用户名: 密码: 验证码:
超细煤粉物化特性及其对O_2/CO_2分级燃烧NO_x排放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源、环境是当今世界所面临的两大严峻的现实问题。中国是世界上最大的煤炭生产国和消费国,目前煤炭占中国能源需求总量的67%左右,这样的能源构成在今后相当长的时间内不会改变。煤燃烧过程中所排放的主要大气污染物对生态环境造成很大的危害,是最大的污染源之一。这种状况已经成为对社会和经济持续发展的严重制约。因此如何高效利用煤炭并降低其对环境的污染就变得异常重要。对于能造成酸雨、光化学烟雾等直接危害的氮氧化物和硫氧化物等,国内外众多研究者已经开展研究并得到很多有益的成果。近年来,随着CO_2所造成的温室效应问题的凸显,国际社会已开始对CO_2减排给予了很大的重视,成为全球热点问题。因此,开发一种污染物协同脱除的新兴燃烧技术,在拥有良好燃烧性能的基础上,不仅能实现CO_2的分离收集,还同时具备低NOx排放以及高脱硫效率,必将拥有巨大的发展潜力。
     本文采用上海同步辐射光源、原子力显微镜、核磁共振、电子顺磁共振、X射线光电子能谱仪、X射线衍射仪等先进的分析仪器和设备对不同粒度煤粉及煤焦的表面化学与精细微观结构进行深入的研究;并通过固定床实验台和多路进风一维炉综合燃烧实验台对污染物排放特性进行分析。在详细深入的实验研究基础上采用分形理论、机械力化学效应分析以及多样化分析测量手段,互为支撑、相互应证,揭示了煤粉表面化学与微观结构特性对燃烧过程影响的机制与机理,研究基于煤粉表面化学与微观结构的脱硝分子机理,为完善超细煤粉O_2/CO_2分级燃烧技术思想提供理论基础。
     煤粉的物理特性是决定煤粉颗粒中质量、热量传递速率与反应表面积的重要因素,对燃烧、气化、液化等过程产生巨大的影响。因此,深入研究超细煤粉的物理特性,对进一步了解超细煤粉着火及燃烧特性有着极其重要的意义。本文采用原子力显微镜及上海同步辐射光源等先进设备,结合分形几何理论,从表面形貌、颗粒粒度、粉碎机理以及孔隙结构等方面对超细煤粉的物理特性进行深入系统的研究,结果表明随着煤粉粒径的增加,表面分形维数增大,表面粗糙度增加;随着煤粉粒径的减小,颗粒粒度分布分形维数增加,颗粒粉碎程度越高,颗粒分布越集中。采用多段式分形维数对超细煤粉颗粒粒度分布进行分析,结果表明整个粒度范围内对应三种不同的分形维数,分别对应不同的粉碎理论及破碎机理。通过定义最佳煤粉细度,可以对煤粉粒径与燃烧设备整体性能之间的关系进行全面、正确的评估。通过对超细煤粉孔隙结构进行研究,结果表明随着煤粉粒径的减小,孔表面分形维数随之减小,表明孔表面更光滑,反应气体输送阻力更小;孔结构分形维数随之增大,表明孔的空间结构更加复杂,反应表面更多,更利于燃烧反应的进行。
     煤粉超细粉碎过程中伴随着机械力化学反应的进行,而煤粉的表面化学特性更是直接影响煤粉的燃烧及污染物排放特性。本文采用上海光源、X射线光电子能谱分析、核磁共振等先进的分析仪器从化学元素组成、碳骨架结构、自由基、表面官能团以及物相结构等多个方面对超细煤粉化学特性进行深入系统的分析,为基于超细煤粉/煤焦的化学结构模型的建立以及污染物排放特性的分析打下坚实的基础。超细煤粉顺磁共振结果表明随着煤粉粒径的减小,煤中自由基含量升高;酸洗过程使得煤中自由基含量上升。粒径对含氧类自由基影响最大,随着粒径的减小,此类自由基含量大幅上升。超细煤粉NMR碳谱研究表明随着煤粉粒径的减小,煤粉的芳碳率及芳氢率均随之增大;脂碳率随之减小,质子化脂碳结构明显减少;煤中的氧接脂碳含量降低,相应的氧接芳碳含量有所升高。超细煤粉XPS氮谱分析结果表明随着粒径的减小,吡啶型氮随之减少,吡咯型氮有所增多。通过上海同步辐射光源小角散射线站对超细煤粉进行研究,结果表明煤粉颗粒存在表面过渡层,推断是由煤中与母体相连的有机基团所形成的。随着煤粉粒径的减小,表面过渡层厚度增加;随着热解温度的升高,过渡层厚度降低;CO_2气氛下煤焦的过渡层厚度低于相应的N2气氛下的煤焦。
     煤热解时产生的挥发分及挥发分的燃烧对整个煤的燃烧过程有着重要的影响,有时甚至是决定性的影响。本文采用固定床实验系统,研究了煤种、加热条件、气氛、粒径等对超细煤粉热解特性以及煤焦性质的影响,结果表明甲烷析出过程主要分三个阶段,各阶段甲烷的生成类型与煤结构核磁共振分析有良好的对应关系。煤粉热解时,随着煤粉粒径的减小,CO的析出量有增大趋势,但存在最佳析出粒径。CO_2气氛下由于气化作用CO的析出量远高于N2气氛。煤粉的气化过程与煤中孔隙结构关系密切,随着煤粉粒径的减小,孔隙结构更发达,气化作用增强。CO的析出可分为四个阶段,各阶段CO的生成类型与原煤中各类型含碳官能团密切相关。NH3的形成与煤中自由基含量密切相关,需要外部含氢自由基的活化作用才可生成。煤粉越细,越利于燃料氮向挥发分氮的转化。研究成果对深入掌握超细煤粉燃烧及污染物排放特性等方面具有一定指导意义。
     为了解超细煤粉在O_2/CO_2气氛中分级燃烧的特点和污染物的析出特性,本文在多路进风一维沉降炉系统上进行了全面、深入的煤粉燃烧实验。结果表明超细煤粉O_2/CO_2燃烧时,贫燃料燃烧条件下,随着煤粉颗粒粒径的减小,挥发分NO_x增大,总的氮转化率升高,总NO_x生成量增加;富燃料燃烧条件下,颗粒粒径越小,越有利于挥发分NO_x减少,煤焦还原NO_x能力也越强,因而更有利于NO_x减排。采用O_2/CO_2分级燃烧方式时,NO_x排放与常规O_2/CO_2燃烧相比有所降低,而且此方式下超细煤粉可更为有效地降低NO_x排放。超细煤粉O_2/CO_2燃烧NO_x沿程排放基本呈“M”型分布。温度越高,均相还原作用越明显,但温度增加不利于异相还原反应的进行。
     超细煤粉O_2/CO_2分级燃烧技术既可以解决常规空气分级或常规富氧燃烧技术中固有的燃烧性能低、燃烧损失大以及结渣等缺点,又可实现多种污染物一体化协同脱除,使得NO_x等污染物排放进一步降低。加之此种技术的易操作性,通过对现役设备进行改造即可实现,使得超细煤粉O_2/CO_2分级燃烧技术必将成为一种很有市场前景的技术。
Energy and environment are two global challenging issues which we are facing. China is the largest country on the aspects of producing and consuming coals. At present, 67% of the total Chinese energy needs are fulfilled by coals and this situation will last for a long time in the future. The air pollutants released from coal combustion is one of the largest pollutive sources and has caused serious damages to the environments. This situation has been a serious restriction to the development of society and economy. Hence, how to use coals with higher efficiency and lower pollutive emissions becomes extremely important. Researchers over the world have been working on NO_x and SOx which can cause direct damages such as acid rain and photochemical smoke for years and have obtained lots of meaningful achievements. In recent years, the greenhouse effect caused by emissions of carbon dioxide has attracted more and more attention. So there will be a huge market potential to explore one kind of new combustion technique which can realize reducing pollutive emissions efficently, capturing CO_2 easily and having good combustion performances simultaneously in the same facility.
     A series of studies had been conducted on the surface morphology, microstructure and chemical characteristics of superfine pulverized coal by applying several advancing equipments such as SSRF, AFM, NMR, EPR, XPS and XRD. Combustion and pollutants emission properties were also investigated using fixed bed reactor and coal combustion system. Fractal theory, mechanochemical effect analysis and abundant testing methods were also adopted based on detailed experimental works. The results could provide a reference for refining the oxy-fuel combustion theory, revealing the NO_x reduction mechanism and studying the influence of surface chemistry and microstructure on the combustion process.
     The physical characteristics of pulverized coal is an important influencing factor which determine the mass, heat transferring rate in the particle and the reactive areas. Huge evolutions of physical characteristics will occur during processes of combustion, gasification and liquefaction. So it is meaningful to study the physical characteristics of superfine pulverized coal which is helpful for further understanding the ignition and combustion processes. Several advancing equipments such as AFM, SSRF were applied to study the physical characteristics combining fractal theory. The surface morphology, particle size distribution (PSD), comminution theory and pore structures were studied in detail. The results show that with increasing of the particle size, the surface fractal dimensions increase and the surface roughnesses also increase. On the contrary, with decreasing of the particle, the PSD fractal dimensions increase, which represents that the higher degree of particle fragmentation will be and the distribution is more concentrated. The piecewise fractal model is successfully adopted to study the PSD of the superfine pulverized coal and the results show that there are three different fractal dimensions in the whole range and each of them is corresponding to one kind of comminution theory and fragmentation mechanism. A new economic fineness of pulverized coal is defined which can better evaluate the relationship between the particle size and performance of the combustion apparatus. After studing the pore structures of superfine pulverized coal, it is found that the surface fractal dimension decreases with decreasing of the particle size which indicates that the smaller the mean coal particle size is, the smoother the interfacial boundary will be. On the other hand, with decreasing of the particle size, the pore structure fractal dimension increases which indicates that the more complex pore network will be. Therefore, the conclusion can be drawn that with the decrease of the coal particle size, the channels for reactant gas transportation become smoother and the mass transfer resistance lowers down which is easier for the gas transportation.Consequently, the reaction rate increases. On the other hand, the increase of the pore structure fractal dimensions can provide more reactive surfaces which are also advantageous for coal combustion.
     Mechanochemical effect occurs during the comminution process of superfine pulverized coal and the chemical properties of coal determine the combustion and pollutants emission characteristics. Some advancing equipments such as SSRF, XPS, NMR and EPR were applied to study the chemical characteristics from several aspects such as elements constitution, carbon skeleton structure, free radical and surface organic groups. The results from this study can provide the foundation and guidance for further study of coal/char strutrure model and pollutants emission characteristics. EPR results show that with decrease of particle size, the free radical increases. The free radical increases in coal during the acid washing process. The particle size influences the oxygen containing type most. NMR spectra indicate that with decrease of particle size, the aromatic carbons and hydrogens increase, the aliphatic carbons decrease, protonated aliphatic decrease obviously and aliphatic carbons bonded to oxygen decrease while aromatic carbons bonded to oxygen increase. XPS results suggest that with decrease of particle size, pyridine nitrogen decreases while pyrrole nitrogen increases. It is concluded from the SSRF results that there is surface interfacial layer in coal particles which is caused by the organic groups linked to the matrix of the coals. The interfacial thickness of superfine pulverized coal particles decreases with increasing coal quality and particle size.
     For the char particles, the interfacial thickness decreases with increasing pyrolysis temperature. Furthermore, the interfacial thickness of NMG chars formed in CO_2 atmosphere is thinner than that of the chars formed in N_2 atmosphere. Pyrolysis is the initial stage of coal conversion process and has important, sometimes crucial influence on the whole combustion process. Pyrolysis experiments of superfine pulverized coal were carried out using the fixed bed reactor. Moreover, the effects of coal type, particle size and temperature on the gas releasing mechanism and evolution of gas compositions were analyzed. The results show that there are three main stages during CH4 releasing process and each type of CH4 consists with NMR analysis very well. During pyrolysis of pulverized coal, the amount of CO increases with decrease of particle size but a best size exists. The amount of CO yielding in CO_2 atmosphere is much higher than that in N2 atmophere because of the gasification effects. It is found that the gasification effects have a close relationship with pore structures of coal. With decrease of the particle size, there are more pores in coal which can intensify the gasfication effects. The results show that there are four main stages during CO releasing process and each type of CO has a close relationship with carbon contained organic groups in coal. The formation of NH3 is related with the free radical in coal which has to be actived by hydrogen contained radical outside. The smaller the coal particle size is, the more easily the fuel nitrogen converts to volatile nitrogen.
     A thorough study on O_2/CO_2 staged combustion was conducted on the one dimensional coal combustion experimental system. The results show that in O_2/CO_2 atmosphere, when it is under fuel lean combustion condition, volatile nitrogen increases with decrease of particle size which results in the increase of total NO_x. On the other hand, when it is under fuel rich combustion condition, volatile nitrogen lowers down with decrease of particle size and the reducing capability on NO_x of chars increases which induces the decrease of total NO_x. The reduction of NO_x is obvious when oxidant staged technique is adopted in O_2/CO_2 combustion and the superfine pulverized coal can reduce NO_x emissions more efficiently than larger particles in this new technology. It is found that the NO_x emissions along the furnace appear as‘M’type. The homogenious reduction effect of NO_x is more efficient at higher temperature while it is disadvantageous for the heterogeneous reduction effect.
     Oxidant staged combustion of superfine pulverized coal in O_2/CO_2 atmosphere is a brand new technology which realize simultaneously the removal of NO_x and capturing CO_2 easily. Also this technology can solve the inherent disadvantages in normal air staged combustion or O_2/CO_2 combustion such as low combustion efficiency, high combustion loss and slagging issues to a certain extent. Furthermore, this technology is feasible and easy to realize with few reconstructing on the exsiting devices. Therefore the oxidant staged O_2/CO_2 combustion technology will become a useful and promising method on controlling CO_2 and NO_x emissions in the future.
引文
1徐旭常,陈昌和.燃煤污染防治与生态优化.中国工程四次院士大会学术报
    2李庆钊,赵长遂.空气分离/烟气再循环技术基础研究进展[J].热能动力工程, 2007, 22(3): 231- 236.
    3姜秀民,刘辉,闫澈,等.超细煤粉NOx和SO2排放特性与燃烧特性[J].化工学报, 2004, 55: 783-787.告论文集:A集[C].北京, 1998: 303-313.
    4 Wigley F, Williamson J, Gibb W H. The Distribution of Mineral Matter inPulverised Coal Particles in Relation to Burnout Behaviour[J]. Fuel, 1997,76(13): 1283-1288.
    5 Nugroho Y S, McIntosh A C, Gibbs B M. Low-Temperature Oxidation of Singleand Blended Coals[J]. Fuel, 2000, 79(15): 1951-1961.
    6 Man C K, Jacobs J, Gibbins J R. Selective Maceral Enrichment DuringGrinding and Effect of Particle Size on Coal Devolatilisation Yields[J]. FuelProcess. Technol., 1998, 56(3): 215-227.
    7姜秀民,李巨斌,邱健荣.煤粉颗粒粒度对煤质分析特性与燃烧特性的影响[J].煤炭学报1999, 24(6): 643-647.
    8 Jiang X M, Zheng C G, Yan C, et al. Physical Structure and CombustionProperties of Super Fine Pulverized Coal Particles[J]. Fuel, 2002, 81: 793-797.
    9 Jiang X M, Zheng C G, Qiu J R, et al. Combustion Characteristics of Super FinePulverized Coal Particles[J]. Energy Fuels, 2001, 15: 1100-1102.
    10 Zhang C Q, Jiang X M, Wei L H, et al. Research on pyrolysis characteristicsand kinetics of super fine and conventional pulverized coal[J]. Energy Conv.Manag., 2007, 48(3): 797-802.
    11刘转年,周安宁,金奇庭.煤超细粉碎过程中的影响因素及形态分析[J].煤炭科学技术, 2002, 30 (1): 46-48.
    12杨志远,周安宁,曲建林.超细煤粉的颗粒分布分形与球磨工艺关系研究[J].煤炭科学技术, 2004, 32 (1): 32-34.
    13谢建忠.用气流磨对几种煤炭的超细磨试验[J].煤炭加工与综合利用, 1999,4: 31-33.
    14姜秀民,李巨斌,邱健荣.超细化煤粉燃烧特性的研究[J].中国电机工程学报,2000, 20: 71-74.
    15 Tanaka M, Komagata M, Tsukada M, et al. Fractal Analysis of The Influence of Surface Roughness of Toner Particles on Their Flow Properties and Adhesion Behavior[J].Powder Technol., 2008, 186: 1-8.
    16 Martan J, Przybylski G, Tabaka R, et al. Fractal Analysis of Roughness Profile Induced by Ion Bombardment of Metal Surface[J].Vacuum, 2005,78, 217-221.
    17 Hu S, Li M, Xiang J, et al. Fractal Characteristic of Three Chinese Coals[J]. Fuel, 2004, 83(10): 1307-1313.
    18 Borodich F M.Some Fractal Models of Fracture[J].J. Mech. Phys.Solids, 199745(2): 239-259.
    19 Prosperini N, Perugini D. Particle Size Distributions of Some Soils from The Umbria Region (Italy): Fractal Analysis and Numerical Modelling[J]. Geoderma, 2008, 145(3-4): 185-195.
    20 Millan H, Gonzalez-Posada M, Aguilar M, et al. On The Fractal Scaling of Soil Data. Particle-Size Distributions[J].Geoderma, 2003,117(1-2): 117-128.
    21 Binnig G, Rohrer H. Scanning Tunneling Microscopy[J].Helv. Phys.Acta, 1982, 55:726-35.
    22 Binnig G, Quate C F, Gerber C H. Atomic Force Microscope[J].Phys.Rev. Lett. 1986, 56: 930-933.
    23杨起,潘治贵,汤达祯,等.煤结构的STM和AFM研究[J].科学通报,199439(7): 633-635.
    24 Lawrie G A, Gentle I R, Fong C, et al. Atomic Force Microscopy Studies of Bowen Basin Coal Macerals[J].Fuel, 1997, 76: 1519-1526.
    25 Yumura M, Ohshima S, Kuriki Y, et al. Atomic Force Microscopy Observations of Coals[J].Proc. Int. Conf. Coal Sci., 1993,1:394-397.
    26 Bruening F A, Cohen A D. Measuring Surface Properties and Oxidation of Coal Macerals Using the Atomic Force Microscope[J].Int. J. Coal Geol., 2005, 63: 195-204.
    27杨红果,常迎梅,范丽娟,等.AFM在煤体微结构研究中的应用[J].仪器仪表用户,2006, 13(5): 135-136
    28常迎梅,杨红果,马腾武,等.基于AFM的煤体微结构研究[J].现代科学仪器,2006, 6: 71-72.
    29 Elson J M, Bennett J M.Calculation of The Power Spectral Density fromSurface Profile Data[J].Appl. Opt., 1995,34: 201-208.
    30梁栋,王云鹤,肖淑衡.大隆煤升温氧化时煤表面的介观特性[J].黑龙江科技学院学报,2007, 17(1): 8-10.
    31王云鹤,梁栋,肖淑衡,等.煤表面结构介观表象的原子力显微镜(AFM)观测[J].黑龙江科技学院学报,2006, 16(5): 272-275.
    32 Senthilkumar M, Sahoo N K, Thakur S, et al. Characterization of Microroughness Parameters in Gadolinium Oxide Thin Films:A Study Based on Extended Power Spectral Density [J].Analyses.Appl. Surf. Sci., 2005, 252: 1608-1619.
    33 Gadelmawla E S, Koura M M, Maksoud T M A et al. Roughness Parameters[J]. J. Mater. Process Technol., 2002, 123:133-145.
    34 Trapalis C, Todorova N, Anastasescu M, et al. Atomic Force Microscopy Study of Ti02 Sol-Gel Films Thermally Treated under NHS Atmosphere[J].Thin Solid Films, 2009, 517:6243-6247.
    35 Udupa G, Singaperumal M, Sirohi R S, et al. Characterization of Surface Topography by Confocal Microscopy: II. The Micro and Macro Surface Irregularities [J].Measur. Sci. Technol., 2000, 11:315-329.
    36姜秀民,杨海平,闰澈,等.超细化煤粉表面形态分形特征[J].中国电机工程学报,2003, 23(2): 165-169.
    37 Yao Y B, Liu D M, Tang D Z, et al. Fractal Characterization of Adsorption-Pores of Coals From North China: An Investigation on CH4 Adsorption Capacity of Coals[J].Int. J. Coal Geol., 2008, 73(1):27-42.
    38 Radlinski A P, Mastalerz M, Hinde A L, et al. Application of SAXS and SANS in Evaluation of Porosity, Pore Size Distribution and Surface Area of Coal[J]. Int. J. Coal Geol., 2004, 59(3-4): 245-271.
    39 Mahamud M, Lopez O, Pis J J, et al. Textural Characterization of Chars Using Fractal Analysis [J].Fuel Process.Technol., 2004, 86(2): 135-149.
    40 Mahnke M, Mogel H J. Fractal Analysis of Physical Adsorption on Material Surfaces [J].Colloid Surf., A 2003,216(1-3): 215-228.
    41 Avnir D, Jaroniec M.An Isotherm Equation for Adsorption on Fractal Surfaces of Heterogeneous Porous Materials[J].Langmuir, 1989, 5(6): 1431-1433.
    42 Zhang J W, Sun S Z, Yang J C, et al. Structure Development of Coal Chars Under High Temperature Reducing Conditions[J].Proceedings of the CSEE, 2008, 28(35): 1-8.
    43 Sahouli B, Blacher S, Brouers F. Applicability of The Fractal FHH Equation[J].Langmuir, 1997, 13(16): 4391-4394.
    44 Xu L J, Zhang D J, Xian X F. Fractal Dimensions of Coals and Cokes[J]. J.Colloid Interface Sci., 1997, 190(2): 357-359.
    45 Ismail I M K, Pfeifer P. Fractal Analysis and Surface Roughness of Nonporous Carbon Fibers and Carbon Blacks[J].Langmuir, 1994, 10(5): 1532-1538.
    46 Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for TheCharacterization of Porous Solids[R]. Pure Appl. Chem., 1994, 66: 1739-1758.
    47 Imelik B, Vedrine J C.Catalyst Characterization Physical Techniques for SolidMaterials[M}.New York: Plenum Press, 1994.
    48 Li Z H, Gong Y J, Wu D, et al. A Negative Deviation from Porod's Law in SAXS of Organo-MSU-X[J].Microporous Mesoporous Mater., 2001,46(1):75-80.
    49 Bale H D. Schmidt P W. Small-Angle-X-Ray-Scattering Investigation ofSubmicroscopic Porosity with Fractal Properties[J].Phys. Rev. Lett-1984.53(6): 596-599.
    50 Bodoev N V, Gruber R, Kucherenko V A, et al. A Novel Process for Preparationof Active Carbon from Sapropelitic Coals}J}.Fuel, 1998, 77(6): 473-478.
    51 Sastry P U, Sen D, Mazumder S, et al. Structural Variations in Lignite Coal: A Small Angle X-ray Scattering Investigation[J].Solid State Commun., 2000114(6): 329-333.
    52 Mitropoulos A C, Haynes J M, Richardson R M, et al. Water Adsorption and Small Angle X-ray Scattering Studies on The Effect of Coal Thermal Treatment[J].Carbon, 1996, 34(6): 775-781.
    53 Nakagawa T, Komaki I, Sakawa M, et al. Small Angle X-ray Scattering Study on Change of Fractal Property of Witbank Coal with Heat Treatment[J].Fuel, 2000, 79(11):1341-1346.
    54 Nakagawa T, Nishikawa K, Komaki I. Change of Surface Fractal Dimension for Witbank Coal with Heat-Treatment Studied by Small Angle X-ray Scattering[J]. Carbon, 1999, 37(3): 520-5 22.
    55 Coppens M O.Characterization of Fractal Surface Roughness and Its Influence on Diffusion and Reaction[J].Colloid Surf., A 2001,187-188: 257-265.
    56 Diduszko R, Swiatkowski A, Trznadel B J. On Surface of Micropores and Fractal Dimension of Activated Carbon Determined on The Basis of Adsorptionandand SAXS Investigations[J].Carbon, 2000, 38(8): 1153-1162.
    57刘忠,阎维平,高正阳,等.超细煤粉粒度对煤质分析特性的影响[J].华北电力大学学报,2004, 31(4): 63-65.
    58 Yu D X, Xu M H, Sui J C, et al. Effect of Coal Particle Size on The Proximate Composition and Combustion Properties[J].Thermochimica Acta, 2005,439: 103-109.
    59 Hower J C.Maceral/ Microlithotype Partitioning with Particle Size of Pulverized Coal: Examples from Power Plants Burning Central Appalachian and Illinois basin Coals[J].Int. J. Coal Geol., 2008, 73:213-218.
    60 Mathews J P, Hatcher P G, Scaroni A W. Particle Size Dependence of Coal Volatile Matter: Is There A Non-Maceral-Related Effect? [J].Fuel, 1997, 76(4):359-362.
    61 Lytle J M, Leland D J, Tingey G L. Concentration of Sulphur and Mineral Rich Components in Particle Classes During Coal Comminution[J].Fuel, 1983,62: 1299-1303.
    62范晓雷,杨帆,张薇,等.热解过程中煤焦微晶结构变化及其对煤焦气化反应活性的影响[J].燃料1化学学报,2006, 34(4): 395-398.
    63 Lu L M, Sahajwalla V, Kong C K, Harris D. Quantitative X-ray Diffraction Analysis and Its Application to Various Coals[J].Carbon, 2001,39:1821-1833.
    64 Lu L M, Kong C K, Sahajwalla V, Harris D.Char Structural Ordering During Pyrolysis and Combustion and Its Influence on Char Reactivity[J].Fuel, 2002, 81:1215-1225.
    65 Feng B, Bhatia S K,Barry J C. Structural Ordering of Coal Char During Heat Treatment and Its Impact on Reactivity[J].Carbon, 2002, 40: 481-496.
    66 Wang J H, Du J, Chang L P, et al. Study on The Structure and Pyrolysis Characteristics of Chinese Western Coals[J].Fuel Process.Technol., 2010,91(4): 430-433.
    67李增华.煤炭自燃的自由基反应机理[J].中国矿业大学报,1996, 25(3): 111-114.
    68 Uebersfeld J, Eitenne A, Combrisson J. Paramagnetic Resonance, A New Property of Coal-like Material[J].Nature, 1954, 174: 614-614.
    69 Ingram D J E, Tapley J G, Jackson R, et al. Paramagnetic Resonance in Carbonaceous Solids[J].Nature, 1954,174: 797-798.
    70 Petrakis Leon, Grandy D W. Electron Spin Resonance Spectrometric Study ofFree Radicals in Coals[J].Anal. Chem., 1978, 50(2): 303-308.
    71 Silbernagel B G, Gebhard L A, Dyrkacz G R, et al. Electron Spin Resonance of Isolated Coal Macerals[J].Fuel, 1986, 65:55 8--565.
    72 Pilawa B, Wiyckowski A B, Pietrzak R, et al. Oxidation of Demineralized Coal and Coal Free of Pyrite Examined by EPR Spectroscopy[J].Fuel, 2002, 81: 1925-1931.
    73 Pilawa B, Wi}ckowski A B, Lewandowski M. Application of EPR Spectroscopy to The Characterization of Magnetic Interactions in Thermally Decomposed Coal[J].Magn. Reson. Chem., 1999, 37:871-877.
    74 Yokono T, Murakami K, Sanada Y. The Effect of Heating Rate on Radical Concentration during Coal Pyrolysis[J].Fuel Process.Technol., 1987, 17:7-11.
    75 Solum M S, Pugmire R J, Grant D M.'3C Solid-state NMR of Argonne Premium Coals[J].Energy Fuels, 1989, 3:187-193.
    76 Bandara T S, Kannangara G S K, Wilson M A. et al. The Study of Australian Coal Maturity: Relationship Between Solid-State NMR Aromaticities and Organic Free-Radical Count[J].Energy Fuels, 2005,19:954-959.
    77 Muntean J V, Stock L M. Solid-State '3C NMR Spectroscopy of Pocahontas No.3 Coa[J].Energy Fuels, 1991,5(5): 767-769.
    78 Kelemen S R, Afeworki M, Gorbaty M L. Characterization of Organically Bound Oxygen Forms in Lignites, Peats, and Pyrolyzed Peats by X-ray Photoelectron Spectroscopy (XPS) and Solid-State '3C NMR Methods[J]. Energy Fuels, 2002, 16 (6): 1450-1462.
    79梁栋,王成卫,陈六平.大明煤低温氧化过程的固体核磁共振研究[J].深圳大学学报理工版,2007, 24(1): 29-31.
    80罗陨飞,李文华,陈亚飞.中低变质程度煤显微组分结构的C-NMR研究[J].燃料1化学学报,2005, 3(5):540-543.
    81 Pels J R, Kaptueijn F, Moulijn J A, et al. Evolution of Nitrogen Functionalities in Carbonaceous Materials During Pyrolysis[J].Carbon, 1995, 33(11):1641-1653.
    82 Kelemen S R, Gorbaty M L, Kwiatek P J. Quantification of Nitrogen Forms in Argonne Premium Coals[J].Energy Fuels, 1994, 8: 896-906.
    83 Gong B, Buckley A N, Lamb R N, et al. XPS Determination of the Forms of Nitrogen in Coal Pyrolysis Chars[J].Surf. Interface Anal., 1999, 28:126-130.
    84 Stanczyk K, Dziembaj R, Piwowarska Z, et al. Transformation of Nitrogen Structures in Carbonization of Model Compounds Determined by XPS[J].Carbon, 1995,33(10): 1383-1392.
    85 Wojtowicz M A, Pels J R, Moulijn J A. The Fate of Nitrogen Functionalities in Coal During Pyrolysis and Combustio[J].Fuel, 1995, 74(4): 507-516.
    86 Kelemen S R, Kwiatek P J. Quantification of Organic Oxygen Species on the Surface of Fresh and Reacted Argonne Premium Coal[J].Energy Fuels, 1996, 9: 841-848
    87 George G N, Gorbaty M L, Kelemen S R, et al. Direct Determination and Quantification of Sulfur Forms in Coals From The Argonne Premium Sample Program[J].Energy Fuels, 1991,5:93-97.
    88刘艳华,车得福,李荫堂,等.X射线光电子能谱确定铜川煤及其焦中氮的形态[J].西安交通大学学报,2001, 35(7): 661-665.
    89姚明宇,刘艳华,车得福,’自{宾煤中氮的形态及其变迁规律研究[J].西安交通大学学报,2003, 37(7): 759-763.
    90徐秀峰,张蓬洲.用XPS表征氧、氮、硫兀素的存在形态[J].煤炭转化,1996,19(1): 72-77.
    91苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社,2005: 70-72.
    92 Spliethoff H, Greul U, Rudiger H, et al. Basic Effects on NOX Emissions in Air Staging and Reburning at A Bench-Scale Test Facility[J].Fuel, 1996, 75(5):560-564.
    93 Mereb J B, Wendt J O L. Air Staging and Reburning Mechanisms for NOX Abatement in A Laboratory Coal Combustor[J].Fuel, 1994, 73(7): 1020-1026.
    94 Coda B, Kluger F, Fortsch D, et al. Coal-Nitrogen Release and NOX Evolution in Air-Staged Combustion[J].Energy Fuels, 1998, 12: 1322-1327.
    95 Ribeirete A, Costa M.Impact of The Air Staging on The Performance of A Pulverized Coal Fired Furnace[J].Proceedings of the Combustion Institute, 2009, 32: 2667-2673.
    96文军,许传凯.分级燃烧对NO、生成及燃烧经济性的影响[J].中国电力,1997, 30 (4): 8-12.
    97向军,苏胜,胡松,等.分级燃烧降低燃煤污染物NO、的实验研究[J].动力工程,2005, 25: 201-205.
    98韩应.空气分级燃烧技术对煤种的适应性研究[J].中国科技信息,2006, (1): 64.
    99林鹏云,罗永浩,胡理兀.燃煤电站锅炉空气分段低NOX燃烧影响因素的数值模拟[J].锅炉技术,2007, 38(5): 42-46.
    100 Wall T F. Combustion Processes for Carbon Capture[J].Proceedings of the Combustion Institute, 2007, 31:31-47.
    101 Horn F L, Steinberg M. Control of Carbon Dioxide Emissions from A Power Plant (and Use in Enhanced Oil Recovery) [J].Fuel, 1982, 61(5): 415-422.
    102 Abraham B M, Asbury J G, Lynch E P, et al. Coal-Oxygen Process Provides C02 for Enhanced Recovery[J].Oil Gas J., 1982, 80(11):68-70,75.
    103 Wall T, Liu Y H, Spero C, et al. An Overview On Oxyfuel Coal Combustion-State of The Art Research and Technology Development[J].Chemical Engineering Research and Design, 2009, 87:1003-1016.
    104 Bejarano P A, Levendis Y A. Single-Coal-Particle Combustion in 02/N2 and
    02/C02 Environments[J].Combustion and Flame, 2008, 153:270-287.
    105 Zhang L, Binner E, Qiao Y, et al. In Situ Diagnostics of Victorian Brown Coal Combustion in 02/N2 and 02/C02 Mixtures in Drop-Tube Furnace[J].Fuel, 2010, 89:2703-2712.
    106 Molina A, Shaddix C R. Ignition and Devolatilization of Pulverized Bituminous Coal Particles during Oxygen/Carbon Dioxide Coal Combustion[J].Proceedings of the Combustion Institute, 2007, 31:1905-1912.
    107 Borrego A G, Alvarez D. Comparison of Chars Obtained under Oxy-Fuel and Conventional Pulverized Coal Combustion Atmospheres[J].Energy Fuels, 2007,21:3171-3179.
    108 Kanniche M, Gros-Bonnivard R, Jaud P, et al. Pre-Combustion, Post-Combustion and Oxy-Combustion in Thermal Power Plant for COZ Capture[J].Applied Thermal Engineering, 2010, 30: 53-62.
    109孟德润,赵翔,周俊虎,等.煤在OZ/COZ中燃烧的NO、释放规律[J].化工学报,2005, 56(12): 2410-2414.
    110旷金国.高效空气分级燃烧控制燃煤NO、排放的技术理论研究[D].上海:上海交通大学硕士论文,2010: 11.
    111 Maier H, Spliethoff H, Kicherer A, et al. Effect of Coal Blending and Particle Size on NOX Emission and Burnou[J].Fuel, 1994, 73(9): 1447-1452.
    112 Fan W D, Lin Z C, Kuang J G, et al. Impact of Air Staging Along Furnace Height on NOX Emissions from Pulverized Coal Combustion[J].Fuel Process. Technol., 2010, 91:625-634.
    113唐志国,朱全利,唐必光,等.空气分级燃烧降低NOX排放的实验研究[J].电站系统工程,2003, 19(3): 7-9.
    114肖理生,程俊峰,‘曾汉才,等.分级燃烧及煤粉细度对NO、排放浓度的影响[J].华中理工大学学报,1998, 26(11): 81-84.
    115黄序永,刘加勋,姜秀民.OZ/COZ气氛中超细煤粉着火特性[J].中国电机工程学报,2010, 30(11): 50-55.
    116 Huang X Y, Jiang X M, Han X X, et al. Combustion Characteristics of Fine- and Micro-pulverized Coal in The Mixture of 02/C02[J].Energy Fuels, 2008,22: 3756-3762.
    117 Jiang X M, Huang X Y, Liu J X, et al. NOX Emission of Fine-and Superfine- Pulverized Coal Combustion in 02/C02 Atmosphere[J].Energy Fuels, 2010, 24: 6307-6313.
    118 Maier J, Dhungel B, Monckert P, et al. Coal Combustion and Emission Behaviour under Oxy-Fuel Combustion[J].Proceedings of the 31st international technical conference on coal utilization and fuel systems. Gaithersburg: Coal Technology Association, 2006.
    119 Liu H, Zailani R, Gibbs B M.Comparisons of Pulverized Coal Combustion in Air and in Mixtures of 02/C02[J].Fuel, 2005, 84: 833-840.
    120 Watanabe H, Yamamoto J, Okazaki K. NOX Formation and Reduction Mechanisms in Staged 02/C02 Combustion[J].Combustion and Flame, 2011,158(7): 1255-1263.
    121李风生.超细粉体技术[M].北京:国防工业出版社,2000: 333.
    122上海光源主页. http://ssrf.sinap.ac.cn/index.htm.
    123肖淑衡,梁栋,王云鹤,等.煤表面介观形貌特征的二维功率谱分析[J].湖南科技大学学报(自然科学版),2006, 21(4): 23-26.
    124徐龙君,张代钧,鲜学福.煤的超细物理结构特征[J].重庆大学学报(自然科学版),1997, 20(1): 31-37.
    125郭崇涛.煤化学[M].北京:化学工业出版社,1992: 45.
    126姜秀民,李巨斌,邱健荣,等.超细煤粉的物理特性及其对燃烧性能的影响[J].燃料1化学学报,2000, 28(2): 170-174.
    127 Demanet C M.Atomic Force Microscopy Determination of The Topography of Flyash Particles[J].Appl. Surf. Sci., 1995,89:97-101.
    128 Mishra S R, Kumar S, Wagh A, et al. Temperature-Dependent Surface Topography Analysis of Illinois Class F Fly Ash Using ESEM and AFM[J]. Mater. Lett., 2003,57:2417-2424.
    129 Urakaev F K, Boldyrev V V. Mechanism and Kinetics of Mechanochemical Processes in Comminuting Devices:2. Applications of The Theory. Experiment. [J].Powder Technol., 2000, 107(3): 197-206.
    130黄序永,姜秀民,张超群,等.颗粒粒径对煤表面轻基官能团的影响[J].燃烧科学与技术,2009, 15(5): 457-460.
    131 Pancewicz T, Mruk I. Holographic Contouring for Determination of Three Dimensional Description of Surface Roughness[J].Wear, 1996, 199:127-131.
    132 Poon C Y, Bhushan B. Nano-Asperity Contact Analysis and Surface Optimisation for Magnetic Head Slider/Disk Contact[J].Wear, 1996, 202: 83-98.
    133李成贵,董中.二维表面微观形貌的表征参数和方法[月.宇航计测技术,1999, 19(6): 33-43.
    134 Mandelbrot B B.The Fractal Geometry of Nature[M].New York: W. H. Freeman and Company, 1982.
    135王云鹤,梁栋,肖淑衡,等.升温氧化过程煤表面介观特征和分形参数研究[J].深圳大学学报理工版,2006, 23(4): 325-328.
    136 Mandelbrot B B, Passoja D E, Paullay A J. Fractal Character of Fracture Surfaces of Metals[J].Nature, 1984, 308: 721-722.
    137 Bigerelle M, Iost A. Statistical Artefacts in The Determination of The Fractal Dimension by The Slit Island Method[J].Eng. Fract. Mech., 2004, 71(7-8): 1081-1105.
    138 Gosiewska A, Drelich J, Laskowski J S, et al. Mineral Matter Distribution on Coal Surface and Its Effect on Coal Wettability[J].J. Colloid Interface Sci., 2002, 247(1):107-116.
    139褚武扬,宿彦京,高克玮,等.材料科学中的分形[M].北京:化学工业出版社,2004:55-56.
    140 Fang T H, Chang W J. Effects of AFM-Based Nanomachining Process on Aluminum Surface[J].J. Phys.Chem. Solids, 2003, 64: 913-918.
    141 Poljacek S M, Risovic D, Furic K, et al. Comparison of Fractal and Profilometric Methods for Surface Topography Characterization[J].Appl. Surf. Sci., 2008, 254: 3449-34_58.
    142 Risovic D, Poljacek S M, Furic K, et al. Inferring Fractal Dimension of Rough/ Porous Surfaces-A Comparison of SEM Image Analysis and Electrochemical Impedance Spectroscopy Methods[J].Appl. Surf. Sci., 2008, 255:3063-3070.
    143 Deng J. Control Problems of Grey Systems[J].Syst. Control Lett., 1982, 1:288-294.
    144 Caydas U, Hascalik A. Use of The Grey Relational Analysis to Determine Optimum Laser Cutting Parameters with Multi-Performance Characteristics[J]. Opt. Laser Technol., 2008, 40: 987-994.
    145 Chang T C, Lin S J. Grey Relation Analysis of Carbon Dioxide Emissions From Industrial Production and Energy Uses in Taiwan[J].J. Environ. Manage., 199956: 247-257.
    146张雪平,殷国富.基于层次灰色关联的产品绿色度评价研究[J].中国电机工程学报,2005, 25(17): 78-82.
    147王浙芬,孙学信,李敏.煤燃烧中微量兀素的转换机理及富集规律研究[J].煤炭转化,1999, 22(1): 58-62.
    148 Fu C Y, Zheng J S, Zhao J M, Xu W D. Application of Grey Relational Analysis for Corrosion Failure of Oil Tubes[J].Corms. Sci., 2001,43(5):881-889.
    149郁可,郑中山.粉体粒度分布的分形研究[J].材料科学与工程,1995, 13(3):30-34.
    150 Bird N R A, Perrier E, Rieu M.The Water Retention Function for A Model of Soil Structure With Pore and Solid Fractal Distributions[J].Eur. J. Soil Sci., 2000, 51(1):_5 _5-63.
    151 Perrier E, Bird N, Rieu M. Generalizing The Fractal Model of Soil Structure: The Pore-Solid Fractal Approach[J].Geoderma, 1999, 88(3-4): 137-164.
    152姜秀民,杨海平,李彦,等.煤粉颗粒粒度分形分析[J].煤炭学报,2003,28(4): 414-418.
    153 Carpinteri A, Pugno N. A Fractal Comminution Approach to Evaluate The Drilling Energy Dissipation[J].Int. J. Numer. Anal. Methods Geomech., 2002,26(5): 499-513.
    154 Carpinteri A, Pugno N. A Multifractal Comminution Approach for Drilling Scaling Laws[J].Powder Technol., 2003,131(1):93-98.
    155 Lu P, Jefferson I F, Rosenbaum M S, et al. Fractal Characteristics of Loess Formation: Evidence from Laboratory Experiments[J].J. Eng.Geol., 2003,69(3-4): 287-293.
    156曾凡杜.煤粉碎的分形机理[M].北京:煤炭工业出版社,2001: 107-109.
    157郝保红.超细粉碎过程中的“逆粉碎”现象[J].北京石油化工学院学报,19964(2): 31-38.
    158 Tasdemir, A. Fractal Evaluation of Particle Size Distributions of Chromites in Different Comminution Environments[J].Miner. Eng.,2009, 22(2): 156-167.
    159容孪恩,袁镇福,刘志敏,等.电站锅炉原理[M].北京:中国电力出版社,1997: 97.
    160丛爽.面向MATLAB工具箱的神经网络理论与应用[M].第二版.合肥:中国科学技术大学出版社,2009: 1-4.
    161 Guo B, Shen Y, L D, et al. Modelling Coal Gasification with A Hybrid Neural Network[J].Fuel, 1997, 76(12): 1159-1164.
    162 Cui Z G, Han X X, Jiang X M, et al. Experiment and Neural Network Model of Primary Fragmentation of Oil Shale in Fluidized Bed[J].Oil Shale, 2009, 26(2):114-124.
    163洪礼卫.几种金属材料破坏机理与断裂形式的研究[D].苏州:江南大学硕士论文,2008: 32-33.
    164贾如磊.常温下热塑性塑料的湍流超细粉碎机理研究[D].兰州:兰州理工大学硕士论文,2006: 11-12.
    165 Bittelli M, Campbell G S, Flury M. Characterization of Particle-Size Distribution in Soil with A Fragmentation Model[J].Soil Sci. Soc. Am. J., 1999,63:782-788.
    166 G Jimbo.Chemical Engineering Analysis of Fine Grinding Phenomenon and Process [J].J. Chem. Eng.Jpn., 1992, 25:117-127.
    167 Cooper B R, Gruner W R, Anderson L, et al. Report to The American Physical Society By The Study Group on Research Planning for Coal Utilization and Synthetic Fuel Production[R] .Rev. Mod. Phys.,1981,53(4): S1-S168.
    168 Amarasekera G, Scarlett M J, Mainwaring D E. Micropore size distributions and specific interactions in coals[J].Fuel, 1995,74(1):115-118.
    169 Sing K S W, Everett D H, Haul R A W, et al. Reporting Physisorption Data for Gas/Solid Systems, With Special Reference to The Determination of Surface Area and Porosity (Recommendations 1984)[R].Pure Appl. Chem., 1985, 57(4):603-619.
    170 Pyun S II,Rhee C K. An Investigation of Fractal Characteristics of Mesoporous Carbon Electrodes with Various Pore Structures[J].Electrochim. Acta, 2004, 49(24): 4171-4180.
    171 Pfeifer P, Wu Y J, Cole M W, et al. Multilayer Adsorption on A Fractally Rough Surface[J].Phys.Rev. Lett., 1989, 62(17):1997-2000.
    172 Wu, M.K. The Roughness of Aerosol Particles: Surface Fractal Dimension Measured Using Nitrogen Adsorption[J].Aerosol Sci. Technol., 1996, 25(4):392-398.
    173 Tang P, Chew N Y K, Chan H K, et al. Limitation of Determination of Surface Fractal Dimension Using N2 Adsorption Isotherms and Modified Frenkel -Halsey-Hill Theory[J].Langmuir, 2003, 19(7): 2632-2638.
    174 Mitropoulos A C, Kanellopoulos N K, Stefanopoulos K L, et al. Scattering by Curved and Fractal Surfaces[J].J. Colloid Interface Sci., 1998, 203(1):229-230.
    175 Farin D, Avnir D.The Reaction Dimension in Catalysis on Dispersed Metals[J]. J. Am. Chem. Soc., 1988, 110(7): 2039-2045.
    176 Reich M H, Snook I K, Wagenfeld H K. A Fractal Interpretation of The Effect of Drying on The Pore Structure of Victorian Brown Coal[J].Fuel, 1992, 71(6):669-672.
    177 Rizkalla N, Hildgen P, Thibert R. Influence of the Fractal Character of Model Substances on their Reactivity at Solid-Liquid Interfaces[J].J. Colloid Interface Sci., 1999, 215(1):43-53.
    178 Reich M H, Russo S P, Snook I K, et al. The Application of SAXS to Determine The Fractal Properties of PorousCarbon-Based Materials[J].J. Colloid Interface Sci., 1990, 135(2): 353-362.
    179 Boreham C J, Blevin J E, Radlinski A P, et al. Coal As A Source of Oil and Gas: A Case Study from The Bass Basin, Australia[J].APPEA Journal, 2003, 43:117-148.
    180 Sahouli B, Blacher S, Brouers F, et al. Surface Morphology of Commercial Carbon Blacks and Carbon Blacks from Pyrolysis of Used Tyres by Small-Angle X-Ray Scattering[J].Carbon, 1996, 34(5): 633-637.
    181 Weidler P G, Degovics G, Laggner P. Surface Roughness Created by Acidic Dissolution of Synthetic Goethite Monitored with SAXS and N2-Adsorption Isotherms [J].T. Colloid Interface Sci., 1998, 197(1):1-8.
    182 Mitropoulos A C, Stefanopoulos K L, Kanellopoulos N K. Coal studies by small angle X-ray scattering[J].Microporous Mesoporous Mater., 1998,24(1-3): 29-39.
    183 Pfeifer P, Avnir D.Chemistry in Noninteger Dimensions Between Two and Three. I. Fractal Theory of Heterogeneous Surfaces[J].J. Chem. Phys.,1983,79(7): 3558-3565
    184 Neimark A V, Hanson M, Unger K K. Fractal Analysis of The Distribution of High-Viscosity Fluids in Porous Supports[J].J. Phys. Chem., 1993, 97(22): 6011-6015.
    185 Lebon S, Hillel R. Fractal Analysis of Graphite Matrices:Influence of Impregnation of Salts[J].J. Colloid Interface Sci., 1995, 173(1):215-220.
    186 Liu G, Benyon P, Benfell K E, et al. The Porous Structure of Bituminous Coal Chars and Its Influence on Combustion and Gasification Under Chemically Controlled Conditions[J].Fuel, 2000, 79:617-626.
    187李冷,曾宪滨.粉碎机械力化学的进展其在材料开发中的应用[J].武汉工业大学学报,1993, 15(1): 23-26.
    188 Peters K. Mechanochemische Reaktionen[C].Frankfurt: Symposion Zerkleinern, 1962:78-98.
    189陈文敏,张自韵.煤化学基础[M].北京:煤炭工业出版社,1993: 64,88.
    190 Jayaweera S A A, Moss J H, Thwaites M W, The Effect of Particle Size on The Combustion of Weardale Coal[J].Thermochimica Acta, 1989, 152(1):215-225.
    191 Hower J C, Graese A M, Klapheke J G.Influence of Microlithotype Composition on Hardgrove Grindability for Selected Eastern Kentucky Coals[J]. Int. J. Coal Geol., 1987, 7:227-244.
    192 Trimble A S, Hower J C, Studies of The Relationship Between Coal Petrology and Grinding Properties[J].Int. J. Coal Geol., 2003, 54: 253-260.
    193 Yu D X, Xu M H, Yu Y, et al. Swelling Behavior of a Chinese Bituminous Coal at Different Pyrolysis Temperatures[J].Energy Fuels, 2005, 19:2488-2494.
    194 Kok M V, Ozbas E, Karacan O, et al. Effect of Particle Size on Coal Pyrolysis[J].Journal of Analytical and Applied Pyrolysis, 1998, 45:103-110.
    195 Morris R M.Effect of Particle Size and Temperature on Volatiles Produced From Coal by Slow Pyrolysis[J].Fuel, 1990, 69:776-779.
    196 Niac G, Popescu A, Via}u-Bolocan I, Capota P. Grain Size Distribution of I}alnita Power Plant Lignite Ash and Elemental Composition of Size Classes[J]. Fuel, 2001,80: 731-737.
    197 Pusz S, Krzton A, Komraus J L, et al. Interactions Between Organic Matter and Minerals in Two Bituminous Coals of Different Rank[J].Int. J. Coal Geol., 1997, 33:369-386.
    198吴应荣.硬X射线微探针及其应用[J].核技术,1999, 22(2): 123-128.
    199邓彪,余笑寒,徐洪杰.同步辐射硬X射线微束技术[J].核技术,2007, 30(5):97-402.
    200 Grime G W. Analysis of Individual Environmental Particles Using MicroPIXE and Nuclear Microscopy[J].X-Ray Spectrometry, 1998, 27(4): 221-231.
    201江安璞.大气气溶胶研究新动向[J].环境化学,1999, 18(1): 11-15.
    202徐明厚,王敦喜,刘晓伟.燃煤可吸入颗粒物的形成十排放「M].北京:科学出版社,2009.
    203 Bukowiecki N, Hill M, Gehrig R, et al. Trace Metals in Ambient Air: Hourly Size-Segregated Mass Concentrations Determined by Synchrotron-XRF[J]. Environ. Sci. Technol., 2005, 3:5754-5762.
    204朱之培,高晋生.煤化学[M].上海:上海科学技术出版社,1984.
    205 Schoening F R L. X-ray Structure of Some South African Coals Before and After Heat Treatment at 500 and 1000 0C [J].Fuel, 1983, 62: 1315-1320.
    206 Cullity B D. Elements of X-Ray Diffraction[M].Reading, Massachusetts: Addison-Wesley, 1956.
    207张路锁,关英斌,李海梅,等.利用XRD法探讨邢台隆东井田煤变质规律[J].煤田地质与勘探,2010, 38(2): 1-4.
    208穆光照.自由基反应[M].北京:高等教育出版社,1985.
    209郭德勇,韩德馨.构造煤的电子顺磁共振实验研究[J].中国矿业大学学报,1999, 28(1):94-97.
    210翁成敏.电子顺磁共振法在峰峰煤田煤的演化程度研究中的应用[J].地球科学-中国地质大学学报,1991, 16(2): 213-218.
    211张代钧,鲜学福.煤大分子结构的电子自旋共振谱表征[J].分析测试学报,1993, 12(6): 81-83.
    212冯玉红.现代仪器分析实用教程[M].北京:北京大学出版社,2008: 203-204.
    213刘国根,邱冠周.煤的ESR波谱研究[J].波谱学杂志,1999, 16(2): 177-180.
    214傅家漠,刘德汉,盛国英.煤成烃地球化学[M].北京:科学出版社,1990:220-221.
    215洪蕊玉,黄松展,洪惠蝉,等.我国-些煤的顺磁共振谱研究[J].燃料化学学报,1987, 15(3): 275-279.
    216张篷洲,王者福.用电子自旋共振谱研究我国-些煤的自由基[J].燃料化学学报,1992, 20(3): 307-312.
    217李增华,位爱竹,杨永良.煤炭自燃自由基反应的电子自旋共振实验研究[J].中国矿业大学学报,2006, 35(5): 576-579.
    218 Silbernagel B G, Gebhard L A, Flowers R A, et al. Demineralization Effects onthe EPR Properties of Argonne Premium Coals[J].Energy Fuels, 1991,5(4): 5 61-568.
    219 Wi(?)ckowski A B, Wojtowicz W, Pilawa B.EPR Characteristics of Petrographically Complex Coal Samples from Durain and Clarain[J].Fuel, 2000, 79:1137-1141.
    220 Wi(?)ckowski A B, Pilawa B, Lewandowski M, et al. Paramagnetic Centres in Exinite, Vitrinite and Inertinite[J].Appl. Magn. Reson., 1998, 15:489-501.
    221 Silbernagel B G, Gebhard L A, Dyrkacz G R, et al. Electron Spin Resonance of Isolated Coal Macerals[J].Fuel, 1986, 65(4): 558-565 .
    222 Barwise A J G, Mann A L, Eglinton G, et al. Kerogen Characterisation by '3C NMR Spectroscopy and Pyrolysis-Mass Spectrometry[J].Org. Geochem., 1984, 6: 343-349.
    223张玉波.中低煤化作用阶级煤化作用机理的C-NMR研究[D].太原:太原理工大学硕士论文,2006: 21-22.
    224 Kogel-Knabner I. '3C and '5N NMR Spectroscopy As A Tool in Soil Organic Matter Studies[J].Geoderma, 1997, 80: 243-270.
    225琚宜文,姜波,侯泉林,等.构造煤'(?)C NMR谱及其结构成分的应力效应[J].中国科学D辑地球科学,2005, 35(9): 847-861.
    226 Cao Y X, Mitchell G D, Davis A, et al. Deformation Metamorphism of Bituminous and Anthracite Coals from China[J].Int. J. Coal Geol., 2000, 43: 227-242.
    227朱永法,宗瑞隆,姚文清,等.材料分析化学[M].北京:化学工业出版社,2009.
    228 Cagniant D, Gruber R, Boudou J P, et al. Structural Characterization of Nitrogen-Enriched Coals[J].Energy Fuels, 1998, 12:672-681.
    229 Kirtley S M, Mullins O C, Elp J, et al. Nitrogen Chemical Structure in Petroleum Asphaltene and Coal by X-ray Absorption Spectroseopy[J].Fuel, 1993, 72(1): 133-135.
    230 Doughty A, Mackie J C.,Kinetics of Pyrolysis of The Isomeric Butenenitriles and Kinetic Modeling[J].J. Phys.Chem., 1992, 96(1):27 2-281.
    231 Terentis A, Doughty A, Mackie J C. Kinetics of Pyrolysis of A Coal Model Compound, 2-Picoline, The Nitrogen Heteroaromatic Analog of Toluene. 1. Product Distributions[J].J. Phys. Chem., 1992, 96(25): 10334-10339.
    232孟昭富.小角X射线散射理论及应用[M].吉林:吉林科学技术出版社,1996:4-99.
    233朱育平.小角X射线散射-理论、测试、计算及应用「M].北京:化学工业出版社,2008:2.
    234 Porod G. Die Rontgenkleinwinkelstreuung Von Dichtgepackten Kolloiden Systemen I. Teil[J]. Kolloid-Z., 1951,124: 83-114. (in German)
    235 Koberstein J T, Morra B, Stein R S.The Determination of Diffuse-Boundary Thicknesses of Polymers by Small-Angle X-ray Scattering[J].J. Appl. Cryst., 1980, 13:34-45.
    236 Bonart R, Muller E H. Phase Separation in Urethane Elastomers As Judged by Low-Angle X-ray Scattering. I. Fundamentals[J]. J. Macromol. Sci. Phys. B, 1974, 10(1):177-189.
    237 Ruland W. Small-Angle Scattering of Two-Phase Systems:Determination and Significance of Systematic Deviations from Porod's Law[J].J. Appl. Cryst., 1971,4: 70-73.
    238 Hashimoto T, Fujimura M, Kawai H. Domain-Boundary Structure of Styrene -Isoprene Block Copolymer Films Cast from Solutions.5.Molecular-Weight Dependence of Spherical Microdomains[J].Macromolecules, 1980, 13: 1660-1669.
    239陈中军,王维,蔡泉,等.用SAXS和XRD方法研究Ti0_2纳米颗粒微观结构[J].物理学报,2008, 57(9): 5793-5799.
    240 Hashimoto T, Fujimura M, Kawai H. Domain-Boundary Structure of Styrene -Isoprene Block Copolymer Films Cast from Solution. 4. Molecular-Weight Dependence of Lamellar Microdomains[J].Macromolecules, 1980, 13: 1237-1247.
    241杜荣赛.生物统计学[M]. 2版.北京:高等教育出版社,2003:113.
    242 Calkins W H. Investigation of Organic Sulfur-Containing Structures in Coal By Flash Pyrolysis Experiments[J].Energy Fuels, 1987, 1(1):5 9-64.
    243 Duan L B, Zhao C S, Zhou W, et al. Investigation on Coal Pyrolysis in C02 Atmosphere[J].Energy Fuels, 2009, 23:3826-3830.
    244 Bexley K, Green P D, Thomas M K. Interaction of Mineral and Inorganic Compounds With Coal: The Effect on Caking and Swelling Properties[J].Fuel, 1986, 65(1):47-53.
    245 Ahmad T, Awan I A, Nisar J, et al. Influence of Inherent Minerals and Pyrolysis Temperature on The Yield of Pyrolysates of Some Pakistani Coals[J].Energy Conv. Manag., 2009, 50(5): 1163-1171.
    246 Jestin J, Simon S, Zupancic L, et al. A Small Angle Neutron Scattering Study of The Adsorbed Asphaltene Layer in Water-in-Hydrocarbon Emulsions:Structural Description Related to Stability[J].Langmuir, 2007, 23(21):10471-10478.
    247 Verruto V J, Kilpatrick P K. Water-in-Model Oil Emulsions Studied by Small-Angle Neutron Scattering: Interfacial Film Thickness and Composition[J]. Langmuir, 2008, 24(22): 12807-12822.
    248 Venkataraman K S, Narayanan K S.Energetics of Collision Between Grinding Media in Ball Mills and Mechanochemical Effects[J].Powder Technol., 1998,96(3): 190-201.
    249 Palaniandy S, Azizli K A M, Hussin H, et al. Mechanochemistry of Silica on Jet Milling[J]. J. Mater. Process. Technol., 2008, 205(1-3): 119-127.
    250岑可法,姚强,骆仲伙,等.燃烧理论与污染控制[M].北京:机械工业出版社,2008:251.
    251 Duan L B, Zhao C S, Zhou W, et al. Investigation on Coal Pyrolysis in C02 Atmosphere[J].Energy Fuels, 2009, 23:3826-3830.
    252郭嘉,i;(?):r汉才.混煤热解特性及热解机理的热重法研究[J].锅炉技术,1994, (8): 5-7.
    253樊俊杰,金晶,张建民,等.超细煤粉热解时轻质烃的析出规律[J].工程热物理学报,2006, 27(Supp1.2): 231-233.
    254樊俊杰,金晶,张建民,等.超细煤粉热解时轻质烃的析出规律[J].燃烧科学技术,2006, 12(4): 308-311.
    255 Arenillas A, Rubiera F, Pis J J. Simultaneous Thermogravimetric-Mass Spectrometric Study on The Pyrolysis Behavior of Different Rank Coals[J]. Journal of Analytical and Applied Pyrolysis, 1999, 50(1):31-46.
    256周志玲.低煤阶煤及不同化学组分热解甲烷和氢气的生成特征与机理[D].太原:太原理工大学硕士论文,2010.
    257张妮.不同变质程度煤热解甲烷生成特征及反应机制[D].太原:太原理工大学硕士论文,2005.
    258 Molina A, Shaddix C. Ignition and Devolatilization of Pulverized Bituminous Coal Particles during Oxygen/Carbon Dioxide Coal Combustion[J].Proceedings of the Combustion Institute, 2007, 31(2): 1905-1912.
    259 Yang H P, Yan R, Chin T, et al. Thermogravimetric Analysis-Fourier Transform Infrared Analysis of Palm Oil Waste Pyrolysis[J].Energy Fuels, 2004, 18(6):1814-1821.
    260张超群,魏砾宏,任庚坡,等.超细与常规煤粉的热解特性及其热解机理的研究[J].哈尔滨工业大学学报,2006, 38(11): 1948-1951.
    261土蓉.对煤粉燃烧与热解的试验研究[D].杭州:浙江大学硕士论文,200_5.
    262 Robert P, Helena W. The Influence of Oxidation with HN03 on the Surface Composition of High-Sulphur Coals XPS Study[J].Fuel Process.Technol., 2006, 87:1021-1029.
    263许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006.
    264 Nelson P F, Li C Z, Ledesma E. Formation of HNCO from the Rapid Pyrolysis of Coals[J].Energy Fuels, 1996, 10: 264-265.
    265 Leppalahti J. Formation of NH3 and HCN in Slow-Heating-Rate Inert Pyrolysis of Peat, Coal and Bark[J].Fuel, 1995, 74(9): 1363-1368.
    266 Mackie, J C, Colket M B, Nelson P F. Shock Tube Pyrolysis of Pyridine[J].J. Phys. Chem., 1990, 94: 4099-4106.
    267 Mackie J C, Colket M B, Nelson P F, et al. Shock Tube Pyrolysis of Pyrrole and Kinetic Modeling[J].Int. J. Chem. Kinet., 1991,23(8): 733-760.
    268 Johnsson J E. Formation and Reduction of Nitrogen Oxides in Fluidized-Bed Combustion[J].Fuel, 1994, 73 (9): 1398-1415.
    269 Kambara S, Takarada T, Yamamoto Y, et al. Relation Between Functional Forms of Coal Nitrogen and Formation of Nitrogen Oxide (NOX) Precursors during Rapid Pyrolysis[J].Energy Fuels, 1993, 7:1013-1020.
    270 Kedena K, Hirose Y, Aibara T, et al. Analysis of Nitrogen-Containing Species During Pyrolysis of Coal at Two Different Heating Rates[J].Energy Fuels, 2000, 14: 184-189.
    271 Feng J, Li W Y, Xie K C, et al. Studies of the Release Rule of NOX Precursors during Gasification of Coal and Its Char[J].Fuel process.Technol., 2003,84(1-3): 243-254.
    272 Li C Z, Tan L L. Formation of NOX and SOX Precursors during the Pyrolysis of Coal and Biomass.Part III. Further Discussion on the Formation of HCN and NH3 during Pyrolysis [J].Fuel, 2000, 79:1899-1906.
    273 Tsubouchi N, Ohtsuka Y. Nitrogen Chemistry in Coal Pyrolysis:Catalytic Roles of Metal Canons in Secondary Reactions of Volatile Nitrogen and Char Nitrogen[J].Fuel process.Technol., 2008, 89:379-390.
    274 Kramlich J C, Cole J A, McCarthy J M, et al. Mechanisms of Nitrous Oxide Formation in Coal Flame[J].Combustion and Flame, 1989, 77(3-4): 375-384.
    275 Kelemen S R, Gorbaty M L, Kwiatek P J, et al. Nitrogen Transformations inCoal during Pyrolysis[J].Energy Fuels, 1998, 12: 159-173.
    276冯志华,聂百胜,常丽萍,等.神木煤热解形成NO、前驱物的影响因素研究[J].洁净煤技术,2005, 11(4): 46-50.
    277 Xie K C, Lin J Y, Li W Y, et al. Formation of HCN and NH3 during Coal Macerals Pyrolysis and Gasification with C02[J].Fuel, 2005, 84(2-3):271-277.
    278 Chang L P, Feng Z H, XieK C.Effect of Operating Parameters on HCN and NHS Release from Australian and Chinese Coals During Temperature -Programmed Pyrolysis[J].Journal of Energy Source, 2003, 25:703-712.
    279刘银河,张晓燕,刘艳华,等.程序升温气化过程中氮的释放规律研究[J].工程热物理学报,2009, 30(12): 2125-2128.
    280 Miller J A, Bowman C T. Mechanism and Modeling of Nitrogen Chemistry in Combustion[J].Progress in Energy and Combustion Science, 1989, 15(4): 287 -338.
    281 Wu Z H, Ohtsuka Y. Nitrogen Distribution in A Fixed Bed Pyrolysis of Coals with Different Ranks:Formation and Source of N2[J].Energy Fuels, 1997,11(2): 477-482.
    282 Mori H, Asami K, Ohtsuka Y. Role of Iron Catalyst in Fate of Fuel Nitrogen during Coal Pyrolysis[J].Energy Fuels, 1996, 10(4): 1022-1027.
    283姚明宇,闰晓,刘艳华,等.抚顺煤热解过程中Na生成的实验研究[J].西安交通大学学报,2007, 41(11): 1293-1297.
    284向军,胡松,孙路石,等.煤燃烧过程中碳、氧官能团演化行为[J].化工学报,2006, 57(9): 280-2184.
    285 Darrell N T, Jennifer S, Thomas L R. Application of Hot Stage Micro-FT-IR to the Study of Organic Functional Group Changes during Pyrolysis[J].Fuel, 1994,73(9): 1551-1556.
    286段伦博,赵长遂,李英杰,等.不同热解气氛煤焦结构及燃烧反应性[J].东南大学学报(自然科学版),2009, 139(5): 988-991.
    287郑守忠,卢平.再燃烧条件下煤焦还原NO特性的研究[J].热力发电,2007, (10): 9-13.
    288 Riidiger H, Greul U, Spliethoff H, et al. Distribution of Fuel Nitrogen in Pyrolysis Products Used for Reburning[J].Fuel, 1997, 76(3): 201-20_5.
    289严荣林,钱国舰.煤的分子结构与煤氧化自燃的气体产物.煤炭学报[J]. 1995, 20(A01):5 8-64.
    290 Croiset E, Thambimuthu K, Palmer A. Coal Combustion in 02/C02 MixturesCompared with Air[J].Can. J. Chem. Eng., 2000, 78(2): 402-407.
    291 Croiset E, Thambimuthu K. NOX and S02 Emissions from 02/C02 Recycle Coal Combustion[J].Fuel, 2001,80(14): 2117-2121.
    292 Niu S L, Han K H, Lu C M. Characteristic of Coal Combustion in Oxygen/Carbon Dioxide Atmosphere and Nitric Oxide Release during This Process [J].Energy Convers.Mgmt., 2011,52(1):532-537.
    293 Zhang L, Binner E, Qiao Y, et al. In Situ Diagnostics of Victorian Brown Coal Combustion in 02/N2 and 02/C02 Mixtures in Drop-Tube Furnace[J].Fuel, 2010, 89:2703-2712.
    294陈阳.OZ/COZ气氛下NO、生成机理研究[D].武汉:华中科技大学硕士学位论文,2007: 35-36.
    295王宏,董学文,邱建荣,等.燃煤在OZ/COZ方式下NO、生成特性的研究[J].燃料1化学学报,2001, 29(5): 458-462.
    296 Hu Y, Naito S, Kobayashi N, et al. C02, NOX and S02 Emissions from the Combustion of Coal with High Oxygen Concentration Gases[J].Fuel, 2000, 79: 1925-1932.
    297 Kimura N, Omata K, Kiga T. The Characteristics of Pulverized Coal Combustion in 02/C02 Mixtures for C02 Recovery[J].Energy Convers.Mgmt., 1995, 36(6-9): 805-808.
    298 Okazaki K, Ando T. NOX Reduction Mechanism in Coal Combustion with Recycled C02[J].Energy, 1997, 22(2/3): 207-215.
    299 Kramlich J C, Colea J A, McCarthy J M, et al. Mechanisms of Nitrous Oxide Formation in Coal Flames[J].Combustion and Flame, 1989, 77(3-4): 375-384.
    300 Hulgaard T, Johansen K D.Homogeneous Nitrous Oxide Formation and Destruction under Combustion Conditions[J].AIChE Journal, 1993, 39(8): 1342-1354.
    301 Pershing D W, Wendt J O L. Relative Contributions of Volatile Nitrogen and Char Nitrogen to NOX Emissions from Pulverized Coal Flames[J].Ind. Eng. Chem. Process Des.Dev., 1979, 18(1):60-67.
    302 Molina A, Eddings E G, Pershing D W, et al. Nitric Oxide destruction during Coal and Char Oxidation under Pulverized-Coal Combustion Conditions[J]. Combust. Flame, 2004, 136: 303-312.
    303 Visona S P, Stanmore B R. Modeling NOX Release from A Single Coal Particle II. Formation of NO from Char-Nitrogen[J].Combust. Flame, 1996, 106(3): 207-218.
    304 Spinti J P, Pershing D W. The Fate of Char-N at Pulverized Coal Conditions[J]. Combust. Flame, 2003,135:299-313.
    305 Shimizu T, Sazawa Y, Adschiri T, et al. Conversion of Char-Bound Nitrogen to Nitric Oxide during Combustion[J] .Fuel, 1992, 71(4): 361-365.
    306 Hahn W A, Shadman F. Effect of Solid Structural Change on the Rate of NO Formation During Char Combustion[J].Combust. Sci. Technol., 1983, 30(1&6): 89-104.
    307刘忠,阎维平,赵莉,等.超细煤焦的细度对再燃还原NO的影响[J].中国电机工程学报,2007, 27(8): 22-25.
    308 Jensen L S, Jannerup H E, Glarborg P, et al. Experimental Investigation of NO from Pulverized Char Combustion[J].Proc. Combust. Inst., 2000, 28(2): 2271-2278.
    309 Normann F, Andersson K, Leckner B, et al. Emission Control of Nitrogen Oxides in The Oxy-Fuel Process[J].Progress in Energy and Combustion Science, 2009, 35:3 85-397.
    310 Li S, Xu T M, Sun P, et al. NOX and SOX Emissions of A High Sulfur Self-Retention Coal During Air-Staged Combustion[J]. Fuel, 2008, 87(6):723-731.
    311 Fan W D, Lin Z C, Li Y Y, et al. Effect of Air-Staging on Anthracite Combustion and NOX Formation[J].Energy Fuels, 2009, 23:111-120.
    312肖理生,曾汉才,金峰,等.分级燃烧最佳-次风空气系数的实验研究[J].动力工程,2001, 21(1): 1042-1045.
    313 Teng H. The NO-Char Reaction: Kinetics and Transport Aspects[D].Brown University, Ph. D.Dissertation, 1992.
    314齐永峰.煤粉再燃中着火与脱硝相互作用的实验研究及其模化[D].上海:上海交通大学博士论文,2009: 105.
    315许志琴,王戈文.助熔剂对高灰点煤影响的实验研究[J].煤炭转化,2005,7(3):22-25.
    316姜秀民,杨海平,李巨斌,等.煤粉超细化对炉内受热面积灰与结渣的影响[J].热能动力工程,2002, 17(99): 254-257.
    317武瑞叶.神东矿区煤灰成份和煤灰熔融性变化规律浅析[J].陕西煤炭,2003, (4): 36-37.
    318饶魁,曹欣玉,兰泽全,等.煤灰矿物质在炉内的迁徙分布规律及其对沾污结渣的影响[J].燃料1化学学报,2004, 32(4): 395-399.
    319兰泽全,曹欣玉,赵显桥,等.水煤浆混合灰熔融特性试验研究[J].热力发电,2003, 33(4): 13-16.
    320王爽,姜秀民,王宁,等.海藻生物质灰熔融特性分析[J].中国电机工程学报,2008, 28 (5): 96-101.
    321郭治青.燃煤矿物转化及结渣特性研究[D].武汉:华中科技大学硕士论文,2008.
    322孙亦碌.煤中矿物质杂质对锅炉的危害[M].北京:水利电力出版社,1994: 158.
    323 Bai J, Li W, Li B Q. Characterization of Low-Temperature Coal Ash Behaviors at High Temperatures under Reducing Atmosphere[J].Fuel, 2008, 87:_5 83一591.
    324 Wee H L, Wu H W, Zhang D K, et al. The Effect of Combustion Conditions on Mineral Matter Transformation and Ash Deposition in A Utility Boiler Fired with A Sub-Bituminous Coal[J].Proceedings of the Combustion Institute, 2005,30: 2981-2989.
    325 Qiu J R, Li F, Zheng Y, et al. The Influences of Mineral Behaviour on Blended Coal Ash Fusion Characteristics[J].Fuel, 1999, 78: 963-969.
    326李帆,邱建荣,郑楚光.煤中矿物质对灰熔融温度影响的二元相图分析[J].华中理工大学学报,1996, 24(10): 96-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700