用户名: 密码: 验证码:
大型低速永磁风力发电机的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国家863计划项目“新型变速恒压永磁风力发电机设计与制造技术”和哈尔滨大电机研究所合作项目“1.5MW半直驱永磁风力发电机设计”的资助下,本文针对制约大型低速永磁风力发电机的重量、成本和发电性能问题进行了深入研究,建立和完善大型低速永磁风力发电机设计与制造的一整套技术。本文的主要研究内容可以分为以下几个部分:
     第一部分研究变流器负载下永磁风力发电机的设计准则(减少有效材料用量、降低成本)。本文在分析PWM整流系统特性的基础上,提出一种考虑该类负载特性的永磁发电机设计准则。并分析了发电机的同步电抗、空载电动势等参数对该设计准则的影响情况。进而,建立起不同整流系统下永磁风力发电机的设计计算软件。
     第二部分研究分数槽集中绕组大型低速永磁风力发电机的电感参数(提高效率和容错性能)。本文将分数槽集中绕组引入大型低速永磁风力发电机中,以提高发电机效率和容错能力。首先,利用绕组函数法对分数槽集中绕组永磁电机的自感和互感参数进行量化分析和规律总结。然后,利用电磁场工具总结分数槽集中绕组永磁电机的凸极率特性。最后,提出分数槽集中绕组永磁发电机的定、转子模块化方案。
     第三部分研究大型低速永磁风力发电机的热管理技术(改善冷却性能)。在分析不同冷却系统特性的基础上,提出一种适用于大型低速永磁风力发电机的单路轴向密闭自循环通风系统。利用流场和温度场分析工具将该冷却系统应用于一台1.5MW半直驱永磁风力发电机样机。通过对1.5MW样机的试验,验证冷却系统设计的合理性和计算的准确性。文中还分析了某些关键因素对热分析结果的影响情况。
     第四部分研究大型低速永磁风力发电机的结构分析与减重设计(减轻重量)。首先基于弹性力学的叠加原理和连续性原理,建立了径向电磁力作用下一种圆盘式转子支撑结构的变形量解析计算模型。然后,针对圆盘式支撑结构进行了改进设计,通过设在圆盘两侧设置沿圆周方向呈辐射状均布的支撑筋来提高整个转子的刚度,文中分析了支撑筋数量、厚度对转子结构刚度和转子重量的影响规律。并利用有限元软件对圆盘式支撑结构进行优化以达到减重的目的。最终将该结构应用于两台永磁风力发电机样机以证明其可行性。
     第五部分样机开发与实验。本部分利用前文的研究成果,设计并制造一台采用分数槽集中绕组、准闭口槽和定、转子模块化结构的100kW永磁风力发电机样机和一台采用密闭自循环单路轴向通风系统、圆盘式支撑结构的1.5MW永磁风力发电机样机。最终完成样机的全面实验,样机性能优良,证明了本文所提出的相关关键技术的可行性。
This research content is funded by the State 863 Program named“Design andManufacture Technology for Novel Variable Speed Constant Voltage Permanent MagnetWind Generator”and cooperation program with Harbin institute of large electricalmachinery named“Design of 1.5MW Semi-Direct Drive Permanent Magnet WindGenerator”. This dissertation is devoted to study the issues of cost, weight and generatingperformance which currently exist in the design and manufacture process of large powerlow speed permanent magnet wind generator (PMWG), and to establish and improve acomplete set of techniques on the basis of the development of two prototypes. The specificwork can be divided into the five parts as following:
     Firstly, the design criteria is presented for PMWG with PWM converter (Reduce theamount of effective material and cost). On the basis of studying the characteristics ofPWM rectifier system, a design criteria for PMWG with PWM rectifier is proposed. Theimpact of different parameters as synchronous reactance and no-load EMF on this designcriteria is studied. Furthermore, CAD software of PMWG with different rectifier systems isproposed.
     Secondly, the inductance parameter of low speed PMWG with fractional slotconcentrated winding (FSCW) is studied (Improve efficiency and fault tolerant capacity).FSCW is introduced into large capacity low speed PMWG in this thesis to improve thefault tolerant capacity. At first, winding function method is used to analyze the inductancequantitatively. Then, the saliency ratio of permanent magnet machine with FSCW issummarized by using finite element method. At last, a modular structure of both stator androtor for FSCW PMWG is proposed.
     Thirdly, thermal management technology for large capacity low speed PMWG isinvestigated (Improve the cooling performance). Through comparative analysis of differentcooling system, a single closed-loop axial ventilation system is proposed for large capacitylow speed PMWG. This cooling system is applied to a 1.5MW semi-direct drive PMWGby using the calculation tool of flow field and temperature field. Some key factors that may have a great influence on thermal analysis are considered. At last, the experiment carriedout on the 1.5MW prototype validates the feasibility of the cooling system and thecalculation accuracy.
     Fourthly, structural analysis and weight reduction design technology for largecapacity low speed PMWG are developed (Weight reduction). At first, on the basis ofsuperposition and continuity theory of elasticity mechanics, an analytical model isestablished for deformation calculation of a disc rotor support under radial electromagneticforce. Then, a modified disc structure with radial reinforcing plate distributed uniformlyalong the circumferential direction is proposed to improve the stiffness of the rotor. Thestiffness and weight of rotor under different amount and thickness of reinforcing plates areanalyzed. Finite element optimizing software is used to optimize the rotor structure toachieve weight reduction goal. At last, the modified disc structure is applied to twoprototypes to verify the feasibility of this structure.
     Lastly, by making use of the previous research results, a 100kW PMWG prototypewith FSCW, quasi-closed slot, stator and rotor modular structure and a 1.5MW PMWGprototype with single closed-loop axial ventilation system and disc structure are developedto verify the previous research contents. Through the comprehensive testing of theprototypes, the results verify the key technologies proposed in this thesis.
引文
[1] World Wind Energy Association. 2010年世界风电发展情况综述.
    [2] World Wind Energy Association. 2011年世界风电发展情况综述.
    [3]北京银联信息咨询中心. 2009年中国风电发展研究报告.
    [4]门华.国内兆瓦级风机变流器发展现状及发展前景预测.中国产业竞争情报网.
    [5]姚兴佳,宋俊.风力发电机组原理与应用.北京:机械工业出版社, 2009.
    [6] Thomas Ackermann. Wind power in power systems. Chichester: John Wiley & Sons Ltd, 2004.
    [7] Y. Amirat, M. E. H. Benbouzid, B. Bensaker, et al. Generators for wind energy conversion systems:state of the art and coming attractions. Journal of Electrical Systems, 2007, 3(1):26~38.
    [8] Juan Manuel Carrasco, Leopoldo Garcia Franquelo, Jan T. Bialasiewicz, et al. Power-electronicsystems for the grid integration of renewable energy sources: a survey. IEEE Transactions onIndustrial Electronics, 2006, 53(4):1002~1016.
    [9] Zhe Chen, Josep M. Guerrero, Frede Blaabjerg. A review of the state of the art of power elctronicsfor wind turbines. IEEE Trans. on Power Electronics, 2009, 24(8):1859~1875.
    [10] H. Li, Z. Chen. Overview of different wind generator systems and their comparisons. IET Renew.Power Gener., 2008, 2(2):123~138.
    [11] G. Shrestha, D. Bang, H. Polinder, et al. Review of generator systems for large wind turbines.Proceedings of EWEC, Brussels Belgium, 2008: 68~77.
    [12] Deok-je Bang, Henk Polinder, Ghanshyam Shrestha, et al. Promising direct-drive generator systemfor large wind turbines. EPE Journal, 2008, 18(3):1~10.
    [13] Multibrid Entwicklungsgesellschaft mbH. http://www.multibrid.com.
    [14] XEMC-Darwind. http://www.xemc-darwind.com.
    [15] Markus Eichler, Philippe Maibach, Alexander Faulstich. Full size voltage converters for 5MWoffshore wind power generators. Proceedings of European Conference on Power Electronics andApplications (EPE 2005), Dresden Germany, 2005:1-10.
    [16] Scan Wind Group AG. http://www.scanwind.com.
    [17] The Switch Corp. http://www.theswitch.com.
    [18] H. Polinder, D. Bang, R.P.J.O.M. van Rooij, et al. 10 MW wind turbine direct-drive generatordesign with pitch or active speed stall control. Proceedings of IEMDC’07, Antalya Turkey,2007:1390~1395.
    [19] D. Bang, H. Polinder, G. Shrestha, et al. Review of generator systems for direct-drive windturbines. Proceedings of EWEC, Brussels Belgium, 2008: 1390~1395.
    [20] E. Spooner, A. C. Williamson. Direct coupled, permanent magnet generators for wind turbineapplications. IEEE Proceedings-Electric Power Applications, 1996, 143(1):1~8.
    [21] Helga Silaghi, Viorica Spoiala. PM Wind Generator Topologies. Journal of Electrical andElectronics Engineering, 2008, 1(1):125~129.
    [22] K.C. Kim, S.B. Lim, K.B. Jang, et al. Analysis on the direct-driven high power permanent magnetgenerator for wind turbine. Proceedings of ICEMS’05, Nanjing China, 2005: 243~247.
    [23] A. Kilk, A. Kallaste. Surface-Mounted Permanent Magnet Synchronous Generators for windapplications. Proceedings of Power Quality and Supply Reliability Conference, Parnu Estonia,2008: 235~240.
    [24] B.J. Chalmers, W. Wu, E. Spooner. An axial-flux permanent-magnet generator for a gearless windenergy system, IEEE Trans. on Energy Conversion, 1999, 14(2):251~257.
    [25] L. Soderlund, J T. Eriksson, J.Salonen, et al. A permanent-magnet generator for wind powerapplications. IEEE Trans. on Magnetics, 1996, 32(4): 2389~2392.
    [26] J. R. Bumby, R. Martin. Axial-flux permanent-magnet air-cored generator for small~scale windturbines. IEE Proceedings-Electric Power Application, 2005, 152(5):1065~1075.
    [27] F. Sahin. Design and development of a high-speed axial-flux permanent-magnet machine: (doctoraldissertation). Eindhoven: Eindhoven University of Technology, 2001.
    [28] J. F. Eastham, F. Profumo, A. Tenconi, et al. Novel axial flux machine for aircraft drive: designand modeling. IEEE Trans. on Magnetics, 2002, 38(5):3003~3005.
    [29] A. Parviainen. Design of axial-flux permanent-magnet low-speed machines and performancecomparison between radial-flux and axial-flux machines: (doctoral dissertation). Lappeenranta:Lappeenranta University of Technology, 2005.
    [30] A. Parviainen, J. Pyrhonen, P. Kontkanen. Axial flux permanent magnet generator withconcentrated winding for small wind power applications. Proceedings of IEMDC 2005, SanAntonio America, 2005: 1187~1191.
    [31] M.A. Mueller, A.S. McDonald, D.E. Macpherson. Structural analysis of low-speed axial-fluxpermanent-magnet machines. IEE Proc.-Electr. Power Appl., 2005, 152(6): 1417~1426.
    [32] Deok-Je B., Plinder H., Shrestha G., et al. Design of a lightweight transverse flux permanentmagnet machine for direct-drive wind turbines. Proceedings of IAS’08, Edmonton Canada,2008:1~7.
    [33] D. Svechkarenko, J. Soulard, C. Sadarangani. A novel transverse flux generator in direct-drivenwind turbines. Proceedings of NORPIE 2006, Lund Sweden, 2006: 1~6.
    [34] Deok-je B., Henk P., G. Shrestha, et al. Comparative design of radial and transverse flux PMgenerators for direct-drive wind turbines. Proceedings of ICEM08’, Vilamoura Portugal, 2008:1~6.
    [35] M. R. Dubois, Henk Polinder. Study of TFPM machines with toothed rotor applied to direct-drivegenerators for wind turbines. Proceedings of NORPIE 2004, Trondheim Norway, 2004: 1~9.
    [36] Strete L., I. A. Viorel, A. Viorel. On the designing procedure of a permanent magnet transverseflux generator (PMTFG) with Specific Topology. Proceedings of OPTIM 2008, Brasov Romania,2008: 99~104.
    [37] Y.G. Guo, J. G. Zhu, P.A. Watterson, et al. Development of a PM transverse flux motor with softmagnetic composite core. IEEE Trans. on Energy Conversion, 2006, 21(2): 426~434.
    [38] C. J. A. Versteegh. Design of the Zephyros Z72 wind turbine with emphasis on the direct drive PMgenerator. Proceedings of NORPIE 2004, Trondheim Norway, 2004: 1~6.
    [39] J.Chen, C.V. Nayar, L. Xu. Design and finite-element analysis of an outer-rotor permanent-magnetgenerator for directly coupled wind turbines. IEEE Trans. on Magnetics, 2000, 36(5):3802~3809.
    [40] I. Tarimer, C. Ocak. Performance Comparision of Internal and External Rotor Structured WindGenerators Mounted from Same Permanent Magnets on Same Geometry. Journal of Electronicsand Electrical Engineering, 2009, 4(92):65~70.
    [41] S. Engstrom, S. Lindgren. Design of NewGen direct-drive generator for demonstration in a 3.5MWwind turbine. Proceedings of EWEC, Milan Italy, 2007: 1~7.
    [42] E. Spooner, P. Gordon, J.R. Bumby, et al. Lightweight ironless-stator PM generators fordirect-drive wind turbines. IEE Proc.-Electr. Power Appl., 2005, 152(1):17~26.
    [43] M.Mueller, A.S. McDonald. C-Gen-a lightweight permanent magnet generator gor direct drivepower take off systems. Proceedings of ICOE 2008, 2008: 1~7.
    [44] D. Bang, H. Polinder, G. Shrestha, et al. Possible solutions to overcome drawbacks of direct-drivegenerator for large wind turbines. Proceedings of EWEC, Marseille France, 2009: 1~10.
    [45] Clipper Windpower Plc. http://www.clipperwind.com.
    [46] J. Birk, B. Andresen. Parallel-connected converters for optimum reliability and grid performance inthe Gamesa G10X 4.5MW wind turbine. Proceedings of EWEC, Brussels Belgium, 2008: 1~5.
    [47] Ki-Chan Kim, Seung-Bin Lim, Ki-Bong, et al. Analysis on the direct-drive high power permanentmagnet generator for wind turbine. Proceedings of ICEMS 2005, Nanjing China, 2005: 27~29.
    [48]张岳,王凤翔.直驱式永磁同步风力发电机性能研究.电机与控制学报, 2003, 13(1): 78~82.
    [49] Shoudao Huang, Xin Long, Luoqiang Cai, et al. An engeneering design of a 2MW direct-drivepermanent-magnet wind-power generation system. Proceedings of ICEMS’08, Wuhan China, 2008:2337~2342.
    [50]谢若初.直接驱动式永磁风力发电机设计研究. (硕士学位论文).沈阳:沈阳工业大学, 2005.
    [51]郭冰.直驱永磁风力发电机发展及其设计方法综述.微特电机, 2007, 35(11): 56~59.
    [52] M.A. Khan, S. Zorlu, R. Guan, et al. An integrated design approach for small grid-tied permanentmagnet wind generators. Proceedings of PowerAfrica’07, Johannesburg South Africa, 2007: 1~6.
    [53] Tor Inge Reigstad. Direct driven permanent magnet synchronous generators with diode rectifiersfor use in offshore wind turbines: (master thesis). Norway: Norwegian University of Science andTechnology, 2007.
    [54] R. Poore, T. Lettenmaier. Alternative design study report: windpact advanced wind turbine drivetrain design study. Subtraction Report, National Renewable Energy Laboratory (NREL), 2003.
    [55] Chen Z., Spooner E., Norris W.T., et al. Capacitor-assisted excitation of permanent-magnetgenerators. IEE Proc.-Electric Power Applications, 1998, 145(6): 497~508.
    [56] A. Singer, W. Hofmann. Static synchronous series compensation applied to small wind energyconversion system. Proceedings of EPE 2007, Aalborg Danmark, 2007: 1~9.
    [57] Magnus Ellsén, Ingemar Mathiasson, Ola Carlson. Series and parallel compensation for thepermanent magnet synchronous generator at the chalmers test wind turbine. Proceedings of NordicWind Power Conference, Espoo Finland, 2006:1~10.
    [58] J. A. Wiik, A. Kulka, T. Isobe, et al. Loss and rating considerations of a wind energy conversionsystem with reactive compensation by magnetic energy recovery switch. Proceedings ofEPEWECS’2008, Delft Netherlands, 2008:1~6.
    [59]胡书举,赵栋利,李建林等.永磁直驱风电系统永磁同步发电机单位功率因数控制.电机与控制应用, 2009, 36(3):1~5.
    [60] A. Binder, T. Schneider. Permanent magnet synchronous generators for regenerative energyconversion-a survey. Proceedings of EPE’2005, Dresden Germany, 2005: 1~10.
    [61] Anders Grauers. Design of direct-driven permanent-magnet generators for wind turbines: (doctoraldissertation). Sweden: Chalmers University of Technology, 1996.
    [62] Dmitry Svechkarenko. On analytical modeling and design of a novel transverse flux generator foroffshore wind turbines: (doctoral dissertation). Stockholm: Royal Institute of Technology, 2007.
    [63] A.D. Hansen, G. Michalke. Multi-pole permanent magnet synchronous generator wind turbines’grid support capability in uninterrupted operation during grid faults. IET Renew. Power Gener.,2009, 3(3): 333~348.
    [64] Henk Polinder, Frank F. A. Van der Pijl, Gert-Jan de Vilder, et al. Comparison of direct-drive andgeared generator concepts for wind turbines. IEEE Trans. on Energy Conversion, 2006, 21(3):725~732.
    [65] M. R. Dubois. Optimized permanent magnet generator topologies for direct-drive wind turbines:(doctoral dissertation). Delft: Delft University of Technology, 2004.
    [66] H. Li, Z. Chen. Optimal direct-drive permanent magnet wind generator systems for different ratedwind speeds. Proceedings of EPE 2007, Aalborg Danmark, 2007:10~19.
    [67] Hui Li, Zhe Chen, Henk Polinder. Optimization of multibrid permanent-magnet wind generatorsystems. IEEE Trans. on Energy Conversion, 2009, 24(1):82~92.
    [68] Drago Ban, D. Zarko, M. Madercic, et al. Generator technology for wind turbines, trends inapplication and production in Croatia. Proceedings of MAKO CIGRE Zagreb Croatia, 2007:1~16.
    [69] D. G. Dorrell. Design requirements for brushless permanent magnet generators for use in smallrenewable energy systems. Proceedings of IECON’2007, Taipei Taiwan, 2007: 216~221.
    [70] G. Bywaters, V. John, J. Lynch, et al. Northern power systems windpact drive train alternativedesign study report. National Renewable Energy Laboratory (NREL), 2004.
    [71] Allan Chertok, David Hablanian. Development of a direct drive permanent magnet generator forsmall wind turbines. Final Technical Report for the U.S. Department of Energy, 2005.
    [72] S. Brisset, D. Vizireanu, P. Brochet. Design and optimization of a nine-phase axial-flux PMsynchronous generator with concentrated winding for direct-drive wind turbine. IEEE Trans. onIndustry Applications, 2008, 44(3):707~715.
    [73] Deok-je B., Henk P., Ghanshyam S., et al. Comparative design of radial and transverse flux pmgenerators for direct-drive Wind turbines. Proceedings of ICEM’2008, Vilamoura Portugal,2008:1~6.
    [74] M. A. Khan, P. Pillay. Design of a PM wind generator, optimised for energy capture over a wideoperating range. Proceedings of IEMDC 2005, San Antonio America, 2005:1501~1506.
    [75] M. Henschel, T. Hartkofp, H. Schneider, et al. A reliable and efficient new generator system foroffshore wind farms with DC farm grid. Proceedings of PESC’02, Cairns Australia, 2002:111~116.
    [76] G. Bywaters, P. Mattila, D. Costin, et al. Northern power NW 1500 direct-drive generator.Northern Power System Inc. Subcontract Report, National Renewable Energy Laboratory (NREL).Oct. 2007.
    [77]Ayman M. EL-Refaie. Fractional-slot concentrated-windings synchronous permanent magnetmachines opportunities and challenges. IEEE Trans. on Industrial Electronics, 2010, 57(1):107~121.
    [78]Z.Q. Zhu. Fractional slot permanent magnet brushless machines and drives for electric and hybridpropulsion systems. Proceedings of EVER’09, Monaco, 2009: 1~11.
    [79]Nicola B., Silverio B., Michele D., et al. Design considerations for fractional-slot windingconfigurations of synchronous macines. IEEE Trans. on Industry Applications, 2006, 42(4):997~1006.
    [80]Florence Meier, Juliette Soulard. PMSMS with non-overlapping concentrated windings: designguidelines and model references. Proceedings of EVER’09, Monaco, 2009: 25~35.
    [81]Florence Merer. Permanent magnet synchronous machines with non-overlapping concentratedwindings for low-speed direct-drive applications: (doctoral dissertation). Sweden: Royal Instituteof Technology, 2008.
    [82]Magnussen F., Lendenmann H. Parasitic effects in PM machines with concentrated windings. IEEETrans. on Industry Applications, 2007, 43(5):1223~1232.
    [83]R. Wrobel, P. H. Mellor. Design considerations of a direct drive brushless machine withconcentrated windings. IEEE Trans. on Energy Conversion, 2008, 23(1): 1~8.
    [84] Freddy M., Dmitry S., Peter T., et al. Analysis of a PM machine with concentrated fractional pitchwindings. Proceedings of NORPIE 2004, Trondheim Norway, 2004: 48~55.
    [85] J. Germishuizen, Maarten Kamper. Design and performance characteristics of IPM machines withsingle layer non-overlapping concentrated windings. Proceedings of 42ndIAS Annual Meeting,New Orleans America, 2007: 141~147.
    [86] Ayman M. EL-Refaie, Z. Q. Zhu. Winding inductances of fractional slot surface mountedpermanent magnet brushless machines. Proceedings of 43rdIAS Annual Meeting, EdmontonCanada, 2008:1~8.
    [87] A.M.EL-Refaie, Thomas M. Jahns. Optimal flux weakening in surface PM machines using con-centrated windings. IEEE Trans. on Industry Applications, 2005, 41(3):790~800.
    [88] Pia S., Markku N., Juha P., et al. Performance analysis of fractional slot wound PM-motors for lowspeed applications. Proceedings of 39thIAS Annual Meeting, Seattle America, 2004: 1032~1037.
    [89] M.V. Cistelecan, Mircea Popescu, Mihail Popescu. Study of the number of slots/pole combinationsfor low speed permanent magnet synchronous generators. Proceedings of IEMDC’07, AntalyaTurkey, 2007: 1616~1620.
    [90] Jér me Cros, Philippe Viarouge. Synthesis of high performance PM motors with concentratedwindings. IEEE Trans. on Energy Conversion, 2002, 7(2): 248~253.
    [91] A.M. EL-Refaie, T.M. Jahns, P.J. McCleer, et al. Experimental verification of optimal fluxweakening in surface PM machines using concentrated windings. IEEE Trans. on IndustryApplications, 2006, 4(2): 443~453.
    [92] Z.Q. Zhu, D. Howe. Winding inductances of brushless machines with surface-mounted magnets.Proceedings of International Electric Machines and Drives Conference, Milwaukee America,1997:WB2/2.1~WB2/2.3.
    [93] Harakosan Co., Ltd. Technical description of the Z72 wind turbine.
    [94] Bagepalli, et al. Wind turbine generators having wind assisted cooling systems and coolingmethods. America, Invention Patent, 7427814. 2006.
    [95] R. Poore, T. Lettenmaier. Alternative design study report: windpact advanced wind turbine drivetrain design study. Subtraction Report, National Renewable Energy Laboratory (NREL), 2003.
    [96]王兆安,黄俊.电力电子技术.北京:机械工业出版社, 2000.
    [97] D. W. Novotny, T.A. Lipo. Vector control and dynamics of AC drives. Clarendon: OxfordUniversity press: 1998.
    [98]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社, 2004.
    [99]陈世坤.电机设计.北京:机械工业出版社, 2000.
    [100]魏永田,孟大伟,温嘉斌.电机内热交换.北京:机械工业出版社, 1998.
    [101] Markus A. Mueller, Alasdair S. McDonald. A lightweight low-speed permanent magnet electricalgenerator for direct-drive wind turbines. Wind Energy, 2009, 12(8):768~780.
    [102] A.S. McDonald, M.A. Mueller, H. Polinder. Structural mass in direct-drive permanent magnetelectrical generators. IET Renew. Power Gener., 2008, 2(1):3~15.
    [103]刘鸿文.材料力学.北京:高等教育出版社, 2005.
    [104] Warren C. Young, R. G. Budynas. Roark’s formulas for stress and strain. America: McGraw-HillCompanies, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700