平志,射频识别技术及其在室内定位中的应用,计算机应用, 2005,25(2): 1205~1208.
    [60] JIN G Y, LU X Y, PARK M S. An Indoor localization mechanism using active RFID tags, In: Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, Taichung, Taiwan, 2008: 511~514.
    [61] Khan M.A, Antiwal V.K. Location Estimation Technique using Extended 3-D LANDMARC Algorithm for Passive RFID Tag, In: Proceeding of 2009 IEEE International Advance Computing Conference, Patiala, India, 2009.6~7.
    [62] Jae Sung Choi, Hyun Lee, Elmasri, R, et al. Localization Systems using Passive UHF RFID, In: Proceedings of the Fifth International Joint Conference on INC, IMS and IDC, Seoul, Korea , 2009.1727~1732.
    [63] Pathanawongthum N, Chemtanomwong P. RFID based Localization Techniques for Indoor environment, In: Proceedings of the 12th International Conference on Advanced Communication Technology, Paris, France, 2010.1418~1421.
    [64] Kyuwon Han, Sung Ho Cho. Advanced LANDMARC with adaptive k-nearest Algorithm for RFID location system, In: Proceedings of the 2nd IEEE International Conference on Network Infrastructure and Digital Content, Beijing, China, 2010.595~598.
    [65] Zhao Yiyang, Liu Yunhao. VIRE:Active RFID-based localization using VRTual reference elimination. In: Proceedings of 2007 International Conferenceon Parallel Processing, Xian, China, 2007: 56~56.
    [66] Junhui Zhao, Cong Zhao, Wei Yang, An Improved Location Algorithm for RFID System in NLOS Environment, In: Proceedings of Wireless and Optical Communications Conference, Shanghai, China, 2010.1~5.
    [67] Huang Yihua, Lui Zongyuan, Ling Guojun. An Improved Bayesian-based RFID Indoor Location Algorithm. Chinese Journal of Electronics, 2009, 18(3): 219-224.
    [68]邓辉舫,马启平,周尚伟,使用无线射频识别(RFID)技术进行室内定位,计算机应用,2008,7(28):1858~1865.
    [69]李兴鹤,胡咏梅,宋吉波等,基于LANDMARC系统的室内定位仿真研究,计算机工程与应用,2008,44(27):209~212.
    [70]王远哲,毛陆虹,刘辉等,基于参考标签的射频识别定位算法研究与应用,通信学报,2010,2(31):86~92.
    [71]俱莹,刘开华,史伟光等,基于RFID的边界虚拟参考标签定位算法,计算机工程,2011,37(6):274~276.
    [72]刘宗元,基于射频识别(RFID)的室内定位系统研究:[硕士学位论文],广州;中山大学,2009.
    [73] J.M. Keenan, A.J. Motley, Radio coverage in buildings, British Telecom Technology Journal, 1990, 8(1):19~24.
    [74] Steuer, R.E. Multiple Criteria Optimization: Theory, Computation, and Application, USA: Krieger Pub Co, 1986.
    [75] Oh D.Y, No H.C. Determination of the minimal number and optimal sensor location in a nuclear system with fixed incore detectors. Nuclear Engineering and Design, 1994, 152(1):197~212.
    [76] Kelly J.P., Laguna M, Glover, F. A study on diversification strategies for the quadratic assignment problem. Computers and Operations Research, 1994, 21(8): 885~893.
    [77] Shoval S., Zeitoun I., Lenz E. Layout of beacon for triangulation of AGVs in industrial environments, In: Proceedings of 13th International Conference on Production Research, Freund Publishing House Ltd,1995,485~487.
    [78] Greimer. R, Isukapali. R. Learing to select useful landmarks. IEEE Transaction on System,Man and Cybernetics, 1996, 26(3):437~449.
    [79] Thrun.S, Finding landmarks for mobile robot navigation, In: Proceedings of the 1998 IEEE international Conference on robotics and automation, Lueven,Belgium, 1998.958~963.
    [80] Sinriech. D, Shoval. S, Landmark configuration for absolute positioning of autonomous vehicles, IIE Transactions, 2000,32(7):613~624.
    [81] Roa, J., Jim′enez, A.R., Seco, et al. Primeros resultados en la optimizaci′on de la ubicaci′on de balizas para localizaci′on utilizando algoritmos gen′eticos, In: Proceedings of the XXVI Jornadas de Autom′atica Conference, Alicante, Spain, 2005. 75~86.
    [82] Laguna. M, Javier O.R, Antonio R.J, et al. Diversified local search for the optimal layout of beacons in an indoor positioning system, IIE Transactions, 2009, 41(3):247~259.
    [83] Ali O. Ercan, Danny B. Yang, Abbas Ei Gamal, et al. Optimal placement and selection of camera network nodes for target localization, IEEE Transactions on Vehicular Technology, 2010, 59:3562~3576.
    [84] E Horster, R lienhart. On the optimal placement of multiple visual sensors,In: Proceedings of the 4th ACM international workshop on Video surveillance and sensor networks, New York, USA,2006.111~120.
    [85]高翔,杨银堂,柴长春等,无线传感器网络中基于区域通信覆盖的节点定位投放算法,电子与信息学报,2010,32(7):1597~1601.
    [86]袁辉勇,阚清贤,传感器网络中基于能耗均衡的节点优化部署,计算机仿真,2010,27(8):100~103.
    [87]许耀伟,孙仲康,利用相位差变化率对固定辐射源的无源被动定位,系统工程与电子技术,1999,21(3):34~37.
    [88]毛继志,郭陈江,张麟兮等,幅相误差对射频仿真系统目标位置精度的影响,系统仿真学报,2003, 15(8): 1149~1151.
    [89]陆安南,杨小牛,单星测频测相位差无源定位,系统工程与电子技术,2010,32(2):244~247.
    [90]孙仲康,周一宇,何黎星,单多基地有源无源定位技术,北京:国防工业出版社,1996.181~348.
    [91]王扬,基于相位差变化率的机载单站无源定位的研究:[硕士学位论文],哈尔滨;哈尔滨工业大学,2008.
    [92]黄登才,丁敏,测相位差变化率无源定位技术评述,现代雷达,2007,29(8):32~51.
    [93]单月晖,孙仲康,皇甫堪,基于相位差变化率方法的单站无源定位技术,国防科技大学学报,2001,23(6):74~77.
    [94]朱伟强,黄培康,马琴,基于相位差变化率测量的单站定位方法,系统工程与电子技术,2008,30(11):2108~2111.
    [95] Yimin Zhang, Moeness G. Amin, Shashank Kaushik. Localization and Tracking of Passive RFID Tags Based on Direction Estimation, International Journal of Antennas and Propagation, 2007.
    [96] Junru Zhou, Hongjian Zhang, Lingfei Mo, Two-dimension localization of passive RFID tags using AOA estimation, In: Proceedings of 2011 IEEE International Instrumentation and Measurement Technology Conference, Binjiang, China, 2011.511~515.
    [97] Cory Hekimian-Williams, Brandon Grant, Xiuwen Liu, et al. Accurate Localization of RFID Tags Using Phase Difference, RFID, 2010 IEEE International Conference on,2010, ,89~96.
    [98] Salah Azzouzi, Markus Cremer, Uwe Dettmar, et al. New Measurement Results for the Localization of UHF RFID Transponders Using an Angle of Arrival (AoA) Approach, In: Proceedings of 2011 IEEE International Conference on RFID, Florida, USA,2011.91~97.
    [99] Wille.A, Broll,M, Winter,S, Phase difference based RFID navigation for medical applications, 2011 IEEE International Conference on RFID,Florida, USA,2011.98~105.
    [100] Christian Floerkemeier, Sanjay Sarma. RFID Sim—A Physical and Logical Layer Simulation Engine for Passive RFID. IEEE Transactions on Automation Science and Engineering. 2009, 6(1): 33~43.
    [101] L. Bolotnyy, G. Robins, The Case for Multi-Tag RFID Systems, In: Proceedings of IEEE International Conference on Wireless Algorithms, Systems and Applications, Chicago, USA, 2007. 174~186.
    [102] Abderrazak H,Slaheddine B,Ridha B. A transponder anticollision algorithm based on a multi-antenna RFIDreader, In: Proceedings of the 2nd Information and Communication Technologies. Damascus,Syria,2006:2684~2688.
    [103] Kim Myung Sik,Kim Hyung Wook,Chong Nak Young. Automated robot docking using direction sensing RFID, In: Proceedings of 2007 IEEE International Conference on Robotics and Automation. Roma,Italy,2007:4588~4593.
    [104]房静静,超高频段RFID基带信号处理及相位监测:[硕士学位论文],天津;天津大学,2010.
    [105] D. Joho, C. Plagemann, W. Burgard, Modeling RFID Signal Strength and Tag Detection for Localization and Mapping, In: Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009. 3160~3165.
    [106] X. Liu, M. Corner, P. Shenoy, Ferret: RFID Localization for Pervasive Multimedia, Lecture Notes in Computer Science, Berlin, Germany, Springer Press, 2006. 422~440.
    [107]中国射频识别(RFID)技术政策白皮书[P].北京:中华人民共和国科学技术部等十五部委,2006.
    [108]周非,基于时延估计的无线定位技术研究:[博士学位论文],成都;电子科技大学,2006.
    [109] D. Joho, C. Plagemann, W. Burgard, Modeling RFID Signal Strength and Tag Detection for Localization and Mapping, In: Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009. 3160~3165.
    [110] J. Yin, Q. Yang, L.M. Ni. Adaptive Temporal Radio Maps for Indoor Location Estimation, In: Proceedings of 2005 IEEE Annual Conference on Pervasive Computing and Communications, Hawaii ,USA, 2005. 85~94.
    [111] J. Ma, Q. Chen, D. Zhang. An Empirical Study of Radio Signal Strength in Sensor Networks. Technical Report, Dept. of Computer Science and Engineering, Hong Kong University of Science and Technology, March 25, 2006
    [112] Homayoun Hashemi, The Indoor Radio Propagation Channel, Proceeding of the IEEE, 1993, 81(7): 943~968.
    [113]倪海燕,应祥岳,简家文等,无线传感器网络的自身定位算法研究,宁波大学学报,2009,22(1):7~11.
    [114] Chan Y T,Ho K C. A simple and efficient estimator for hyperbolic location. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1994, 42(8): 1905~1915.
    [115] Yiu-Tong Chan,et al.Exact and approximate inaxiillum likelihood localization algorithms, IEEE on Transactions On Vehieular Technology,2006,55(1):10~16.
    [116]杨天池,金梁,程娟,一种基于TOA定位的CHAN改进算法,电子学报,2009,37(4):819~822.
    [117] C. Alippi, D. Cogliati, G. Vanini, A Statistical Approach to Localize Passive RFIDs, In: Proceedings of IEEE International Symposium on Circuits and Systems, Island of Kos, Greece, 2006. 843~846.
    [118] A. Bekkali, H. Sanson, M. Matsumoto, RFID Indoor Positioning based on Probabilistic RFID Map and Kalman Filtering, In: Proceedings of the 3rd International Conference on Wireless and Mobile Computing, Networking and Communications, New York, USA, 2007. 21~21.
    [119] L. Jing, P. Yang, A Localization Algorithm for Mobile Robots in RFID system, In: Proceedings of IEEE International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, China, 2007.2109~2112.
    [120] T. Wada, N. Uchitomi, Y. Ota, et al. A Novel Scheme for Spatial Localization of Passive RFID Tags; Communication Range Recognition (CRR) Scheme, In: Proceedings of IEEE International Conference on Communications, Dresden, Germany, 2009.1~6.
    [121]周杨,杜云明,刘文科等,MATLAB基础及在信号与系统中的应用,哈尔滨:哈尔滨工程大学出版社,2011.239 ~240.
    [122]刘勍,温志贤,MATLAB基础及应用,南京:东南大学出版社,2010.12~100.
    [123]陈根永,数值计算方法与MATLAB应用,郑州:郑州大学出版社,2010.189~190.
    [124] Allen Ka Lun Miu. Design and implementation of an indoor mobile navigation system, Massachusetts Institute of Technology, Boston, USA, 2002.1~60.
    [125] D. Moore, J. Leonard, D. Rus et al, Robust distributed network localization with noisy range measurements, In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, 2004.
    [126] Patwari N, O’Dea R J, Wang Yan-wei. In: Proceedings of Relative location in wireless networks, Vehicular Technology Conference , 2001(2): 1149~1153.
    [127] R. Want. An Introduction to RFID Technology. IEEE Pervasive Computing, 2006, 5(1): 25~33.
    [128]于洁潇,刘开华,宫霄霖等,三维空间下的射频识别标签防冲突算法,天津大学学报,2009,24(12):1089~1095.
    [129]徐风燕,石鹏,王宗欣.基于参数拟合的距离——损耗模型室内定位算法.电路与系统学报,2007,12(1):1~5.
    [130]郭明涛,李文元,龚福春,室内定位方法分析,2007北京地区高校研究生学术交流会通信与信息技术会议论文集(下册),2008.1474~1477.
    [131]胡来招,无源定位,北京:国防工业出版社,2004.1~230.
    [132] Abderrazak H,Slaheddine B,Ridha B. A transponder anticollision algorithm based on a multi-antenna RFID reader,In: Proceedings of the 2nd Information and Communication Tech-nologies. Damascus , Syria , 2006: 2684~2688.
    [133] K. S. Leong, M. L. Ng, P. H. Cole, The reader collision problem in RFID systems, In: Proceedings of IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Beijing, China, 2005: 658~661.
    [134] L. Bolotnyy, G. Robins, Multi-tag RFID systems, Security in RFID and Sensor Networks, Auerbach Publications, CRC Press, Taylor & Francis Group, 2009. 3~28.
    [135]刘海峰,赵英俊,楼寿春,基于多传感器优化布站的干扰目标定位模型,现代防御技术,2002, 30(1):61~63.
    [136]赵志超,王雪松,肖顺平,基于联合密度的多传感器定位算法,传感技术学报,2009, 22(10):1446~1450.
    [137]冯雪刚,薛磊,王昌宝等,基于联合密度最大的多站定位新方法研究,舰船电子工程,2007, 27(6):94~96.
    [138]程远国,李煜,徐辉,基于联合高斯概率分布的无线局域网定位方法研究,海军工程大学学报,2007,19(5):27~31.
    [139] Maurice Clerc, James Kennedy, The particle swarm-explosion, stability and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, 2002, 6(1) :58~73.
    [140] X. Hu, R. C. Eberhart, Adaptive particle swarm optimization: Detection and response to dynamic systems, In: Proceedings of IEEE Congress.on Evolutionary Computation., Honolulu, HI, 2002: 1666~1670.
    [141] Yingping Chen, Wenchih Peng, Mingchung Jian, Particle swarm optimization with recombination and dynamic Linkage discovery, IEEE Transactions on Systems Man, and Cybernetics, Part B: Cybernetics, 2007,(6):1460~1470.
    [142] Zhihui Zhan, Jun Zhang, Yun Li, et al. Adaptive particle swarmoptimization, IEEE Transactions on Systems Man, and Cybernetics, Part B: Cybernetics, 2009, 39 (6):1362~1381.
    [143]钟少波,RTK技术在水上测量中的应用,资源环境与工程,2009,23(3):314~316.
    [144]邹应华,GPS RTK技术在公路测量中的应用,科技广场,2009,12(3):54~55.
    [145] Poljak.D.Advanced Modeling in Computational Electromagnetic Compatibility. NewYork:Wiley.1992.61~84.
    [146] David M.P. Microwave Engineering (Third Edition),北京:电子工业出版社,2007.77~135.
    [147] C R Paul.Analysis of Multiconductor Transmission Lines. NewYork: Wiley, 1994.24~42.
    [148]齐磊,卢铁兵,崔翔,端接非线性负载的非均匀传输线瞬态分析,电波科学学报,2003,18(2):153~156.
    [149]高葆新,微波电路计算机设计,北京:清华大学出版社,1988.55~74.
    [150]李世琼,宗伟,有损均匀传输线的PSpice仿真分析,电气电子教学学报,2007,29(3):32~34.
    [151]王春艳,张少华,周德俭,非均匀传输线的仿真模型建立方法研究,电子科技,2010,23(2):4~7.
    [152]吕飞燕,沙斐,PCB上串扰的耦合机理和优化分析模型,电子与信息学报,2005,27(7) :1167~1170.
    [153] Howard Johnson, Martin Graham.高速数字设计(沈立,朱来文,陈宏伟等).北京:电子工业出版社,2010.85~97.
    [154] Carin L, Webb K.J., Isolation effects in single and dual plan VLSI interconnects. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(4):396~404.
    [155] ]Ladd D.L, Costache G.I. SPICE simulation used to characterize the cross-talk reduction effect of additional tracks grounded with vias on printed circuit boards. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1992, 39(6):342~347 .
    [156]陈树新,GPS整周模糊度动态确定的算法及性能研究:[博士学位论文],西安;西北工业大学,2002.
    [157]邓新蒲,数字式相位差测量方法及精度分析,国防科技大学学报,2002,24(5):70~74.
    [158]李辉,王岩飞,正弦信号的直接FFT参数估计与相位差分法对比研究,电子与信息学报,2010,32(3):544~547.
    [159]孙懋珩,赵雯,应用欠采样原理提高相位式激光测距精度,红外与激光工程,2009,38(1):70~73.
    [160] SoH C, A comparative study of two discrete-time phasedelay estimators, IEEE Transaction on Instrumentation and Measurement, 2005, 54(6): 2501~2504.
    [161]朱小勇,丁康,离散频谱校正方法的综合比较,信号处理,2001,17(1):91~97.
    [162]王兆华,侯正信,苏飞,全相位FFT频谱分析,通信学报,2003, 24(11A): 6~19.
    [163]黄翔东,王兆华,基于全相位频谱分析的相位差校正法,电子与信息学报,2008, 30(2):293~297.
    [164]黄翔东,全相位数字信号处理:[博士学位论文],天津;天津大学,2006
    [165]余佳兵,史铁林,陈培林等,窗谱校正方法的实用峰值搜寻算法研究,1996,9(4):378~382.
    [166]谢明,张晓飞,丁康,频谱分析中用于相位和频率校正的相位差校正法,振动工程学报,1999,12(4):454~459.
    [167]丁康,朱小勇,适用于加各种窗的一种离散频谱相位差校正法,电子学报,2001,29(7):987~989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700