用户名: 密码: 验证码:
铌酸钙和铌酸铋单晶的光浮区法生长及光电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自史前时期起,人们一直因单晶宝石的美丽而视如珍宝。自然界中的物质绝大多数都是以多晶或微晶的形式存在的,像天然宝石这样大尺寸且结构完整的单晶微乎其微。所以说晶体材料比其他微晶多晶材料应用发展的历史要短得多。自十九世纪后期,随着科学技术的快速发展,人们逐渐认识到一方面晶体在高新技术发展方面的作用越来越重要,另一方面物质相当多的性质只有在晶体的状态才能得到发现和研究。自此以后的科学家为制造人工单晶苦苦研究。经过近一个世纪的探索,无论是在晶体生长技术与方法方面,还是在人工晶体的应用发展方面,均已取得巨大的成果。目前,几乎所有的天然矿物晶体已经都能用人工方法合成或者生长,除此之外还采用人工方法培育出了大量的新晶体。各式各样的晶体生长技术与方法迅速蓬勃发展起来,但是这并不意味着人工方法合成晶体已达到了完善的地步,从晶体生长理论到实际生长操作过程仍有许多疑难问题需要继续进一步的探讨研究。
     光学浮区法是熔体生长法中的一种,其具有生长速度快并且无坩埚等接触污染等优点,被广泛应用于各种晶体的生长,特别是用于生长一些反应强烈或熔点较高的氧化物和金属间化合物单晶体。
     CaNb_2O_6具有铌铁矿结构,由于其具有优异的介电性能、独特的光学和磁学性能,近些年来成为被广泛研究的晶体基质材料。目前对CaNb_2O_6的性质了解主要是通过多晶和纳米晶样品获得的。一些基本特性如电子跃迁类型和禁带宽度,实验结果之间还存在着很大差异无法确定。材料的许多基本性质都需要对晶体进行实验测量才能予以确认,但目前尚无适当尺寸可供实验测量研究的晶体,而大尺寸高质量的CaNb_2O_6晶体生长存在一定难点。可能的原因之一是CaNb_2O_6已处于稳定钶铁矿结构的边界,其较大的CaO_6八面体应该引起NbO_6八面体排列畸变增加。在液固转变时,原子长程有序排列就较难,不易形成大尺寸单晶。
     BiNbO4是近年来备受关注的一种微波介电陶瓷,目前对BiNbO4的性质了解主要是通过多晶和纳米晶样品获得的。一些基本特性实验结果之间还存在着矛盾之处,需要对晶体进行实验测量才能予以确认的一些基本性质如折射率、消光系数、复介电常数等,以及发光性能都还没有研究报道。但大尺寸高质量的BiNbO_4晶体生长存在一定难点,从其相图看原因之一是由于β-BiNbO_4的熔点高于Bi_2O_3的熔点,在生长过程中Bi_2O_3会提前挥发一部分,导致熔体中Bi成分配比在液固转变时不易按要求控制,形不成大尺寸单晶。
     本工作利用FZ-T-10000-H-VI-VP单晶炉,成功生长了CaNb_2O_6和BiNbO_4单晶体,表征了生长方向及晶体品质,结合测试结果计算了多种光学参数并对其光致发光进行了研究。
     1 CaNb_2O_6晶体的生长:
     通过光学浮区法成功生长出较大尺寸的CaNb_2O_6晶体,生长晶体的颜色为白色透明,尺寸为约Ф7mm×L 8mm。通过XRD和拉曼测量分析确定生长的晶体为铌铁矿结构的CaNb_2O_6,XRD2测试表明CaNb_2O_6可以沿着a轴方向生长成较大尺寸的晶体。比已有文献报道的晶体尺寸大而且品质更高。对生长的CaNb_2O_6晶体进行了紫外-可见吸收和透过率测试,62%的透过率高于之前文献的报道。结合实验结果通过计算得出了CaNb_2O_6的带间电子跃迁类型为直接跃迁半导体,禁带宽度4.28 eV,高于早先文献所报道的3.04eV-3.93eV。通过对实验结果的理论计算获得了折射率、复介电常数、折射率色散方程等一系列光电常数。光致发光结果显示,在465 nm和428nm的监视波长下,晶体在带隙以上都有一个很强的吸收峰并且在禁帯内还有两个较弱的吸收峰,中心分别位于282 nm、315 nm和370 nm。在282 nm光源激发下获得了一个很强的蓝光发射带,中心位于465 nm处;370 nm光源激发下可以获得一个紫光发射带,其中心位于428 nm。
     2、BiNbO_4晶体的生长:
     使用光学浮区法成功生长出高品质的单晶,样品为白色透明,直径为6-7mm,长度为6 mm,通过XRD和拉曼分析确定生长的晶体为三斜结构的β-BiNbO_4,XRD2测试表明β-BiNbO_4可以沿着a轴方向生长成较大尺寸的晶体。对生长的β-BiNbO_4晶体进行了紫外-可见吸收和透过率测试,通过实验结果结合计算得出了β-BiNbO_4的电子跃迁类型为直接跃迁半导体,禁带宽度Eg=3.16eV。对吸收率曲线计算获得了折射率、复介电常数和折射率色散方程等一系列光电常数。首次对β-BiNbO_4晶体进行了发光性能研究,观察到β-BiNbO_4晶体有两个宽发射带,中心分别位于423nm和470nm。有三个激发峰,分别位于210nm、268nm和370nm处。结合β-BiNbO_4结构及自由Bi离子能级图对β-BiNbO_4晶体光致发光机理进行研究。
     本文另一个研究内容是纳米级单相YCoO_3粉体制备及热稳定性研究。由于含有过渡族Co元素,YCoO_3有着特殊的电磁性能,近些年还在气敏材料,热电材料及汽车尾气净化领域有着广泛的用途。YCoO_3纯相的制备存在一定困难,报道的YCoO_3样品都含有Y2O_3原料相。纳米材料制备方法的研究目前是十分重要的研究领域。本文通过溶胶-凝胶法,在较低温度条件下成功制备出单相YCoO_3纳米粉末,并对其热稳定性进行研究。
     3.以Y (NO_3)_3·6H_2O和Co (NO_3)2·6H_2O为初始原料,利用溶胶-凝胶法制备出前驱体,再通过固态烧结合成出颗粒度为30nm左右的单相YCoO_3粉体材料。最佳合成条件为空气中900-950℃烧结10小时,氧气中900-1000℃烧结5小时。电阻率-温度测量结果表明,合成的YCoO_3在300℃时电阻率为5.8 cm,在300到450℃温度段电阻率随温度升高而急剧下降,当温度升高至480℃以上时电阻率很小,变化趋势趋于不变,显现金属特性。在480℃左右出现绝缘体-金属转变。室温M-H测量结果显示,YCoO_3具有弱铁磁性,矫顽力(Hc)为108.36 Oe,剩余磁化强度(M)为4.47×10-4emu/g,饱和磁化强度为3.1×10-3emu/g(0.00125emu/mol)。热稳定性研究表明,空气中1050℃以下YCoO_3钙钛矿结构是稳定的,在氧气环境中1100℃以下是稳定的。当温度高于1050℃(空气中)和1100℃(氧气中)时YCoO_3分解为Y2O_3和Co3O_4。YCoO_3高温下热稳定性较差是由于Y~(3+)离子与O~(2-)离子的半径比较小、高温时阳离子特别是Co离子的价态降低共同导致的。氧气环境可以抑制YCoO_3分解和Co离子的价态变化,因此降低了合成温度并且增加YCoO_3的热稳定性,氧气中YCoO_3分解温度升高了50℃左右。
The beauty of the single crystals has been treasured since prehistoric times. Thenatures of many materials can only be discovered and studied on the crystal structure.Most of materials in nature are existed in the form of polycrystalline ormicrocrystalline, and the single-crystal with large size and complete structure is few.Since the late 19~(th)century, with the development of scientific technology, people haverealized the importance of the role that the crystal plays in terms of developinghigh-technology. Therefore, the history of applying the crystal materials is muchshorter than that of other microcrystalline or polycrystalline materials. From then on,scientists have been making great efforts to make artificial crystals. After nearly acentury of research, great achievements have been made both in terms of technologyand methods of making crystal and applying it. At present, nearly all the naturalmineral crystals could be synthesized or grown. In addition, great amount of newcrystals have been made with artificial methods. Various growth technologies andmethods of crystals have rapidly flourished. However, this does not mean that theartificial synthesis method has been perfect and mature. There are still many difficultproblems to be further explored and studied in the aspect of the crystal growth theoryand the operation process of crystal growth. The optical float region method, which isone of melt growth methods, refers to that the infrared light from halogen lamp orxenon lamp focuses through the elliptic mirror, and the melt maintain its shape relyingon its own surface tension and the crystals grow in the direction of the vertical upward.Due to its advantages such as its fast growth and it does not cause contact pollutionwith clamp pans etc, it has been widely applied to the growth of diverse crystals,especially, to the growth of oxides possessing strong response or higher melting pointand single metal compounds.
     CaNb_2O_6has the columbite structure. Due to its advantages such as excellentdielectric performance, unique optical and magnetism performance, CaNb_2O_6hasbecome a crystal matrix material which has been widely studied in recent years. Atpresent, the nature of CaNb_2O_6is mainly understood by means of polycrystalline andnanocrystalline samples, and there are still contradictions between the results of somebasic experiments. Many fundamental properties of materials can be confirmed onlyafter the experimental measurements of crystals are conducted. However, there aresome certain difficulties in the growth of CaNb_2O_6with its big size and high quality.One possible reason is that CaNb_2O_6 has been in the boundary of the stable structureof columbite, of which larger AO6octahedra could increase the chance of distortedarrangement of NbO6octahedra. At the time of the liquid-solid changes, it is difficultfor the atom to make orderly arrangement and to form large-sized single crystal.
     BiNbO_4ceramic, which is a kind of microwave dielectric ceramics, has becomea focus of concern in recent years. Nowadays, understanding the nature of BiNbO_4ismainly available through polycrystalline and nanocrystalline samples. There still existcertain discrepancies between the results of some basic experiments. Many elementalproperties of materials can be further confirmed only after the experimentalmeasurements of crystals. However, there are some certain difficulties in the growthof BiNbO_4crystal with its large size and high quality, which may be due to the highermelting point of BiNbO_4 than that of Bi_2O_3, and the element Bi_2O_3will be missing inthe process of BiNbO_4 growth so that the mixed crystal consisted of Bi5Nb_3O_15andβ-BiNbO_4is formed.
     This research has successfully developed the single crystals, CaNb_2O_6andBiNbO_4 with FZ-T-10000-H-VI-VP single crystal furnace; characterized their growthdirection and crystal quality, calculates many kinds of optical parameters combinedwith the test results and does a research of its the photoluminescence.1. Several CaNb_2O_6single crystals with about 7 mm in diameter and 8 mm in lengthhave been grown by optical floating zone method. The as-grown crystal are colorlessand transparence with the orthorhombic columbite structure. A crystal wafer was cutperpendicular to the growth direction. Transmission polarized light microscopy measurements show that the crystal wafer is free of low-angle grain boundaries andinclusions. The measured transmission and absorption spectra of the as-grown crystalat room-temperature, which is transparent (from 50 to 62%) in the visible to infraredregion (400-1000 nm) and has a low absorption coefficient (α~1.56). Based on thetheory of band to band transitions, the types of transition and the direct energy gapwere determined as Eg=4.28 eV and direct transitions, respectively. The wavelengthdependent refractive index and extinction coefficient the CaNb2O6crystal have beenderived from the measured T andαspectra. In addition, the photoluminescencespectra exhibit two broad emission band centered at 428 and 465 nm.2.β-BiNbsingle crystals are grown by the optical floating zone method. Theas-grown crystals are lemon yellow in color, and the dimensions areФ7 mm×L 30mm, with the largest crystal domain beingФ6-7 mm×L 6 mm. The powder X-raydiffraction analysis shows that the crystals areβ-BiNbO_4. The crystal grows along thea-axis and the cleavage plane is the (2 0 0) plane. Based on the theory of band to bandtransitions, the types of transition and the direct energy gap were determined asEg=3.16 eV and direct transitions, respectively. The wavelength dependent refractiveindex and extinction coefficient theβ-BiNbO_4crystal have been derived from themeasured T andαspectra. We firstly investigate the optical property ofβ-BiNbO_4crystals. It can be observed that the emission spectrum ofβ-BiNbO_4crystals showtwo broad peaks centered at 423 nm and 470 nm, respectively. the excitation spectrumofβ-BiNbO_4crystals have three excitation peaks located at 210 nm, 268 nm and370nm, respectively. The luminescence mechanism of theβ-BiNbO_4crystals arestudied byβ-BiNbO_4structure and Bi3+energy level diagram.
     Another research system is sol–gel synthesis, solid sintering, and thermalstability of single-phase YCoO_3. So far, the research on the preparation methods ofnanometer materials is a very important research area. For it has the element Co oftransition family, YCoO_3possesses special electromagnetic properties. And in recentyears, it has been widely applied to the areas of gas sensitive materials, thermoelectricmaterials and the purification of car exhaust etc. There are certain difficulties in thepreparation of the YCoO_3pure phase, and the YCoO_3samples reported all have raw material phase of Y2O_3. The thesis has successfully obtained the single-phasenanometer powder of YCoO_3at a relatively low temperature with Sol-Gel method,and has obtained the optimum synthesis condition under air and oxygen atmosphere.Besides, the research makes an analysis of its thermal stability.3. Using Y(NO_3)_3·6H_2O and Co(NO_3)_2·6H_2O as the starting materials, thesingle-phase YCoO_3has been synthesized by a two-step process involving a sol–geltechnique and a sintering method. The structure, electromagnetic properties, andthermal stability of the synthesized samples were measured by XRD,thermogravimmetry and differential thermal analysis (TG–DTA), TEM, and vibrationsample magnetometer (VSM). The experimental results show that the synthesisconditions of the single-phase YCoO_3are 900–950℃for 10 h in air. And thesynthesis temperature is extended to 900–1000℃and the sintering time is shortenedto 5 h in an oxygen atmosphere. The synthesized powders have orthorhombicstructure, with a diameter about 30 nm, which is stable in air below1050℃and inoxygen atmosphere below 1100℃. Above those temperatures, YCoO_3decomposesinto Y2O_3and Co_3O_4.
引文
[1]陈晓明,蔡继文.单晶结构分析原理与实践[M]. 2003,北京:科学出版社.
    [2]陈春荣,赵新乐.晶体物理性质与检测[M]. 1995,北京:北京理工大学出版社.
    [3]张克从,张乐潓.晶体生长科学与技术[M]. 1997,北京:科学出版社.
    [4] P.GRüNBERG,R.SCHREIBER,Y.PANG,M.B.BRODSKY,H.SOWERS. LayeredMagnetic Structures:Evidence for Antiferromagnetic Coupling of Fe Layersacross Cr Interlayers [J].Phys.Rev.Lett.,1986,57:2442-2445.
    [5] W.H.Weber, R.Merlin(Eds.),Raman Scattering in Materials Science [J].Springer,Berlin, 2000, pp: 449–478.
    [6]邢建东.晶体定向生长[M]. 2008:西安交通大学出版社.
    [7]张克从,张乐潓.晶体生长科学与技术[M]. 1997:科学出版社.
    [8] PING Y, HDJINANAYIS G C. Magnetic-properties of fine cobalt particlesprepared by metal atom reduction [J].Appl. Phys., 1990, 67: 4502-4504.
    [9] HENGLEIN A. Small-Particle Research: Physicochemical Properties of ExtremelySmall Colloidal Metal and Semiconductor Particles [J].Chem. Rev., 1989, 89:1861-1873.
    [10] KLABUNDE K J, STARK J, KOPER O, et al. Nanocrystals as StoichiometricReagents with Unique Surface Chemistry [J].J. Phys. Chem., 1996, 100:12142-12153.
    [11] ZHU Y, BIRRINGER R, HERV U, et al. X–ray diffraction studies of the structureof nanometer-sized crystalline materials [J].Phys. Rev., 1987, 35: 9085-9090.
    [12] LEON R, PETROFF P M, LEONARD D, et al. Spatially Resolved VisibleLuminescence of Self-Assembled Semiconductor Quantum Dots [J].Science,1995, 267: 1966-1968.
    [13] BALL P, GARWIN L. Science at the atomic scale [J].Nature, 1992, 355:761-766.
    [14] LEGGET A J, CHAKRAVARTY S, et al. Dynamics of the dissipative twostatesystem [J].Rev. Mod. Phys., 1987, 59: 1-85.
    [15] SHINGU P H, HUANG B, NISHITANI S R, et al. Nanometer order crystallinestructures of Al-Fe alloys produced by mechanical alloying [J].Trans. Jap. Inst.Met. (suppl.), 1988, 29: 3.
    [16] RABENAU A. The role of hydrothermal synthesis in preparative chemistry[J].Angewandte Chemie International Edition in English, 1985, 24: 1026-1040.
    [17] JIANG X, XIE Y, LU J, et al. Oleate vesicle template route to silver nanowires[J].J. mater. Chem., 2001, 11(7): 1775-1777.
    [18] GLEITER H. Nanocrystalline materials [J].Progress in Materials Science, 1989,33(4): 223-315.
    [19] PACHECOMALAGON G, GARCIABORQUEZ A, COSTER D, et al.TiO2–Al2O3nanocomposites [J].J. Mater. Rec. 1995, 10(5): 1264-1269.
    [20] DONG X T, HONG G Y, YU D C, et al. Synthesis and Properties of CeriumOxide Nanometer Powders by Pyrolysis of Amorphous Citrate [J].J. Mater. Sci.Technol., 1997, 13(2): 113-116.
    [21] NI J F, ZHOU H H, CHEN J T, et al. LiFePO4doped with ions prepared bycoprecipitation method et al [J].Material Letters, 2005, 59(18): 2361-2365.
    [22] SUYAMA Y, KATO A. Effect of Additives on the Formation of Ti02Particles byVapor Phase Reaction [J].Journal of the American Ceramic Society, 1985, 68(6):154.
    [23] HALPERIN W P. Quantum size effects in metal particles [J].Review of MordernPhysics, 1986, 58: 532-543.
    [24] BALL P, GARWIN L. Science at the atomic scale [J].Nature, 1992, 355:761-764.
    [25] FELDHEIM D L, KEATING C D. Self-assembly of single electron transistorsand related devices [J].Chemical Society Reviews, 1998, 27: 1-12.
    [26] ZHANG Z, CUI Z, CHEN K. Catalytic Functions of Metal Nanoparticles onPolymerization of Acetylene Metals [J].Journal OF Materials Science AndTechnology, 1996, 12: 75-77.
    [27] Coldea R., et al. Quantum Criticality in an Ising Chain: Experimental Evidencefor Emergent E8 Symmetry [J].Science, 2010. 327(5962): 177-180.
    [28] KAN AKINORI, et al. Crystal structural refinement of corundum-structuredA4M2O9(A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics byhigh-temperature X-ray powder diffraction [J].Journal Of The EuropeanCeramic Society, 2007. 27(8–9): 2977-2981.
    [29] SRIVASTAVA A. M., J. F. ACKERMAN, AND W. W. BEERS. On theLuminescence of Ba5M4O15(M=Ta5+, Nb5+) [J].Journal Of Solid StateChemistry, 1997. 134(1): 187-191.
    [30] FANG TE HUA, et al. Luminescent and structural properties of MgNb2O6nanocrystals [J].Current Opinion in Solid State and Materials Science, 2008.12(3-4): 51-54.
    [31] PULLAR R. C.. The Synthesis, Properties, and Applications of ColumbiteNiobates (M2+Nb2O6): A Critical Review [J].Journal of the American CeramicSociety, 2009. 92(3): 563-577.
    [32] HESS.H.D AND H.J.TRUMPOUR. Second occurrence of fersmite [J].Amer.Mineral, 44(6): 1-8.
    [33] XU TONGGUANG, XU ZHAO, AND YONGFA ZHU. Synthesis ofHexagonal BaTa2O6Nanorods and Influence of Defects on the PhotocatalyticActivity [J].The Journal of Physical Chemistry B, 2006. 110(51): p.25825-25832.
    [34] ZHOU YUANYUAN, et al. Combustion Synthesis and PhotoluminescenceProperties of YNbO4-Based Nanophosphors [J].The Journal of PhysicalChemistry C, 2008. 112 (50): p. 19901-19907.
    [35] WU JIAGANG, et al. Effects of K content on the dielectric, piezoelectric, andferroelectric properties of 0.95(KxNa1-x)NbO3- 0.05LiSbO3lead-free ceramics[J].Journal Of Applied Physics, 2008. 103 (2): p. 024102-4.
    [36] XIAO XIUZHEN AND BING YAN. Chemical co-precipitation synthesis andphotoluminescence of Eu3+or Dy3+doped Zn3Nb2O8microcrystallinephosphors from hybrid precursors [J].Materials Science and Engineering: B,2007. 136(2-3): p. 154-158.
    [37] XIAO XIUZHEN AND BING YAN. Synthesis and luminescent properties ofnovel RENbO4:Ln3+(RE= Y, Gd, Lu; Ln=Eu, Tb) micro-crystalline phosphors[J].Journal Of Non-crystalline Solids, 2005. 351(46–48): p. 3634-3639.
    [48] FU ZHI-FEN, et al. Low-temperature synthesis of Mg4Nb2O9nanopowders byhigh-energy ball-milling method [J].Journal Of Alloys and Compounds, 2010.493(1-2): p. 441-444.
    [39] SUN D. C., S. SENZ, and D. HESSE. Topotaxial formation of Mg4Ta2O9andMgTa2O6thin films by vapour-solid reactions on MgO (001) crystals[J].Journal Of The European Ceramic Society, 2004. 24(8): p. 2453-2463.
    [40] MISEKI YUGO, HIDEKI KATO, and AKIHIKO KUDO. Water splitting intoH2and O2over niobate and titanate photocatalysts with (111) plane-typelayered perovskite structure [J].Energy & Environmental Science, 2009. 2(3).
    [41] MUKHERJI ANIRUDDH, et al. Nitrogen Doped Sr2Ta2O7Coupled withGraphene Sheets as Photocatalysts for Increased Photocatalytic HydrogenProduction [J].ACS Nano, 2011. 5(5): p. 3483-3492.
    [42] BALLMAN, A. A, S. P. S. PORTO, and A. YARIV. A new laser host crystal[J]. Appl Phys, 1963 34(3): 3155-3156.
    [43] CHENG, Y., et al. Spectroscopic properties of Nd3+:CaNb2O6crystal[J].Applied Physics B: Lasers and Optics, 2009. 96(1): 43-50.
    [44] YU-JEN HSIAO, CHIEN-WEI LIU, BAU-TONG DAI, et al. Sol–gel synthesisand the luminescent properties of CaNb2O6phosphor powders [J].J. AlloysCompd, 2009, 475 : 698–701.
    [45] IN-SUN CHO, SHIN TAE BAE, DONG KYUN YIM, DONG WAN KIM, andKUG SUN HONG. Preparation, Characterization, and Photocatalytic Propertiesof CaNb2O6Nanoparticles [J].Am. Ceram. Soc, 2009, 92 (2): 506–510.
    [46] YINGWEI ZHANG, CHAO LIU, GUANGSHENG PANG, et al. HydrothermalSynthesis of a CaNb2O6Hierarchical Micro/Nanostructure and Its EnhancedPhotocatalytic Activity [J]. Eur. J. Inorg. Chem. 2010, 1275–1282.
    [47] FRANZPETER EMMENEGGER. Preparation of single crystals of CaNb2O6bychemical transport [J].J. Cryst. Growth. 1968 ,2: 109–110.
    [48] JONN. P. CURMMINGS and STANLEY H. SIMONSEN. The crystal structureof calcium niobate (CaNb2O6) [J].The American mineralogist,2009,55:91-97.
    [49] OISHI S, NAGAI Y, ISHIZAWA N. Flux growth of CaNb2O6crystals [J].nipponkagaku kaishi,1998, 9: 598-601.
    [50] R. DE ALMEIDA SILVA, A.S.S. DE CAMARGO, C. CUSATIS, et al. Growthand characterization of columbite CaNb2O6high quality single crystal fiber [J].J.Cryst. Growth, 2004, 262: 246–250.
    [51] IN-SUN CHO, SHIN TAE BAE, DONG HOE KIM et al. Effects of crystal andelectronic structures of ANb2O6(A=Ca, Sr, Ba) metaniobate compounds on theirphotocatalytic H2 evolution from pure water [J].International Journal ofHydrogen Energy, 2010 35(11): 12954–12960
    [52] R. L. MOREIRA AND N. G. TEIXEIRA. Polarized Micro-Raman Scattering ofCaNb2O6Single Crystal Fibers Obtained by Laser Heated Pedestal Growth[J].Cryst. Growth Des, 2010, 10 (4): 1569–1573.
    [53] IN-SUN CHO, DONG WOOK KIM, CHIN MOO CHO, et al. Synthesis,characterization and photocatalytic properties of CaNb2O6with ellipsoid-likeplate morphology [J].Solid State Sciences 2010,12: 982–988.
    [54] HYO-JONG LEE, IN-TAE KIM AND KUG SUN HONG. Dielectric propertiesof AB2O6compounds at microwave frequencies (A= Ca, Mg, Mn, Co, Ni, Zn,and B= Nb, Ta) [J].Journal of applied physics part 2,1997,36: 1318-1320.
    [55] N. G. TEIXEIRA and R. L. MOREIRA. Micro Far-Infrared Reflectivity ofCaNb2O6Single Crystal Fibers Grown by the Laser-Heated Pedestal GrowthTechnique [J].Growth Des, 2011, 11 (8):3472–3478.
    [56] YINGWEI ZHANG, CHAO LIU, GUANGSHENG PANG, et al. HydrothermalSynthesis of a CaNb2O6Hierarchical Micro/Nanostructure and Its EnhancedPhotocatalytic Activity [J].Eur. J. Inorg. Chem. 2010: 1275–1282.
    [57] KAGATA H,INOUE T,KATO J,et al. Low-fire bismuth-based dielectric ceramicsfor microwave use [J].Jpn J Appl Phys,Part 1, 1992, 31(9B): 3152-3155.
    [58] KAGATA H, INOUE T, KAT O J, et al. Low-fire bismuth based dielect ricceramics for microwave use [J]. Jpn J Appl Phys, 1992, 31: 3152-3155.
    [59] CHOIW, KIMKY. Effects of Nd2O3on the microw ave dielectric propert ies ofBiNbO4ceramics [J].J Mat er Res, 1998, 13: 2945-2949.
    [60] H UANGCL, WENG M H, WU C C. The microw ave dielectric properties andthe microst ructures of La2O3modified BiNbO4ceramics [J].Jpn J Appl Phys,2000, 39: 3506-3510.
    [61] TZOU W C, YANG C F, CHEN Y C, et al. Improvem ents in the sintering andmicrowave properties of BiNbO4microwavece ramics by V2O5addit ion [J].JEur Ceram Soc, 2000, 20: 991-996.
    [62] NING WANG, MEI-YU ZHAO,ZHI-WEN YIN, WEI LI. Low-temperaturesynthesis ofβ-BiNbO4powderby citratesol–gel method [J].MaterialsLetters,2003,57: 4009–4013.
    [63]周迪.新型铋基低温烧结微波介质陶瓷研究[D].西安:西安交通大学,2009.
    [64] Ayyub P, Multani MS, Palkar VR, et al. Vibrational spectroscopic study offerroelectric SbNbO4, antiferroelectric BiNbO4, and their solid-solutions[J].Physical Review B, 1986, 34 (11): 8137-8140.
    [65] AURIVILLIUS B. X-Ray Investigations on BiNbO4, BiTaO4and BiSbO4[J].Arkiv for Kemi, 1951, 3(2-3): 153-161.
    [66] ROTH RS, WARING JL. Phase equilibrium relations in binary system bimuthsesquioxide-niobium pentoxide [J].Journal of Research of the National Bureau ofStandards Section a-Physics and Chemistry, 1962, 66 (6): 451-463.
    [67] ROTH RS, WARING JL. Synthesis and stability of bismutotantalite,stibiotantalite and chemically similar ABO4compounds [J].Am Mineral, 1963,48(11-2): 1348-1356.
    [68] A.W. SLEIGHT, J.L. GILLSON, P.E. BIERSTEDT. High-temperaturesuperconductivity in the BaPb1-xBixO3systems [J].Solid State Communications,1975, 1(11): 27-28
    [69] PUSHAN AYYUB, M. S. MULTANI, V. R. PALKAR, and R.VIJAYARAGHAVAN. Vibrational spectroscopic study of ferroelectric SbNbO4,antiferroelectric BiNbO4, and their solid solutions [J].Phys. Rev. B, 1986, 34:8137-8140.
    [70] VALANT M, SUVOROV D. Chemical compatibility between silver electrodesand low-firing binary-oxide compounds: conceptual study [J].J Am Ceram Soc,2000, 83(11): 2721-2729.
    [71]王宁,李蔚,赵梅瑜,殷之文.纳米β-BiNbO4粉体的低温合成[J].硅酸盐学报,2003,31(7): 625-628.
    [72] NING WANG, MEI-YU ZHAO,ZHI-WEN YIN, WEI LI. Low-temperaturesynthesis ofβ-BiNbO4powderby citratesol–gel method [J].MaterialsLetters,2003,57: 4009–4013.
    [73] B.MUKTHA, J. DARRIET, GIRIDHARMADRAS, T.N.GURUROW. Crystalstructures and photocatalysis of the triclinic polymorphs of BiNbO4andBiTaO4[J].Journal of Solid State Chemistry, 2006, 179: 3919–3925.
    [74] SCOTT S. DUNKLE AND KENNETH S. SUSLICK. Photodegradation ofBiNbO4Powder during Photocatalytic Reactions [J].J. Phys. Chem. C, 2009,113: 10341–10345
    [75]邢精成,卞建江,王小军,黄富强,赵景泰. BiNbO4的光催化性能研究[J].功能材料,2006, 38(4): 565-672.
    [76] J. NISAR, B. C. WANG, B. PATHAK, T. W. KANG, and R. AHUJA. Mo-andN-doped BiNbO4for photocatalysis applications [J].Applied Physics Letters,2011, 99: 051909(1-3)
    [77] AI-DONG LI, HAI-FA ZHAI, JI-ZHOU KONG and DI WU. Ferroelectric andPhotocatalytical Properties of Ta-based and Nb-based Oxide Ceramics andPowders from Environmentally Friendly Water-soluble Tantalum and NiobiumPrecursors [J].Materials Science Forum, 2010, 654-656: 2029-2032.
    [78] Ruh Ullah, Ha Ming Ang, Moses O. Tadé, ShaobinWang. Synthesis of dopedBiNbO4photocatalysts for removal of gaseous volatile organic compounds withartificial sunlight [J].Chemical Engineering Journal ,2012, 185–186: 328-336.
    [79] KEVE ET, SKAPSKI AC. Structure of triclinic BiNbO4and BiTaO4[J]. ChemCommun, 1967, (6): 281-283.
    [80] Y. S. YU , H. C. LEE , H. K. KIM , S. G. HAN , J. H. LEE , J.Y. SONG , G. I.LEE and M. S. JANG. The crystal growth of BiNbO4[J].Ferroelecrrics, 1990,107: 225-228.
    [81] SUBRAMANIAN MA, CALABRESE JC. Crystal-structure of thelow-temperature form of bismuth niobiumoxide [alpha-BiNbO4] [J].Mater ResBull, 1993, 28 (6): 523-529.
    [82] ZHILI ZHU, GUO JUAN, JIA YU,et al. Electronic structure and evolution ofspin state in YCoO3[J].Physica B, 405,359–362 (2010).
    [83] APURVA MEHTA, R. BERLINER AND ROBERT W. SMITH. The Structureof Yttrium Cobaltate from Neutron Diffraction [J].Journal of Solid StateChemisiry, 130, 192 (1997).
    [84]王广建,秦永宁,马智,王永成.钙钛矿型复合氧化物材料[J].化学通报.2005
    [85] IAN M. REANEY, ENRICO L. COLLA AND NAVA SETTER. Dielectric andStructural Characteristics of Ba- and Sr-based Complex Perovskites as aFunction of Tolerance Factor [J].Jpn. J. Appl. Phys. 33, 3984 (1994).
    [86] G. DEMAZEAU, M. POUCHARD AND P. HAGENMUüLLER. Sur denouveaux composés oxygénés du cobalt +III dérivés de la perovskite [J].SolidState Chem. 1974, 202(9).
    [87] G. THORNTON, F. C. MORRISON, S PARTINGTONT, B. C. TOFIELD and D.E. WILLIAMS. The rare earth cobaltates: localised or collective electronbehaviour? [J].J. Phys. C: Solid State Phys. 21 (1988): 2871-2880.
    [88] APURVA MEHTA, R. BERLINER and ROBERT W. SMITH. The Structure ofYttrium Cobaltate from Neutron Diffraction [J].Journal of Solid State Chemisiry,130, 192 (1997).
    [89] O.S. BUASSI-MONROY, C.C. LUHRS, et al. Synthesis of crystallineYCoO3perovskite via sol–gel method [J].Materials Letters. 2004, 58: 716.
    [90] K. KNíEK, Z. JIRáK, J. HEJTMáNEK, et al. Structure and physical propertiesof YCoO3at temperatures up to 1000 K [J].Phys. Rev. B, 2006, 73, 214443.
    [91] A. FORT, M.MUGNAINI, I. PASQUINI, S. ROCCHI, V.VIGNOLI, R.SPINICCI. Characterization of YCoO3film used for CO gas detection[J],Chemical, Engineering Transactions, 2010, 23: 153-158,.
    [92] SANDRA DIMITROVSKA-LAZOVA, VALENTIN MIR ESKIDANIELAKOVACHEVA and SLOBOTKAALEKSOVSKA. Solutioncombustion synthesis of YCoO3and investigation of its catalytic properties bycyclic voltammetery [J].J Solid State Electrochem, 2012 16: 219–225.
    [93] PULLAR, R.C., The Synthesis, Properties, and Applications of ColumbiteNiobates (M2+Nb2O6): A Critical Review [J].Journal Of The American CeramicSociety, 2009. 92(3): p. 563-577.
    [94] YAO, B., et al. Crystal growth and laser performance of neodymium-dopedscandium orthovanadate [J].Journal of Crystal Growth, 2010. 312(5): p. 720-723.
    [95]周媛媛.铌酸盐纳米发光材料的制备与表征[D].济南:山东大学材料学院,2008.
    [96] SHERLOCK, R.J., T.J. GLYNN, G. WALKER, G.F. IMBUSCH, et al.Spectroscopic investigations of Ni2+in MgNb2O6and ZnNb2O6 [J].Journal ofLuminescence, 1997. 72-74: p. 268-269.
    [97] LIANG LI, GUANLIN FENG, DEJUNWANG, HANGYANG, ZHONGMINGAO, BENXIAN LI, DAPENG XU, ZHANHUI DING and XIAOYANG LIU.Optical floating zone method growth and photoluminescence property ofMgNb2O6crystal [J].J Alloys Compd, 2011, 509: 263-266
    [98] M.A.KOROTIN, S.Y.EZHOV, I.V.SOLOVYEV, V.I.ANISIMOV, D.I.KHOMSKII, and G. A. SAWATZKY. Direct measurement of ferromagneticordering in biaxially strained LaCoO3thin films [J].Phys. Rev. B 1996, 54: 5309.
    [1]陈春荣,赵新乐.晶体物理性质与检测[M].北京:北京理工大学出版社,1995.
    [2]黄昆.固态物理学[M].北京:高等教育出版社,2003.
    [3] KECK.P.H., M. J. E. GOLAY. Crystallization of Silieon from a Floating LiquidZone [J].Physical Review. 1953.89(6): P.1297.
    [1] ZHU, J., et al. Optical absorption properties of doped lithium niobate crystals[J].Journal of Physics: Condensed Matter, 1992. 4(11): 2977.
    [2] PULLAR, R.C. The Synthesis, Properties, and Applications of ColumbiteNiobates (M2+Nb2O6): A Critical Review [J].Journal Of The American CeramicSociety, 2009. 92(3): 563-577.
    [3] A.M. CAO, J.S. HU, H.P. LIANG, L.J. WAN. Self-Assembled VanadiumPentoxide (V2O5) Hollow Microspheres from Nanorods and Their Application inLithium-Ion Batteries [J].Angew. Chem. Int. Ed. 44 (2005): 4391–4395
    [4] N.L.ROSI, C.A.MIRKIN. Nanostructures in Biodiagnostics [J].Chem. Rev. 2005,105: 1547-1562
    [5] F. FAVIER, E.C. WALTER, M.P. ZACH,et al. Hydrogen Sensors and Switchesfrom Electrodeposited Palladium Mesowire Arrays [J].Science, 293(2001):2227-2231.
    [6] M.R. HOFFMANN, S.T.MARTIN,W. CHOI, D.W. BAHNEMANN.Environmental Applications of Semiconductor Photocatalysis [J].Chem. Rev. 95(1995): 69-96.
    [7] T. WU, T. LIN, J. ZHAO, H. HIDAKA, N. SERPONE. TiO2-AssistedPhotodegradation of Dyes. 9. Photooxidation of a Squarylium Cyanine Dye inAqueous Dispersions under Visible Light Irradiation [J].Environ. Sci. Technol.1999, 33 (9): p 1379–1387.
    [8]程艳,辛征,徐晓东,徐军,周圣明.CaNb2O6Nd:晶体的生长及光谱性质[J].中国激光.2009,36(6): 1523-1527.
    [9] HESS.H.D AND H.J.TRUMPOUR. Second occurrence of fersmite [J].Amer.Mineral, 44(6): 1-8.
    [10] BALLMAN, A. A, S. P. S. PORTO, and A. YARIV. A new laser host crystal[J].Appl Phys.1963 34(3): 3155-3156.
    [11] YU-JEN HSIAO, CHIEN-WEI LIU, BAU-TONG DAI, et al. Sol–gel synthesisand the luminescent properties of CaNb2O6phosphor powders [J]. J. AlloysCompd, 2009, 475: 698–701.
    [12] IN-SUN CHO, SHIN TAE BAE, DONG KYUN YIM, DONG WAN KIM, ANDKUG SUN HONG. Preparation, Characterization, and Photocatalytic Propertiesof CaNb2O6Nanoparticles [J].Am. Ceram. Soc, 2009, 92 (2): 506–510.
    [13] YINGWEI ZHANG, CHAO LIU, GUANGSHENG PANG, et al. HydrothermalSynthesis of a CaNb2O6Hierarchical Micro/Nanostructure and Its EnhancedPhotocatalytic Activity [J].Eur. J. Inorg. Chem. 2010, 1275–1282.
    [14] FRANZPETER EMMENEGGER. Preparation of single crystals of CaNb2O6bychemical transport [J].J. Cryst. Growth. 1968 ,2: 109–110.
    [15] OISHI S, NAGAI Y, ISHIZAWA N. Flux Growth Of CaNb2O6Crystals[J].Nippon kagaku kaishi. 1998, 9: 598-601.
    [16] R. DE ALMEIDA SILVA, A.S.S. DE CAMARGO, C. CUSATIS, et al. Growthand characterization of columbite CaNb2O6high quality single crystal fiber [J].J.Cryst. Growth. 2004,262 : 246–250.
    [17] ZHOU, Y., Z. QIU, M. L , Q. MA, et al. Photoluminescence Characteristics ofPure and Dy-Doped ZnNb2O6Nanoparticles Prepared by a Combustion Method[J].The Journal of Physical Chemistry C, 2007. 111(28): 10190-10193.
    [18] PFANN, W.G. Principles of zone melting [J]. Trans. Aime, 1952.194: 747.
    [19] KECK, P.H., M.J.E. GOLAY. Crystallization of Silicon from a Floating LiquidZone [J].Physical Review, 1953. 89(6): 1297.
    [20] PLESS, J.D., N. ERDMAN, D. KO, L.D. MARKS, et al. Single-crystal growthof magnesium orthovanadate, Mg3(VO4)2, by the optical floating zone technique[J].Crystal Growth & Design, 2003. 3(4): 615-619.
    [21] YOON, S.G., S.W. KIM, M. HIRANO, D.H. YOON, et al. Pore-free 12CaOcenter dot 7Al(2)O(3) single-crystal growth by melt state control using thefloating zone method [J].Crystal Growth & Design, 2008. 8(4): 1271-1275.
    [22] KOOHPAYEH, S.M., D. FORT, J.S. ABELL. The optical floating zone technique:A review of experimental procedures with special reference to oxides[J].Progress in Crystal Growth and Characterization of Materials, 2008. 54(3-4):121-137.
    [23] YOON, S.G., S.W. KIM, M. HIRANO, D.H. YOON, et al. Pore-Free12CaO7-Al2O3Single-Crystal Growth by Melt State Control using the FloatingZone Method [J].Crystal Growth & Design, 2008. 8(4): 1271-1275.
    [24] XING-YUAN, G.,et al. Preparation and Raman Spectrum of Rutile SingleCrystals Using Floating Zone Method [J].Chinese Physics Letters, 2006. 23(6):1645.
    [25] KOOHPAYEH, S.M., D. FORT, A. BRADSHAW, J.S. ABELL. Thermalcharacterization of an optical floating zone furnace: A direct link withcontrollable growth parameters [J].Journal of Crystal Growth, 2009. 311(8):2513-2518.
    [26] KOOHPAYEH, S.M., D. FORT, A.I. BEVAN, A.J. WILLIAMS, et al. Study offerromagnetism in Co-doped rutile powders and float-zone grown single crystals[J].Journal of Magnetism and Magnetic Materials, 2008. 320(6): 887-894.
    [27] KOOHPAYEH, S.M., D. FORT, J.S. ABELL. Some observations on the growthof rutile single crystals using the optical floating zone method [J].Journal ofCrystal Growth, 2005. 282(1-2): 190-198.
    [28] KOOHPAYEH, S.M., J.S. ABELL, K.K. BAMZAI, A.I. BEVAN, et al. Theinfluence of growth rate on the microstructural and magnetic properties offloat-zone grown ErFeO3crystals [J].Journal of Magnetism and MagneticMaterials, 2007. 309(1): 119-125.
    [29] HIGUCHI, M., K. KODAIRA, Y. URATA, S. WADA, et al. Float zone growthand spectroscopic characterization of Tm : GdVO4single crystals [J].Journal OfCrystal Growth, 2004. 265(3-4): 487-493.
    [30] YU, P., A. WU, L. SU, X. GUO, et al. Crystal growth and spectroscopicproperties of MoO3and WO3 doped Bi4Ge3O12by optical floating zone method[J].Journal Of Alloys and Compounds, 2010. 503(2): 380-383.
    [31] LUCAS, P., W.T. PETUSKEY. Phase Equilibria in the Lead–Magnesium–Niobium–Oxygen System at 1000°C [J].Journal Of The American CeramicSociety, 2001. 84(9): 2150-2152.
    [32] HAGHIGHIRAD, A.A., F. RITTER, W. ASSMUS. Crystal Growth of A2V2O7(A = Y, Er, and Dy) Pyrochlores using High Pressure [J].Crystal Growth &Design, 2008. 8(6): 1961-1965.
    [33] CHANG, F., S. YUAN, Y. WANG, S. ZHAN, et al. Growth and surfacemorphology of ErFeO3single crystal [J].Journal Of Crystal Growth. In Press,Corrected Proof.
    [34] FU, D., M. ITOH, and S.-Y. KOSHIHARA. Crystal growth and piezoelectricityof BaTiO3--CaTiO3solid solution [J].Applied Physics Letters, 2008. 93(1):012904-3.
    [35] OGAWA, T., et al. Efficient laser performance of N: dGdVO4crystals grown bythe floating zone method [J].Opt. Lett., 2003. 28(23): 2333-2335.
    [36] YOON, S.G., et al. Pore-Free 12CaO 7Al2O3Single-Crystal Growth by MeltState Control using the Floating Zone Method [J].Crystal Growth & Design,2008. 8(4): 1271-1275.
    [37] E. HUSSON, Y. REPELIN, N.Q. DAO, et al. Etude par spectrophotométriesd'absorption infrarouge et de diffusion Raman des niobates de structurecolumbite [J].Spectrochim. Acta A 1977: 995.
    [38] E. HUSSON, N.Q. DAO, C. R. ACAD. Sci. Paris Sér [J].C 1974,279: 141.
    [39] E. HUSSON, Y. REPELIN, N.Q. DAO, et al. Normal coordinate analysis forCaNb2O6of columbite structure [J].J. Chem. Phys. 1977,66 (11): 5173.
    [40] KOOHPAYEH, S.M., D. FORT, A.I. BEVAN, A.J. WILLIAMS, et al. Study offerromagnetism in Co-doped rutile powders and float-zone grown single crystals[J].Journal of Magnetism and Magnetic Materials, 2008. 320(6): 887-894.
    [41]李名復.半导体物理学[M]. 1991,北京:科学出版社.
    [42] EL-KORASHY A and ABU EL-FADL. Temperature dependence of the opticalband gap of nearly perfect K2ZnCl4single crystals in the ferroelectric phase[J].A Physica B: Condens. Matter. 271,205. 1999.
    [43] IN-SUN CHO, DONG WOOK KIM, CHIN MOO CHO, et al. Synthesis,characterization and photocatalytic properties of CaNb2O6with ellipsoid-likeplate morphology [J].Solid State Sciences 2010,12: 982–988.
    [44] IN-SUN CHO, SHIN TAE BAE, DONG HOE KIM, et al. Effects of crystal andelectronic structures of ANb2O6(A=Ca, Sr, Ba) metaniobate compounds on theirphotocatalytic H2evolution from pure water [J].International Journal ofHydrogen Energy, 2010 35(11): 12954–12960
    [45] M. E. ARROYO Y DE DOMPABLO, YUEH-LIN LEE and D. MORGAN. FirstPrinciples Investigation of Oxygen Vacancies in Columbite MNb2O6(M = Mn,Fe, Co, Ni, Cu) [J].Chem. Mater. 2010, 22, 906–913.
    [46] GAFFAR, M.A., A. ABU EL-FADL, S. BIN ANOOZ. Optical absorption spectraand related parameters of ammonium zinc chloride crystal in theantiferroelectric and commensurate phases [J].Crystal Research and Technology,2003. 38(9): 798-810.
    [47] ARORA, S.K., B. CHUDASAMA. Flux Growth and Optoelectronic Study ofPbWO4Single Crystals [J].Crystal Growth & Design, 2007. 7(2): 296-299.
    [48] FOUAD, S.S., H.M. TALAAT, S.M. YOUSSEF, A. EL-KORASHY, et al.Substrate and Compositional Dependence of the Optical Gap in GexSe100 xThinFilms [J].physica status solidi (b), 1995. 187(2): K51-K55.
    [49] WEMPLE, S.H., M. DIDOMENICO. Behavior of the Electronic DielectricConstant in Covalent and Ionic Materials [J].Physical Review B, 1971. 3(4):1338.
    [50] ELKORASHY, A.M. Optical Constants of Tin Sulphide Single CrystalsMeasured by the Interference Method [J].physica status solidi (b), 1990. 159(2):903-915.
    [51] WEMPLE, S.H., M. DIDOMENICO. Optical Dispersion and the Structure ofSolids [J].Physical Review Letters, 1969. 23(20): p. 1156.
    [52]方容川.固体光谱学[M]. 2001:中国科学技术大学出版社.
    [53]沈学础.半导体光谱与光谱性质[M]. 2002,北京:科学出版社.
    [54] BLASSE, G. The luminescence of closed-shell transition-metal complexes. Newdevelopments [J].Structure & Bonding 1980. 42: p. 1-41.
    [55] MACALIK, L., M. MACZKA, J. HANUZA, P. GODLEWSKA, et al.Spectroscopic properties of the CaNb2O6:Pr3+single crystal [J].Journal OfAlloys and Compounds, 2008. 451(1-2): p. 232-235.
    [56] WACHTEL, A. Self-Activated Luminescence of M2+Niobates and Tantalates[J].Journal Of The Electrochemical Society, 1964. 111(5): p. 534-538.
    [57] FANG, T.H., Y.J. HSIAO, Y.S. CHANG, L.W. JI, et al. Luminescent andstructural properties of MgNb2O6nanocrystals [J].Current Opinion in Solid Stateand Materials Science, 2008. 12(3-4): p. 51-54.
    [58] ZHOU, Y., Z. QIU, M. L , Q. MA, et al. Photoluminescence Characteristics ofPure and Dy-Doped ZnNb2O6Nanoparticles Prepared by a Combustion Method[J].Journal of Physical Chemistry C, 2007. 111(28): p. 10190-10193.
    [59] HSIAO, Y.J., Y.S. CHANG, G.J. CHEN, Y.H. CHANG. Synthesis and theluminescent properties of CdNb2O6oxides by sol-gel process [J].Journal OfAlloys and Compounds, 2009. 471(1-2): p. 259-262.
    [60] ZHANG, Z.H., X. WANG, J.B. XU, MULLERS, et al. Evidence of intrinsicferromagnetism in individual dilute magnetic semiconducting nanostructures[J].Nat Nano, 2009. 4(8): p. 523-527.
    [61] SRIVASTAVA, A.M., J.F. ACKERMAN, W.W. BEERS. On the Luminescence ofBa5M4O15(M=Ta5+, Nb5+) [J].Journal Of Solid State Chemistry, 1997. 134(1): p.187-191.
    [62] WACHTEL, A. Self-Activated Luminescence of M2+Niobates and Tantalates[J].Journal Of The Electrochemical Society, 1964. 111(5): p. 534-538.
    [1]姚尧,赵梅瑜,吴文骏,王依琳.合成工艺对BiNbO4微波介质陶瓷的影响[J].无机材料学报,1998,4(8):491-495.
    [2]张启龙,杨辉,魏文霖,邹佳丽,尤源.烧结助剂对BiNbO4陶瓷烧结特性及介电性能的影响[J].电子元件与材料,2004,2(2):7-9
    [3] HUANG C L, WENG M H. Liquid phase sintering of (Zr,Sn)TiO4microwavedielectric ceramics [J].Mater Res Bull, 2000, 35: 1881-1888.
    [4] HUANG C L, WENG M H, CHEN H L. Effect of additives on microstructuresand microwave dielectric properties of (Zr,Sn)TiO4ceramics [J].Mater Chem Phys,2001, 71: 17-22.
    [5] JEAN J H, LIN S C. Low- fired processing of ZrO2-SnO2-TiO2ceramics [J].J AmCeram Soc, 2000, 83(6):1417-1422.
    [6] KAGATA H, INOUET, KATOJ, et al. Low-f ire bismuth-based dielect ricceramics f or microw ave use [J].Jpn J Appl Phys, 1992, 31: 3152-3155.
    [7] CHOIW, KIMKY. Effect s of Nd2O3on the microw ave dielectric propert ies ofBiNbO4ceramics [ J].J Mat er Res, 1998, 13: 2945-2949.
    [8] HUANG C L, WENG M H, WU C C. The microw ave dielectric propert ies andthe microst ructures of La2O3-modified BiNbO4ceramics [J].Jpn J Appl Phys,2000, 39: 3506-3510.
    [9] TZOUWC, YANGCF, CHENYC, et al. Improvem entsin the sintering andmicrowave properties of BiNbO4microw avece ramics by V2O5addit ion [J].JEur Ceram Soc, 2000, 20: 991-996.
    [10] HIROSHI KAGATA, TATSUYA INOUE, JUNICHI KATO, et al. Low-firebismuth-based dielectric ceramics for microwave use [J].Jpn J Appl Phy, 1992,31(9B): 3512.
    [11] CHO SEO- YO NG, YOUN HY UK- JO ON, KIM DONG- W AN, et al. Interactio n of BiNbO4-based low - fir ing ceramicsw with silver electr odes [J].J AmCer am Soc, 1998, 81(11): 3038-3040.
    [12] YANG CHENG- FU. Impr ov ement of quality value and shift o f Sfva lue ofBiNbO4cer amics with addition of CuO- V2O5mix tur es [J].Jpn J Appl Phys,1999, 38( 12A) : 6797- 6800.
    [13]王宁,李蔚,赵梅瑜,殷之文.纳米β-BiNbO4粉体的低温合成[J].硅酸盐学报,2003,31(7): 625-628.
    [14]邢精成,卞建江,王小军,黄富强,赵景泰. BiNbO4的光催化性能研究[J].功能材料,2006, 38(4):565-672.
    [15] RUH ULLAH, HA MING ANG, MOSES O. TADé, SHAOBINWANG.Synthesis of doped BiNbO4photocatalysts for removal of gaseous volatileorganic compounds with artificial sunlight [J].Chemical EngineeringJournal ,2012,185–186: 328-336.
    [16] AURIVILLIUS B. X-Ray Investigations on BiNbO4, BiTaO4and BiSbO4[J].Arkiv for Kemi, 1951, 3(2-3): 153-161.
    [17] ROTH RS, WARING JL. Phase equilibrium relations in binary system bimuthsesquioxide-niobium pentoxide [J].Journal of Research of the National Bureau ofStandards Section a-Physics and Chemistry, 1962, 66 (6): 451-463.
    [18] ROTH RS, WARING JL. Synthesis and stability of bismutotantalite,stibiotantalite and chemically similar ABO4compounds [J].Am Mineral, 1963,48(11-2): 1348-1356.
    [19] SUBRAMANIAN MA, CALABRESE JC. Crystal-structure of thelow-temperature form of bismuth niobiumoxide [alpha-BiNbO4] [J].Mater ResBull, 1993, 28 (6): 523-529.
    [20] NING WANG, MEI-YU ZHAO,ZHI-WEN YIN, WEI LI. Low-temperaturesynthesis ofβ-BiNbO4powderby citratesol–gel method [J].MaterialsLetters,2003,57: 4009–4013.
    [21]周迪.新型铋基低温烧结微波介质陶瓷研究[D].西安:西安交通大学,2009.
    [22] AYYUB P, MULTANI MS, PALKAR VR, et al. Vibrational spectroscopic studyof ferroelectric SbNbO4, antiferroelectric BiNbO4, and their solid-solutions[J].Physical Review B, 1986, 34 (11): 8137-8140.
    [23] B.MUKTHA, J. DARRIET, GIRIDHARMADRAS, T.N.GURUROW. Crystalstructures and photocatalysis of the triclinic polymorphs of BiNbO4and BiTaO4[J].Journal of Solid State Chemistry, 2006, 179: 3919–3925.
    [24] SCOTT S. DUNKLE and KENNETH S. SUSLICK. Photodegradation ofBiNbO4Powder during Photocatalytic Reactions [J].J. Phys. Chem. C, 2009,113: 10341–10345
    [25] AI-DONG LI, HAI-FA ZHAI, JI-ZHOU KONG and DI WU. Ferroelectric andPhotocatalytical Properties of Ta-based and Nb-based Oxide Ceramics andPowders from Environmentally Friendly Water-soluble Tantalum and NiobiumPrecursors [J].Materials Science Forum, 2010, 654-656: 2029-2032.
    [26] KEVE ET, SKAPSKI AC. Crystal-structure of triclinic beta-BiNbO4[J].J SolidState Chem, 1973, 8(2): 159-165.
    [27] Y. S. YU , H. C. LEE , H. K. KIM , S. G. HAN , J. H. LEE , J.Y. SONG , G. I.LEE and M. S. JANG. The crystal growth of BiNbO4[J].Ferroelecrrics, 1990,107: 225-228.
    [28] M. A. SUBRAMANIAN and J. C. CALABRESE. Crystal structure of the lowtemperature form of bismuth niobium oxide [J].Mat. Res. Bull,1993,28: 523-529.
    [29]李名復.半导体物理学[M]. 1991,北京:科学出版社.
    [30] D. ZHOU, L-X. PANG, H. WANG, X. YAO. Phase composition and phasetransformation in Bi (Sb, Nb, Ta) O4system [J].Solid State Sciences, 2009,11:1894–1897.
    [31] DESNICA, D.I., M. KRANJCEC, B. CELUSTKA. Optical absorption edge andUrbach's rule in mixed single crystals of (GaxIn1-x)2Se3in the indium rich region[J].Journal Of Physics and Chemistry Of Solids, 1991. 52(8): p. 915-920.
    [32] ELKORASHY, A.M. Optical Constants of Tin Sulphide Single CrystalsMeasured by the Interference Method [J].physica status solidi (b), 1990. 159(2):p. 903-915.
    [33] SUN, E., R. ZHANG, Z. WANG, D. XU, et al. Optical interband transitions inrelaxor-based ferroelectric 0.93Pb(Zn1/3Nb2/3)O3--0.07PbTiO3single crystal[J].Journal Of Applied Physics, 2010. 107(11): p. 113532-3.
    [34]黄昆.固体物理学[M]北京:高等教育出版社.
    [35] ELKORASHY, A.M. Optical Constants of Tin Sulphide Single CrystalsMeasured by the Interference Method [J].physica status solidi (b), 1990. 159(2):903-915.
    [36] GAFFAR, M.A., A. ABU EL-FADL, S. BIN ANOOZ. Optical absorption spectraand related parameters of ammonium zinc chloride crystal in theantiferroelectric and commensurate phases [J].Crystal Research and Technology,2003. 38(9): 798-810.
    [37] ARORA, S.K., B. CHUDASAMA. Flux Growth and Optoelectronic Study ofPbWO4Single Crystals [J].Crystal Growth & Design, 2007. 7(2): 296-299.
    [38] FOUAD, S.S., H.M. TALAAT, S.M. YOUSSEF, A. EL-KORASHY, et al.Substrate and Compositional Dependence of the Optical Gap in GexSe100 xThinFilms [J].physica status solidi (b), 1995. 187(2): K51-K55.
    [39] WEMPLE, S.H., M. DIDOMENICO. Behavior of the Electronic DielectricConstant in Covalent and Ionic Materials [J].Physical Review B, 1971. 3(4):1338.
    [40] ELKORASHY, A.M. Optical Constants of Tin Sulphide Single CrystalsMeasured by the Interference Method [J].physica status solidi (b), 1990. 159(2):903-915.
    [41] BLASSE, G. The luminescence of closed-shell transition-metal complexes. Newdevelopments [J].Structure & Bonding 1980. 42: p. 1-41.
    [42]沈学础.半导体光谱与光谱性质[M]. 2002,北京:科学出版社.
    [43]李彬田一光. (Li, Ca, A)2SiO4:Eu, Bi发光体的合成和发光性能的研究(A=Al, Y, La, Gd) [J].无机化学学报[J].1991, 12 (4): 430-411.
    [44] MIZOGUCHI H, K AWAZOE H, HOSONO H. Charge transfer band observed inbismuth mixed-valence oxides, Bi1 xYxO1.5+δ(x=0.3) [J].Solid StateCommunications, 1997 ,104: 705-708.
    [45]王雪俊,夏海平. GeO2-Bi2O3-MOx( MOx= WO3, BaO)玻璃近红外超宽带发光的研究[J].物理学报,2007,56(5):2725-2730.
    [46]周时凤.超宽带光放大用新型发光材料的设计,制备和光学性能研究[D].杭州:浙江大学,2008.
    [47] YU-JEN HSIAO, CHIEN-WEI LIU, BAU-TONG DAI,et al. Sol–gel synthesisand the luminescent properties of CaNb2O6phosphor powders [J].J. AlloysCompd, 2009, 475: 698–701.
    [48] BLASSE, G. The luminescence of closed-shell transition-metal complexes. Newdevelopments [J].Luminescence and energy transfer, 1980, 42: 1-41
    [49]张志力,李永绣,唐群,黄惠珍,温战华,周浪. (L a, T b)N bO4的合成与发光特性[J].稀土,2002,4(8): 5 -8.
    [50]张雷,洪广言.一维结构中的发光特性[J].人工晶体学报, 1999, 28 (2): 204–209
    [51] H.IBACH and H.LüTH. Solid State Physics [M]. 1995, Berlin: Experiment.Springer-Verlag
    [1] Zhili Zhu, Guo Juan, Jia Yu, et al.Electronic structure and evolution of spin statein YCoO3[J].Physica B, 405:359–362 (2010).
    [2] APURVA MEHTA, R. BERLINER and ROBERT W. SMITH. The Structure ofYttrium Cobaltate from Neutron Diffraction [J].Journal of Solid State Chemisiry,130, 192 (1997).
    [3] IAN M. REANEY, ENRICO L. COLLA and NAVA SETTER. Dielectric andStructural Characteristics of Ba- and Sr-based Complex Perovskites as a Functionof Tolerance Factor [J].Jpn. J. Appl. Phys. 33, 3984 (1994).
    [4] S. IVANOVA , A. SENYSHYN , E. ZHECHEVA, et al. Effect of the synthesisroute on the microstructure and the reducibility of LaCoO3[J].Journal of Alloysand Compounds, 480, 279 (2009).
    [5] C. LEIGHTON, JOHN KERN and SUZANNE R. English, A high temperatureprobe operating in the variable temperature insert of a commercialsuperconducting magnet system [J].Rev. Sci. Instrum., 2002, 73(6): 2364.
    [6] J. BAIER, S. JODLAUK, M. KRIENER,et al. Spin-state transition andmetal-insulator transition in La1 xEuxCoO3[J].Phys. Rev. B,71, 014443 (2005).
    [7] V. G. JADHAO, R. M. SINGRU, G. RAMA RAO,et al. Effect of the rare earthion on the spin state equilibria in perovskite rare earth metal cobaltates.Yttriumtrioxocobaltate(III) and erbium trioxocobaltate(III) [J].J. Chem. Soc, 71:1885-1893 (1975).
    [8] SUZANNE R. ENGLISH, J. WU and C. LEIGHTON. Thermally excitedspin-disorder contribution to the resistivity of LaCoO3[J].Phys. Rev.B, 2002, 65:220407(R).
    [9] M.A.SE ARíS-RODRíGUEZ and J.B.GOODENOUGH. Effects of Sr doping onthe magnetic properties of SrxBa1 xCoO3[J].Solid State Chem. 1995, 116: 224.
    [10] M.A.KOROTIN,S.Y.EZHOV,I.V.SOLOVYEV,V. I. ANISIMOV, D. I.KHOMSKII and G. A. SAWATZKY. Direct measurement of ferromagneticordering in biaxially strained LaCoO3thin films [J].Phys. Rev. B 1996,54: 5309.
    [11]李小宝,邱发礼,吕绍洁.重稀土复合氧化物多孔板状催化剂用于氨氧化制硝酸的研究[J].催化学报,1990,11(6): 1990.
    [12] A. Fort, M. Mugnaini, I. Pasquini, S. Rocchi, V. Vignoli, R.Spinicci.Characterization of YCoO3film used for CO gas detection [J],Chemical,Engineering Transactions, 2010,23: 153-158,.
    [13] FORT, A.MUGNAINI, M.PASQUINI, I.et al. Development and characterizationof low power perovskite CO gas sensors. in: Proceedings Instrumentation andMeasurement Technology Conference (I2MTC) [C],Hangzhou, China,2011, pp.1-4.
    [14] G. DEMAZEAU, M. POUCHARD and P. HAGENMUüLLER Sur de nouveauxcomposés oxygénés du cobalt +III dérivés de la perovskite [J].Solid State Chem.1974, 202(9).
    [15] G. THORNTON, F. C. MORRISON, S. PARTINGTON, et al. The rare earthcobaltates: localised or collective electron behavior? [J].Phys. C, Solid StatePhys. 1988, 21: 2871.
    [16]O.S. BUASSI-MONROY, C.C. LUHRS, et al. Synthesis of crystallineYCoO3perovskite via sol–gel method [J].Materials Letters. 2004, 58: 716.
    [17] K. KNíEK, Z. JIRáK, J. HEJTMáNEK,et al. Structure and physical propertiesof YCoO3at temperatures up to 1000 K [J].Phys. Rev. B, 2006, 73, 214443.
    [18]陈松.湿法制备单分散Co3O4粉末的形貌和粒度控制研究[D].中国长沙:中南大学,2003
    [19] G. ORTEGA-ZARZOSA, C. ARAUJO-ANDRADE, M. E. COMPEáN-JASSO,et al. Cobalt Oxide/Silica Xerogels Powders: X-Ray Diffraction, Infrared andVisible Absorption Studies [J].Journal of Sol-Gel Science and Technolofy. 2002,24: 23.
    [20] M. YU, J. LIN, Z. WANG. Fabrication, Patterning. and Optical Properties ofNanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films viaSol Gel Soft Lithography [J].Mater. 2002, 14: 2224.
    [21] J.F. LI , H. LIAO, X.Y. WANG. Plasma spraying of nanostructured partiallyyttria stabilized zirconia powders [J].Thin Solid Films 2004, 460: 101.
    [22]宋更新.浮区法生长LaCoO3和TiO2单晶及它们的电磁特性研究[D].中国长春:吉林大学,2010
    [23]严密,彭晓领.磁学基础与磁性材料[M].杭州:浙江大学出版社,2006: 10-35.
    [24] K. KNíEK, Z. JIRáK, J. HEJTMáNEK,et al. Structural anomalies associatedwith the electronic and spintransitions in LnCoO3[J].Phys. J. B, 2005, 47:213–220.
    [25] M.A. SE ARíS-RODRíGUEZ and J.B. GOODENOUGH. LaCoO3Revisited[J].Solid State Chem. 1995, 116: 224.
    [26] J. B. GOODENOUGH. An interpretation of the magnetic properties of theperovskite-type mixed crystals La1 xSrxCoO3λ[J].J. Phys. Chem. Solids, 1958, 6:287.
    [27] S.T. LIU, Y. WU. and Y. Q. JIA. Spin and valence state equilibria of cobalt andmagnetic properties of LaCoO3[J].Journal of Alloys and Compounds. 200, 171(1993).
    [28] Harald Ibach, Hans Lüth [M], Solid state physics (Springer Verlag BerlinHeidelberg, 1995) p: 28-32.
    [29] MING CHEN, BENGT HALLSTEDT and LUDWIG J. GAUCKLER.Thermodynamic assessment of the Co-O system [J].Journal of Phase Equilibria.24, 212 ,(2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700