用户名: 密码: 验证码:
异向旋转双转子永磁电机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异向旋转双转子永磁电机具有单输入的电端口和两个独立的机械输出口,运用于水下航行器对转螺旋桨推进系统中,能够简化推进系统的结构、减小体积、降低重量和成本,而且没有电刷滑环,运行更加安全可靠,因而受到关注。国内外对该种电机的研究尚处于起步阶段。针对目前缺乏该种电机系统的分析理论与设计方法的研究现状,在国家自然科学基金项目和辽宁省高校优秀人才支持计划项目的资助下,从电机的基本电磁关系出发,开展了以下研究工作。
     首先,异向旋转双转子永磁电机是一种新型结构电机,与传统电机结构有很大不同,提出了同速异向旋转的单输入电端口双输出机械端口电机的机电能量转换机理和功率转换关系。针对该种电机的定子和两个转子之间是由两个异向旋转磁场耦合的特点,建立了该种电机统一的等效磁路模型。根据磁力线不能交叉及最小磁阻路径原理,建立了半闭口槽大气隙面贴式永磁电机极间漏磁解析计算模型,有限元验证了理论推导的有效性。
     其次,为了满足驱动对转螺旋桨的内、外转子永磁电机单元具有相同或相似的功角特性,提出了该种电机的电磁设计思路和原则。采用有限元分析方法,建立了异向旋转双转子永磁电机二维有限元模型。分析了电机在空载、额定负载及过载等情况下的磁场,研究了永磁体分片对电机的影响。深入分析了该种电机的定子铁心磁场的分布、电感、反电动势和转矩等参数。为了削弱由于内、外转子永磁之间相互吸引和排斥的转矩,提出在定子铁心轭部中间引入不导磁的隔磁环方法。
     第三,针对异向旋转双转子永磁电机中定子紧固件是铁心磁路的一部分,从机械和电磁方面分别分析了定子紧固件对该种结构电机的影响。机械方面:从定子紧固件材料的选取,与端盖配合以及定子受力三方面考虑。电磁方面:深入分析了定子紧固件导磁与不导磁及内、外转子相对初始位置对磁场、反电动势、转矩等方面的影响。
     第四,基于傅立叶变换和分离变量法,提出了一种用于分析面贴式双转子永磁电机的空载磁场的解析方法。模型在二维极坐标下建立,考虑了任意极槽配合,径向/平行充磁。为了准确计算磁场分布和齿槽转矩,直接利用边界条件来考虑定子槽的影响。通过转子转动,得出槽口区域磁场变化,同时准确估计该种电机的齿槽转矩和反电动势。
     第五,通过坐标变换及电流相等的约束关系,将内、外转子永磁电机单元统一到同一d-q坐标系下,并建立了单输入电端口双机械输出端口电机的数学模型。分析了内、外转子永磁电机单元的反电动势大小对电机运行特性的影响。借助MATLAB软件开发了异向旋转双转子永磁电机的电磁设计及特性仿真CAD软件。
     最后,在上述理论研究的基础上,提出了一种可靠保证中间定子与内、外双转子同心和稳定运行的双机械口电机机械结构方案。研制了一台11kW的6极试验样机,通过试验与仿真结果的对比,部分验证了该种电机理论分析和设计方法的正确性,为进一步深入研究该种电机奠定了理论和技术基础。
Counter-rotating Dual Rotors Permanent-magnet Machine (CDRPM) hascharacteristics of single electrical port input and dual mechanical ports output, which canbe applied to anti-rotation propeller propulsion system of underwater vehicle, since it cansubstantially simplify system structure, decrease volume, reduce mass and cost, moreover,improve reliability without brush and slip-ring. Study on CDRPM is still at an elementarystage at home and abroad due to lack of analysis theory and design method about this kindof machine. The systemic research works are done from the starting of the basicelectromagnetic relationship under the supports by National Natural Science Foundation ofChina and Program for Liaoning Excellent Talents in University.
     Firstly, in comparison with conventional machine, CDRPM is a new structure. Thebasic electromagnetic relationship and principle of electromechanical energy conversionabout CDRPM are proposed; in view of two counter-rotating main magnetic fieldsgenerated by dual rotors, a unified equivalent magnetic circuit is established. According tothe magnetic field lines can not cross and the minimum reluctance path principle, thecalculation model of interpolar leakage fluxes of semi-closed slot large airgap surfacepermanent magnet machine is established and its validity is verified through the finiteelement method (FEM).
     Secondly, the idea and principle of electromagnetic design are provided in order tomeet power angle characteristic corresponding to uniform or similar between Inner RotorPermanent-magnet Machine Unit (IRPMU) and Outer Rotor Permanent-magnet MachineUnit (ORPMU). Two-dimensional finite element model is established by FEM. Magneticfield under no load, rated load and overload is presented, respectively. The study of impactof permanent magnet segmenting on the air-gap magnetic field is done. Magnetic fielddistributions of the stator core, inductance, electromotive force (EMF) and torque are analyzed. The torque ripple of the inner and outer permanent magnet attraction andrepulsion between the rotors is reduced by introducing magnetic barrier ring.
     Thirdly, in view of stator fastener is the part of the magnetic circuit, influence analysisof the stator fasteners is completed both mechanical and electromagnetic aspects. Inmechanical aspects, the stator fasteners material selection, end caps combining and thestator forces are considered. In electromagnetic aspects, the magnetic field distribution,EMF and torque are analyzed when the stator fastener is magnetic carbon steel ornon-magnetic stainless steel, and effects of the inner and outer rotor relative initial positionis also analyzed.
     Fourth, based on fourier transform and the method of separating variables, ananalytical solution for computation the no-load magnetic field in the CDRPM is presented.The analytical solution is based on two-dimensional analysis in polar coordinates andaccounts for the influence of any pole and slot combinations, radial/parallel magnetization.In order to accurately calculate the magnetic field and cogging torque, the boundaryconditions is used to consider the stator slotting effect. The magnetic field change of notchregion is acquired by rotor rotation, while cogging torque and EMF of CDRPM areestimated.
     Fifth, a unified to the same d-q coordinate system by coordinate transformation andthe same current constraints between IRPMU and ORPMU, then, the mathematic model ofmachine with single electric port and dual mechanical ports is established. the influence onoperation characteristic of CDRPM because of the no-load EMFs induced by magnets oninner and outer rotors is analyzed. CAD software package about electromagnetic designand operating characteristics program of CDRPM is achieved by MATLAB.
     Finally, based on theoretical research above, new mechanical structure scheme isproposed to guaranteed concentricity of inner rotor-stator-outer rotor and stable operation.An 11kW 6-poles prototype of CDRPM is manufactured, and carried out experimentsresearch. Correctness and feasibility of theoretical analysis and design method are partlyverified through the comparison of experiment result and simulation, foundation of theoryand technology is laid on further research on this kind of machine.
引文
[1] T. W. Kim, J. Yuh. Development of a Real - time Control Architecture for a Semi–autonomousUnderwater Vehicle for Intervention Missions. Control Engineering Practice. 2004, 12: 1521-1530.
    [2]冯正平.国外自制水下机器人发展现状综述.鱼雷技术,2005,13(1):5-9.
    [3] P. M. Marty. A. LIVE. An Autonomous Light Intervention Vehicle. Proceedings of Advances inTechnology for Underwater Vehicles, March London, England, 2004: 16-17.
    [4] A. W. Stoner, C. H. Ryer, S. J. Parker, et al. Evaluating the role of fish behavior in surveysconducted with underwater vehicles. Canadian Journal of Fisheries and Aquatic Sciences, 2008,65(3): 1230-1243.
    [5] Thomas Br unl, Adrian Boeing, Louis Gonzales, et al. The Autonomous Underwater VehicleInitiative-Project Mako. IEEE-RAM, Singapore, 2004: 446-451.
    [6] Lyshevski, S.E. Autopilot design for highly maneuverable multipurpose underwater vehicles.Proceedings of the American Control Conference, Arlington, VA June, 2001: 25-27.
    [7]刘淮.美国海军无人水下航行器的发展重点和特点.船舶工业技术经济信息,2005,238(2):26-32.
    [8]孙碧娇,何静.美海军无人潜航器关键技术综述.鱼雷技术,2006,14(4):7-10.
    [9] A. Yandell, J. Austin-Breneman, B. Brett, et al. Design of a Roller-Collector Remotely OperatedVehicle. San Diego, California, USA, IEEE Conference OCEANS, 2003: 2784-2790.
    [10]葛晖,徐德民,项庆睿.自主式水下航行器控制技术新进展.鱼类技术,2007,15(3):1-7.
    [11]兰志林,周家波.无人水下航行器发展.国防科技,2008,29(2):11-15.
    [12]王永寿.先进海洋机器人开发现状与动向.飞航导弹,2002(3):28-33.
    [13]李锡群,王志华.无人水下航行器(UUV)技术综述.船电技术,2003(6):12-14.
    [14]张文瑶,裘达夫,胡晓棠.水下机器人的发展、军事应用及启示.中国修船,2006,19(6):37-39.
    [15] http://www.81lei.com/index.php/P/view/cps-3/id-10312.
    [16]黄胜,郭春雨.船舶推进节能技术研究与进展.舰船科学技术,2007,29(1):27-32.
    [17]李斌.对转螺旋桨(CRP)及在船舶上的应用.世界海运,1994(1):46-49.
    [18]聂延生,韩学胜,曾鸿等.对转螺旋桨的结构原理及特点分析.船电技术,2005(2):50-52.
    [19] DRPM型双转子稀土永磁直流电动机(http://www.pmmi.com.cn/drpm.htm).
    [20] S. M. Abu Sharkh, S. H. Lai, S. R. Turnock. A Structurally Integrated Brushless PM Motor forMiniature Propeller Thrusters. IEE Proc.-Electr Power Appl, 2004, 151(5): 513-519.
    [21] Surong Huang, Metin Aydin, T. A. Lipo. TORUS concept machines: pre-prototyping designassessment for two major topologies. Proceedings of 2001 IEEE Industry Applications Society36th Annual Meeting - IAS'01, 2001: 1619-1625.
    [22] S Huang, M. Aydin, T. A. Lipo. Comparison of (Non-slotted and Slotted) Surface Mounted PMMotors and Axial Flux Motors for Submarine Ship Drives. Third Naval Symposium on ElectricalMachines, Philadelphia, 2000.
    [23]黄苏融,马睿,张琪等.现代永磁电机技术研究与应用开发.电机与控制应用,2007,34(1):1-6.
    [24] M.Aydin, Ronghai Qu, T.A. Lipo. Cogging Torque minimization technique for multiple-rotor,axial-flux, surface-mounted-PM motors: alternating magnet pole-arcs in facing rotors. 38th IASAnnual Meeting, 2003: 555-561.
    [25] Ronghai Qu, M.Aydin, T.A. Lipo. Performance comparison of dual-rotor radial-flux and axial-fluxpermanent-magnet BLDC machines. International Conference on Electrical Machines and Drives,2003: 1948-1954.
    [26] Kowal, D., Sergeant, P., Dupre, L., et al. A Comparison of Non-oriented and Grain-OrientedMaterial in an Axial Flux Permanent-Magnet Machine. IEEE Trans on Magnetics, 2010, 46(2):279-285.
    [27] C. W. Olliver. Super-Synchronous Motors. Power Engineer, 1928, 23(268): 267-271.
    [28]冯浩,刘玉军,钟德刚等.双转子异步电动机的研究.中小型电机,2002, 29(1):19-22.
    [29] E. Nordlund, C. Sadarangani. The four-quadrant energy transducer. In Proc. 37th IndustrialApplication Society Meeting, Pittsburgh, PA, Oct. 2002: 13-18.
    [30] E.Nordlund, S.Eriksson. Test and Verification of a Four-Quadrant Transducerfor HEVApplications. IEEE Conference on Vehicle Power and Propulsion, 2005: 37-41.
    [31]E. Nordlund. The Four-Quadrant Transducer System for Hybrid Electric Vehicles: (Doctor's thesis).Stockholm: Royal Institute of Techonology, 2005.
    [32] P. Zheng, P. Thelin, E. Nordlund, et al. Consideration of Skewed Slots in the PerformanceCalculations of a Four-Quadrant Transducer. Published in Proceedings of the IEEE VehicularPower and Propulsion Symposium, VPP 04, Paris, France, 6-8 October 2004.
    [33] P. Zheng, P Thelin, A. Chen, et al. Measurements and Calculations of Inductances of a 4QTHybrid Electric Vehicle Prototype Machine. Published in Proceedings of the IEEE VehicularPower and Propulsion Symposium, VPP 04, Paris, France, 6-8 October 2004.
    [34] Zhao Feng, Wen Xuhui, Chen Jingwei. Modeling of PM-PM Dual Mechanical Ports ElectricMachines IEEE Industrial Electronics, IECON 32nd Annual Conference on, 2006: 1251-1256.
    [35]赵峰,温旭辉,刘钧等.永磁-永磁型双机械端口电机系统建模.中国电机工程学报,2007,27(21):59-65.
    [36]刘冉冉.混合动力电动汽车用四象限能量转换器的研究:(硕士学位论文).哈尔滨:哈尔滨工业大学,2006.
    [37]宁可望.双转子机电能量变换器的基础研究:(硕士学位论文).哈尔滨:哈尔滨工业大学,2007.
    [38]庞珽,黄声华,黄晓辉.双转子电机及其典型应用.微电机,2007,40(2):66-69.
    [39] Shi Wei, Zhang Zhouyun, Huang Surong, et al. Analyze of dual-axle four quadrant transducermotor operation mode. 11th ICEMS, Wuhan, China, 2008: 3568-3571.
    [40] Hoeijmakers, Martin J., Marcel Rondel. The Electrical Variable Transmission in a city bus. In:Proceedings 2004 35th IEEE Power Electronics Specialist Conference, Aachen, Germany, 20-25June 2004: 2773-2778.
    [41] Hoeijmakers, Martin J., Jan A. Ferreira. The Electric Variable Transmission. IEEE Transactions onIndustry Applications, 2006, 42(4): 1092-1100.
    [42] Longya Xu. A New Breed of Electrical Mchines-Basic Analysis and Applications of DualMechanical Port Electric Machines. 8th ICEMS, Nanjing, 2005: 24-31.
    [43]袁永杰,崔淑梅,韩守亮.开关磁阻双转子电机的研究. http://www.paper.edu.cn,2008.
    [44]罗良才.双转子电动机的调速原理及结构.电工技术杂志,2002(2):66-68.
    [45]储俊杰.双转式永磁无刷直流电动机的仿真研究与控制:(硕士学位论文).杭州:浙江大学,2003.
    [46]孙希通,王育才,严卫.双转式永磁无刷直流电动机系统建模与仿真.电机技术,2009(3):1-4.
    [47]张式勤,邱建琪,储俊杰等.双转式永磁无刷直流电动机的建模与仿真.中国电机工程学报,2004,24(12):176-180.
    [48]葛明,邱建琪,储俊杰等.双转式永磁直流电动机控制系统的仿真研究.中小型电机,2004,31(6):24-27.
    [49] Cao Jianghua, Yang Xiangyu. Design and magnetic field analysis of a dual-rotorpermanent-magnet synchronous wind generator. ICEMS, Wuhan, China, 2008: 3202-3205.
    [50]曹江华,杨向宇,姚佳.双转子永磁同步风力发电机设计与应用.微电机,2008,41(2):65-66.
    [51]赵红玲,郭双庆.新型逆向双转子风力发电机.可再生能源,2005(3): 36-38.
    [52] F. G. Zhang, N. Neuberger, E. Nolle, et al. Magnetic field analysis of new type of double rotorsinduction machine. FHTE Spektrum, Germany, 2002, 16(2): 77-81.
    [53] Fengge Zhang, Yi Li, Fengxiang Wang. Dynamic Simulation of a Novel Adjusting SpeedInduction Machine with Inner and Outer Rotors. 1st ICIEA, Singapore, 2006: 1-4.
    [54]白旭华.新型内外双转子感应电动机研究:(硕士学位论文).沈阳:沈阳工业大学,2005.
    [55]Ronghai Qu, T. A. Lipo. Dual-Rotor, Radial-Flux, Toroidally-Wound, Permanent-Magnet Machine.United States, B2. Patent No.: US 6 924 574, Aug. 2, 2005.
    [56] Ronghai Qu. Design and analysis of dual-rotor, radial-flux, toroidally-wound,surface-mounted-PM machines : ( Doctor's thesis). Madison: Univ. Wisconsin, 2002.
    [57] Ronghai Qu, Lipo. T.A.. Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machines.IEEE Trans on Industry Applications, 2003, 39(6): 1665-1673.
    [58] Sivachandran P., Venkatesh P., Kamaraj N.. Cogging torque reduction in dual-rotor permanentmagnet generator for direct coupled stand-alone wind energy systems. Proceedings of IEEEConference on Sustainable Energy Technologies, Singapore, 2008: 24-28.
    [59] Qu Ronghai , Lipo T.A. Design and optimization of dual-rotor radial-flux toroidally-woundpermanent magnet machines. Proceedings of IEEE Conference on Industry Applications, Columbia,SC, USA, 2003: 1397-1404.
    [60] Qu Ronghai, Lipo T.A. Sizing equations and power density evaluation of dual-rotor, radial-flux,toroidally wound, permanent-magnet machines. 16th ICEM,Cracow, Poland,2004.
    [61] Ronghai Qu, Thomas A.Lipo. Design and Parameter Effect Analysis of Dual-Rotor, Radial-Flux,Toroidally Wound, Permanent-Magnet Machines. IEEE Trans on Industry Applications, 2004,40(3): 771-779.
    [62]徐衍亮,王法庆,冯开杰等.双转子永磁电机电感参数、永磁电势及齿槽转矩.电工技术学报,2007,22(9):40-44.
    [63] Zhang Fengge, Liu Guangwei, Shen Yongshan, et al. Characteristic study on a novel PMSM withopposite-rotation dual rotors. ICEMS, Seoul, Korea, 2007: 805-809.
    [64] Zhang Fengge, Liu Guangwei, Wang Xin. Characteristic simulation of a novel PMSM withopposite-rotation dual rotors. ICIEA, Harbin, China, 2007: 618-621. .
    [65]张凤阁,刘鑫,刘光伟.对转双转子永磁同步电动机电枢电抗的有限元计算.电气技术,2009(4):32-36.
    [66] Zhang Fengge, Liu Guangwei. Performance Analysis on Opposite-Rotation Dual Mechanical PortsPMSM. ICEMS, Wuhan, China, 2008: 2792-2796.
    [67]曹江华.基于有限元分析的双转子永磁风力发电机设计及研究:(博士学位论文).广州:华南理工大学,2009.
    [68]张东.新型双定子永磁电机的设计与研究:(博士学位论文).上海:上海大学,2007.
    [69]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997.
    [70]王秀和.永磁电机.北京:中国电力出版社,2007.
    [71]谢卫,汪国梁.稀土永磁同步电动机等效磁网络设计法.微电机,1995,28(1):1-7.
    [72]张伟雄,郑婵君,张敬华.基于等效磁网络模型的永磁电机气隙磁场的分析.中小型电机,2000,27(4):12-18.
    [73] Sang-Ho Lee, Soon-O Kwon, Jeong-Jong Lee. Characteristic Analysis of Claw-Pole MachineUsing Improved Equivalent Magnetic Circuit. IEEE Transactions on Magnetics, 2009, 45(10):4570-4573.
    [74] Z. Q. Zhu, D. Howe, E. Bolte, et al. Instantaneous magnetic field distribution in brushlesspermanent magnet dc motors. Part I: Open-circuit field. IEEE Transactions on Magnetics, 1993,29(1): 124-135. .
    [75] Z. Q. Zhu, D. Howe. Instantaneous magnetic field distribution in brushless permanent magnet dcmotors. Part II: Armature-reaction field. IEEE Transactions on Magnetics, 1993, 29(1): 136-142.
    [76] Z. Q. Zhu, D. Howe. Instantaneous magnetic field distribution in brushless permanent magnet dcmotors. Part III: Effect of stator slotting IEEE Transactions on Magnetics, 1993, 29(1): 143-151.
    [77] Z. Q. Zhu, D. Howe. Instantaneous magnetic field distribution in permanent magnet brushless dcmotors. Part IV: Magnetic field on load. IEEE Transactions on Magnetics, 1993, 29(1): 152-158.
    [78] Z. Q. Zhu, D. Howe, C. C. Chan. Improved analytical model for predicting the magnetic fielddistribution in brushless permanent magnet machines. IEEE Transactions on Magnetics, 2002,38(1): 229-238. .
    [79] D. Zarko, D. Ban, T. A. Lipo. Analytical calculation of magnetic field distribution in the slotted airgap of a surface permanent-magnet motor using complex relative air-gap permeance. IEEETransactions on Magnetics, 2006, 42(7): 1828–1837.
    [80] D. Zarko, D. Ban, T. A. Lipo. Analytical solution for cogging torque in surface permanent-magnetmotors using conformal mapping. IEEE Transactions on Magnetics, 2008, 44(1): 52-65.
    [81] K. Boughrara, D. Zarko, R. Ibtiouen, et al. Magnetic field analysis of inset and surface-mountedpermanent- magnet synchronous motors using Schwarz-Christoffel transformation. IEEETransactions on Magnetics, 2009, 45(8): 3166-3178.
    [82] F. Dubas, C. Espanet. Analytical solution of the magnetic field in permanent-magnet motors takinginto account slotting effect: No-load vector potential and flux density calculation. IEEETransactions on Magnetics, 2009, 45(5): 2097-2109. .
    [83] Z. J. Liu , J. T. Li. Analytical solution of air-gap field in permanent magnet motors taking intoaccount the effect of pole transition over slots. IEEE Transactions on Magnetics, 2007, 43(10):3872-3883.
    [84] Z. J. Liu and J. T. Li. Accurate prediction of magnetic field and magnetic forces in permanentmagnet motors using an analytical solution. IEEE Transactions on Energy Conversion, 2008, 23(3):717-726.
    [85] Z. Q. Zhu, L. J. Wu, Z. P. Xia. An Accurate Sub-domain Model for Magnetic Field Computation inSlotted Surface-Mounted Permanent-Magnet Machines. IEEE Transactions on Magnetics, 2010,46(4): 1100-1115.
    [86] Thierry Lubin, Smail Mezani, and Abderrezak Rezzoug. 2-D Exact Analytical Model forSurface-Mounted Permanent-Magnet Motors With Semi-Closed Slots. IEEE Transactions on, 2011,47(2): 479-492. .
    [87] Wu, L.J., Zhu, Z.Q., Staton, D. et al. An Improved Subdomain Model for Predicting MagneticField of Surface-Mounted Permanent Magnet Machines Accounting for Tooth-Tips. Magnetics,IEEE Transactions on, 2011, 47(6): 1693-1704.
    [88] Wu, L.J., Zhu, Z.Q., Staton, D. et al. Subdomain Model for Predicting Armature Reaction Field ofSurface-Mounted Permanent-Magnet Machines Accounting for Tooth-Tips. IEEE Transactions on,2011, 47(4): 812-822. .
    [89]谢德馨,杨仕友.工程电磁场数值分析与综合.北京:机械工业出版社,2008.
    [90] Chao Bi, Chen, S. X. Electromagnetic field analysis in rotational electric machines using finiteelement analytical hybrid method. IEEE Trans on Magnetics 1994, 30(6): 4314-4316.
    [91] Lee K, DeBortoli M J, Lee M J, et al. Coupling finite elements and analytical solution in the airgapof electric machines. IEEE Trans on Magnetics, 199l, 27(5): 3955-3957.
    [92]章跃进,江建中,崔巍.数值解析结合法提高电机磁场后处理计算精度.电机工程学报,2007,27(3):68-72.
    [93]章跃进,江建中,屠关镇.应用数值解析结合法计算旋转电机磁场.电工技术学报,2004,9(1):7-11..
    [94]章跃进,薛波,丁晔,等.表面式永磁无刷电机电枢反应磁场半解析法.电工技术学报,2009,24(1):47-51.
    [95]杨玉.叠加定理在对称电路中的应用.湖南轻工业高等专科学校学报,1999,1(2):71-75.
    [96]王秀和,王兴华,刘玉庆等.永磁电机漏磁系数的确定.微电机,1999,32(4):48-49.
    [97]刘光伟.异向旋转双转子永磁同步电机基础理论分析与仿真研究:(硕士学位论文).沈阳:沈阳工业大学,2008.
    [98] Ronghai Qu and T. A. Lipo. Analysis and modeling of airgap & zigzag leakage fluxes in asurface-mounted-PM machine. IEEE-IAS Annual meeting, Pittsburgh, PA, Oct. 2002:2507-2513.
    [99] Meier S.Theoretical design of surface mounted permanent magnet motors with field-weakeningcapability:(Master thesis),Stockholm, Royal Institute of Technology, Department of ElectricalMachines and Power Electronics, 2002.
    [100] www.ansoft.com.
    [101] Lu, K., Rasmussen, P. O., Ritchie, E. A New Energy-Based Method for 3-D Finite-ElementNonlinear Flux Linkage Computation of Electrical Machines. Magnetics, IEEE Transactions on,2011, 47(10): 3276-3279.
    [102] Ping Zheng, Peter Thelin, Anyuan Chen, et al. Influence of Saturation and Saliency on theInductance of a Four-Quadrant Transducer Prototype Machine. IEEE Transactions on Magnetics,2006, 42(4): 1319-1322.
    [103] Vaseghi.B. , Nahid-mobarakh.B, Takorabet.N, et al. Inductance Identification and Study of PMMotor With Winding Turn Short Circuit Fault. IEEE Transactions on Magnetics, 2011, 47(5):978-981.
    [104] EL-Refaie, A.M. , Z.Q. Zhu, Jahns, T.M., et al. Winding inductances of fractional slotsurface-mounted permanent magnet brushless machines . COMPEL: The International Journal forComputation and Mathematics in Electrical and Electronic Engineering, 2009, 28(6): 1590-1606 .
    [105]林荣文,江辉.基于电势法求解稀土永磁电机的同步电抗.电工电能新技术,2004,23(1):64-67.
    [106]王卫平.内置式永磁同步电机交、直轴电枢反应电抗的准确计算.微电机,2009,42(6):11-13.
    [107] Demerdash, N.A., Hijazi, T.M., et al. Computation of winding inductances of permanent magnetbrushless DC motors with damper windings by energy perturbation. IEEE transactions onEnergyconversion, 1988, 3(3): 705-713.
    [108]王凤翔.磁场能量有限元法在电机参数计算中的应用.沈阳工业大学学报,1990,12(2):9-17.
    [109]王群京,孙明施,李国丽等.表面磁钢无刷直流电机的电感计算和数字仿真研究.电工技术学报,2001,16(1):21-26.
    [110] EL-Refaie, A.M. and Jahns, T.M. Optimal Flux Weakening in Surface PM Machines UsingFractional-Slot Concentrated Windings. IEEE Trans. Industry Applications, 2005, 41(3): 790-800.
    [111]王群京,倪有源,姜卫东.汽车用爪极发电机负载磁场和电感的分析与计算.中国电机工程学报,2004,24(3):91-95..
    [112]王爱龙,熊光煜.无刷双馈电机电感参数的计算.中国电机工程学报,2009,9(29):93-96.
    [113] Melgoza, E., Venegas,V., Escarela-Perez, et al. Computation of Differential Inductance and FluxLinkage Positional Derivative by a Sensitivity Approach. IEEE Transactions on EnergyConversion, 2010, 25(1): 237-244.
    [114] Liang Y P. Chen W H. Nurnerieal Calculation Of Stator End Ieakage Reaetance of LargeTurbogenerator. ICEMS,2001: 170-173.
    [115]李槐树.李朗如.多相交流电机端部漏感系数的计算与测量.华中理工大学学报,2000,28(9):34-37.
    [116]吴新振,王祥珩.12/3相双绕组异步发电机定子端部漏感的计算.中国电机工程学报,2007,27(24):80-84..
    [117]徐永明,孟大伟,刘宇蕾等.考虑分段处电磁影响的潜油电机端部漏抗.电机与控制学报,2009,13(6):838-843.
    [118] Z. Q. Zhu and D. Howe. Influence of design parameters on cogging torque in permanent magnetmotors. IEEE Trans. Energy Convers., 2000, 15(4): 407-412.
    [119] R. Islam, I. Husain, A. Fardoun et al. Permanent-magnet synchronous motor magnet designs withskewing for torque ripple and cogging torque reduction. IEEE Transactions on IndustryApplications, 2009, 45(1): 152-160.
    [120] L. Zhu, S. Z. Jiang, Z. Q. Zhu, et al. Analytical methods for minimizing cogging torque inpermanent-magnet machines. IEEE Transactions on Magnetics, 2009, 45(4): 2023-2031.
    [121] S. M. Hwang, J. B. Eom, Y. H. Jung, et al. Various design techniques to reduce cogging torque bycontrolling energy variation in permanent magnet motors. IEEE Transactions on Magnetics, 2001,37(4): 2806-2809.
    [122] J. A. Guemes, A. M. Iraolagoitia, J. I. Del Hoyo, et al. Torque Analysis in Permanent-MagnetSynchronous Motors: A Comparative Study. IEEE Transactions on Magnetics, 2011, 26(1): 55-61.
    [123] Gyu-Hong Kang, Young-Dae Son, Gyu-Tak Kim, et al. A Novel Cogging Torque ReductionMethod for Interior-Type Permanent-Magnet Motor. IEEE Trans. Ind. Appl., 2009, 45(1):161-167.
    [124] M. Dai, A. Keyhani, and T. Sebastian. Torque ripple analysis of a PM brushless DC motor usingfinite element method. IEEE Trans. Energy Convers., 2004, 9(1): 40-45.
    [125] Wang, Y., Jin, M.J., Fei, W.Z., et al. Cogging torque reduction in permanent magnetflux-switching machines by rotor teeth axial pairing. IET Electr. Power Appl., 2010, 4(7): 500-506.
    [126] R. Lateb, N. Takorabet, and F. Meibody-Tabar. Effect of magnet segmentation on the coggingtorque in surface-mounted permanent-magnet motors. IEEE Transactions on Magnetics, 2006,42(3): 442-445.
    [127] T.M.Jahns, W. L. Soong. Pulsating torque minimization techniques for Permanent magnet ACmotor drives--a review. IEEE Trans. Industrial Electronics,1996, 43(2): 321-330.
    [128] P. Mattavelli, L. Tubiana, and M. Zigliotto. Torque-ripple reduction in PM synchronous motordrives using repetitive current control. IEEE Trans. Power Electron., 2005, 20(6): 1423-1431.
    [129] Seung-Joo Kim, Hyung-Woo Lee, Kwang-Soo Kim, et al. Torque Ripple Improvement forInterior Permanent Magnet Synchronous Motor Considering Parameters With Magnetic Saturation.IEEE Transactions on Magnetics, 2009, 45(10): 4720-4723.
    [130]王琳,任赤兵.美国紧固件机械性能与材料概述.科技信息,2008(03):51-53.
    [131]孙小炎.MJ螺纹紧固件简介.航天标准化,2009(01):9-13.
    [132]黄国治,傅丰礼.中小旋转电机设计手册.北京:中国电力出版社,2007.
    [133] Y. Yang, X. Wang, R. Zhang, et al. The optimization of pole arc coefficient to reduce coggingtorque in surface-mounted permanent magnet motors. IEEE Transactions on Magnetics, 2006,42(4): 1135-1138.
    [134]杨玉波,王秀和,张鑫等.磁极偏移削弱永磁电机齿槽转矩方法.电工技术学报,2006,21(10):22-25.
    [135]朱莉,姜淑忠,诸自强等.表面式永磁电机齿槽转矩解析模型比较.微电机,2010,43(1):10-15.
    [136]汤蕴璆,张奕黄,范瑜.交流电机动态分析.北京:机械工业出版社,2004.
    [137]李毅.盘式无刷双馈电机分析与仿真研究:(硕士学位论文).沈阳:沈阳工业大学,2008.
    [138]印金国.Matlab可视化界而设针与控件使用.电脑编程技巧与维护,2007,30-34.
    [139]宋子明.电动机定转子冲片的冲裁加工精度.中小型电机,2003,30(5):47-51.
    [140]李成凯,何时剑,何永军.微特电机定转子冲片生产工艺.微特电机,2010(1):71-72.
    [141]陈晓春,许国旺.电机铁芯定子冲片多工位级进模设计.机械工程师,2007,6:113-114.
    [142]张宝强,韩雪岩,唐任远.基于有限元方法的永磁同步电动机等效电路参数计算与试验的研究.电气技术,2008(4):11-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700