用户名: 密码: 验证码:
Pt催化剂上丙烷脱氢反应与结焦动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界对丙烯的需求量呈稳步增长的趋势,而丙烷催化脱氢是一个增产丙烯的有效途径。因此,对丙烷脱氢过程的动力学以及结焦过程等方面的研究具有十分重要的意义。就面向工业化应用而言,本文分别研究了工业化双金属PtSn催化剂上丙烷脱氢过程中的脱氢动力学、结焦动力学、烧焦动力学,以及催化剂上生成的焦的性质。这些研究有利于工业反应器的设计以及丙烯生产、催化剂烧焦再生过程的操作条件的优化、控制。就面向基础研究而言,本文则研究了单金属Pt催化剂上Pt颗粒粒径和Sn的添加对丙烷脱氢动力学以及结焦行为的影响,建立了丙烷脱氢过程中Pt催化剂结构与催化性能之间的关系;探索了借助微观动力学分析来建立动力学模型的可行性。这些研究则有助于更好地认识丙烷脱氢反应过程,从而有助于方便快速地建立更加可靠的动力学模型,同时还有助于高性能工业催化剂的设计、开发。
     本文首先建立了工业化的PtSn催化剂上的全面的丙烷脱氢动力学模型,该模型包括脱氢模型、裂解模型、结焦模型以及失活模型。通过假设不同的反应机理和速率控制步骤,得到数个脱氢模型,并从拟合精度和参数个数两方面考虑,辨别出最优的模型。此外,通过数学推导,本文还将催化剂失活函数与结焦速率相关联。该处理方法在基于催化剂失活机理的同时,还避免了在线测量催化剂结焦量的难题。
     丙烷脱氢过程中,催化剂失活主要是由结焦引起。因此,有效避免催化剂快速失活和充分认识焦的性质分别对反应和催化剂再生过程有重要的现实意义。为此,本文在工业化的PtSn催化剂上研究了反应条件对结焦速率以及焦的性质的影响。研究发现,PtSn催化剂上生成了两种形式的焦,分别为金属上的焦和载体上的焦。丙烯浓度的增加导致焦的石墨化程度的升高;氢气浓度的增加导致焦的石墨化程度的降低。催化剂金属上结焦反应对丙烷的反应级数是1.7,而对丙烯和氢气的反应级数均是零级;载体上的结焦反应对丙烷的反应级数是1.4级,对丙烯的反应级数是1.0级,而对氢气的反应级数则为-0.7级。此外,根据动力学分析,本文得到了催化剂上的结焦机理。并分别建立了金属上和载体上的结焦动力学模型。
     烧焦动力学对催化剂烧焦操作条件的优化具有十分重要的意义。本文采用程序升温氧化的方法对PtSn催化剂的烧焦动力学进行了研究,分别建立了金属上的焦和载体上的焦的燃烧动力学。该动力学较好地预测了不同条件下的实验结果。两种焦的燃烧活化能分别约为86 kJ/mol和218 kJ/mol。
     为加深对Pt催化剂上丙烷脱氢过程的理解,以便建立更加全面、可靠的动力学模型,本文从单金属Pt催化剂出发,研究了金属Pt颗粒粒径对催化剂脱氢动力学以及结焦性能的影响。研究发现,丙烷脱氢是结构敏感的反应,丙烷的反应速率随着催化剂金属Pt颗粒粒径的增大而减小,但丙烯选择性则随着金属Pt颗粒粒径的增大而增大。当催化剂Pt颗粒粒径为4.6nm时,丙烯生成速率最高。对所有催化剂而言,丙烷的表观反应级数始终为一级,而氢气的表观反应级数则随着Pt颗粒粒径的增大逐渐从零级减小至-0.51级。同时脱氢反应的表观活化能随着Pt颗粒粒径的增大而增大。不同大小的Pt颗粒上的结焦行为也不同:催化剂的结焦速率随着金属Pt颗粒的增大而减小;焦的芳香性以及石墨化程度也随着金属Pt颗粒粒径的增加而变弱。
     传统的动力学研究方法是根据相关理论、文献,假设反应机理和速率控制步骤,推导出动力学模型,然后用实验数据对动力学参数进行回归。然而在此过程中,为确保模型参数的可靠性,需要大量的实验数据,实验量巨大。本文则尝试了一种新的动力学研究方法,即用微观动力学分析的手段建立动力学模型。首先用密度泛函理论(Density Functional Theory, DFT)计算模型中涉及到的动力学参数,然后根据微观动力学分析结果建立宏观动力学模型。微观动力学模拟结果显示,模型对单金属Pt催化剂上的动力学行为有较好的预测。如果用部分实验数据对个别参数进行优化调整,可以使模型对实验数据预测的准确程度大大提高。与传统的动力学研究方法相比,该方法可以得到较为可靠的动力学参数,同时又可大大减少动力学研究的实验量。
     工业上(Oleflex工艺)采用的是PtSn双金属催化剂,是因为Sn的添加有利于提高Pt催化剂对产物丙烯的选择性以及催化剂自身的稳定性。然而Sn的添加对Pt催化剂结焦行为,尤其是动力学行为的影响尚缺乏深入认识。因此,本文在对单金属Pt催化剂进行活性、稳定性等方面研究的基础上,研究了Sn的添加对Pt催化剂动力学和结焦行为的影响。实验研究发现,Pt/Al2O3和PtSn/Al2O3催化剂上脱氢反应对丙烷和氢气的表观反应级数相同,表观反应活化能相近。该结果表明,我们可以通过对Pt催化剂上丙烷脱氢反应过程的研究来在一定程度上认识PtSn催化剂上丙烷脱氢反应过程。本文在比较Pt催化剂和PtSn催化剂动力学行为的基础上,借助于Pt催化剂上的研究成果建立了PtSn催化剂上的微观动力学模型,并得到,PtSn催化剂上的速率控制步骤是第一步脱氢,吸附的氢原子是表面最丰富物种。该微观动力学模型可以较好地解释PtSn催化剂上的动力学现象。此外,Sn的加入提高了Pt催化剂的结焦速率,增强了生成的焦的石墨化程度。同时,Sn的加入促进了焦前体从金属到载体的迁移,从而可以有效防止Pt金属被生成的焦迅速覆盖。
The world demand for propylene is growing steadily in recently years. Propane dehydrogenation is an on-purpose and effective technique to increase the production of propylene. Therefore, in this thesis, the studies on the kinetics and coke formation during propane dehydrogenation are studied. In view of industrial application, the kinetics of dehydrogenation, coke formation and coke combustion as well as the nature of coke were investigated on the industrialized PtSn bimetallic catalyst. The results of the research would contribute to the design of the reactor and the optimal control of the operation during industrial production and catalyst regeneration. In view of fundamental research, the size effects of the kinetics of propane dehydrogenation as well as coke formation are studied; a new approach for the establishment of kinetics is proposed. Besides, the effects of Sn addition on the kinetics of propane dehydrogenation as well as coke formation are also studied. The results from fundamental research could deepen the understanding of the reaction on the Pt catalysts, help to establish more reliable kinetics in shorter periods and provide essential information for the design and exploration of high-performation catalysts.
     In this thesis, the complete kinetics of propane dehydrogenation including dehydrogenation, cracking, coking and deactivation are established. The best model was selected from models assuming different mechanisms and rate-determining steps by standards of fitting accuracy and the number of parameters. Besides, the deactivation function is related to the coking rate, which could reflect the real mechanism of catalyst deactivation and avoid the problem of the transient measure of deposited coke on the catalyst.
     The catalyst is deactivated mainly by coke formation during propane dehydrogenation. In order to avoid fast deactivation and to recognize the nature of the coke formed on the catalyst, the coking mechanism and the effects of reaction conditions on the nature of coke are investigated. Two categories of coke are identified, coke on the metal and coke on the support. The degree of graphitization of the coke is enhanced by propylene but weakened by hydrogen. On the metal, the coking reaction orders to propane, propylene and hydrogen are 1.7,0.0 and 0.0, respectively; while on the support, the coking reaction orders to propane, propylene and hydrogen are 1.4,1.0 and -0.7, respectively. A mechanism of coke formation is then obtained based on the kinetic analysis and the kinetic models for coke formation on the metal and the support are established and can well describe the experiments.
     The activity of the deactivated catalyst is usually restored by coke combustion. The kinetics of coke combustion play an important role in controlling the coke-burning conditions and preventing the sintering of the active metal. The coke-burning kinetics of the two categories of coke formed on the catalyst are both established through a temperature programmed approach. The apparent activation energies for the combustion of the two categories of coke are 86 kJ/mol and 218 kJ/mol, respectively.
     The correct and detailed understanding of the mechanism for propane dehydrogenation concerns the accuracy and reliability of the kinetic model. However, the mechanism for propane dehydrogenation may be different on catalysts with different structures. The studies on the effects of Pt particle size on the performances of Pt/AlO3 catalysts during propane dehydrogenation are helpful for the further understanding of the reaction, which is also very useful for catalyst design. It is obtained that the reaction rate decreases but the selectivity to propylene increases with the Pt particle size. The yield of propylene reaches the maximum when the size of the Pt particle is 4.6 nm. For all the catalysts, the apparent reaction orders to propane are all the first, but the orders to hydrogen are decreasing from zero to minus half as the size of the Pt particle increases. The apparent activation energy is also found increasing with the size of the Pt particle. Besides, it is also found that the coking rate decreases obviously with the Pt particles size and more hydrogen-deficient coke can be formed on smaller Pt particles.
     The complete, accurate and reliable kinetic model can be then obtained on the basis of the good understanding of the reaction. Traditionally, the kinetic model is established by the sequence of assuming mechanism and RDS, deriving kinetic model and fitting kinetic parameters by experimental data. However, the reliability of the mechanism is not validated and that of the kinetic parameters has to be guaranteed by fitting a lot of experiments. In our study, the kinetic model is established based on the micro-kinetic analysis and the parameters are obtained by DFT calculation. The model can correctly predict the kinetic behaviors of Pt catalysts. Furthermore, the prediction can be greatly improved after the optimization of two specific parameters. This approach of kinetic study can bring about more reliable parameters and greatly reduce the kinetic experiments.
     However, the bimetallic PtSn catalyst, instead of monometallic Pt catalyst, is actually employed in the industry (Oleflex process) because Sn can improve the selectivity to propylene and retain the activity of the catalyst. However, the understanding of the effects of Sn on the kinetics and coking properties of the Pt catalysts are still not clear although it is important. In this thesis, the effects of Sn addition on the kinetics as well as the coking properties of Pt catalysts are presented.
     The experimental results indicate that the reaction orders to propane and hydrogen are both the same on the Pt and PtSn catalysts. The apparent activation energies are also close to each other. This fact also indicates that the knowledge about the kinetics on the monometallic Pt catalyst can be extended to the bimetallic PtSn catalyst to a certain degree, which significantly facilities the further related research on bimetallic catalysts. Through employing the mechanism on the Pt catalyst, the microkinetics on the PtSn catalyst is established and the rate determining step as well as the most abundant surface intermediate is identified. Nevertheless, the effects of Sn on the coking properties of the Pt catalysts are apparent. The addition of Sn has increased the coking rate and meanwhile promoted the migration of the coke precursor from metal to the support. The degree of graphitization of the coke formed is also enhanced after Sn addition.
引文
[1]Plotkin J S. The changing dynamics of olefin supply/demand[J]. Catalysis Today, 2005,106(1-4):10-14.
    [2]钱伯章.增产丙烯的技术进展[J].化工技术经济,2006,24(4):33-40.
    [3]邹劲松.全球丙烯供需状况及其发展趋势分析[J].石油化工技术经济,2004,20(6):37-43.
    [4]Liu H, Zhao H, Gao X, Ma J. A novel FCC catalyst synthesized via in situ overgrowth of NaY zeolite on kaolin microspheres for maximizing propylene yield[J]. Catalysis Today,2007,125(3-4):163-168.
    [5]Corma A, Melo F V, Sauvanaud L, Ortega F. Different process schemes for converting light straight run and fluid catalytic cracking naphthas in a FCC unit for maximum propylene production[J]. Applied Catalysis A:General,2004,265(2): 195-206.
    [6]朱明慧,王红秋.国外丙烯生产技术最新进展及技术经济比较[J].国际石油经济,2006,(1):38-42.
    [7]刘学龙,张凤秋,周春艳.催化裂解与蒸汽热裂解制烯烃技术经济分析[J].石油化工技术经济,2005,21(4):30-44.
    [8]余长林,葛庆杰,徐恒泳,李文钊.丙烷脱氢制丙烯研究新进展[J].化工进展,2006,25(9):977-982.
    [9]Larsson M, Henriksson N, Andersson B. Investigation of the kinetics of a deactivating system by transient experiments [J]. Applied Catalysis A:General,1998, 166(1):9-19.
    [10]Lobera M, Tellez C, Herguido J, Menendez M. Transient kinetic modelling of propane dehydrogenation over a Pt-Sn-K/A2lO3 catalyst[J]. Applied Catalysis A: General,2008,349(1-2):156-164.
    [11]Gascon J, Tellez C, Herguido J, Menendez M. Propane dehydrogenation over a Cr2O3/Al2O3 catalyst:transient kinetic modeling of propene and coke formation[J]. Applied Catalysis A:General,2003,248(1-2):105-116.
    [12]崔文广,赵地顺,徐智策.丙烷脱氢制丙烯技术进展[J].河北工业科技,2003,20(6):1-5.
    [13]MARKUS S, ULRICH M, CHRISTOPH K, FRIEDHELM T, SVEN C, FALK S, JOERG P. Process for preparing propene from propaneC07C11/06; C07C5/333; C07C7/12[P].
    [14]CARLO M, EZIO T, CHAFIC A. CATALYST FOR OXIDATIVE DEHYDROGENATION OF PROPANE[P].
    [15]WU X, WU W, FAN Z, MIAO C, CHEN Q, YANG W. Method for selective oxidation of hydrogen during propane dehydrogenation:European patentBOlJ21/04; B01J23/14; B01J23/18; B01J23/28; B01J23/31; B01J32/00; C07C11/06; C07C5/48 [P]-
    [16]Xu M, Lunsford J. Oxidative dehydrogenation of propane[J]. Reaction Kinetics and Catalysis Letters,1996,57(1):3-11.
    [17]Zhang X, Yue Y, Gao Z. Chromium oxide supported on mesoporous SBA-15 as propane dehydrogenation and oxidative dehydrogenation catalysts [J]. Catalysis letters,2002,83(1):19-25.
    [18]Dury F, Gaigneaux E, Ruiz P. The active role of CO2 at low temperature in oxidation processes:the case of the oxidative dehydrogenation of propane on NiMoO4 catalysts[J]. Applied Catalysis A:General,2003,242(1):187-203.
    [19]Kondratenko E, Baerns M. Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O--the role of vanadia distribution and oxidant activation[J]. Applied Catalysis A:General,2001,222(1-2):133-143.
    [20]Kondratenko E V, Cherian M, Baerns M, Su D, Schlogl R, Wang X, Wachs I E. Oxidative dehydrogenation of propane over V/MCM-41 catalysts:comparison of O2 and N2O as oxidants[J]. Journal of Catalysis,2005,234(1):131-142.
    [21]Perez-Ramirez J, Gallardo-Llamas A. Impact of the preparation method and iron impurities in Fe-ZSM-5 zeolites for propylene production via oxidative dehydrogenation of propane with N2O[J]. Applied Catalysis A:General,2005, 279(1-2):117-123.
    [22]Creaser D, Andersson B, Hudgins R, Silveston P. Transient kinetic analysis of the oxidative dehydrogenation of propane[J]. Journal of Catalysis,1999,182(1): 264-269.
    [23]Chen K, Bell A T, Iglesia E. Kinetics and mechanism of oxidative dehydrogenation of propane on vanadium, molybdenum, and tungsten oxides [J]. The Journal of Physical Chemistry B,2000,104(6):1292-1299.
    [24]Santhosh Kumar M, Chen D, Walmsley J C, Holmen A. Dehydrogenation of propane over Pt-SBA-15:Effect of Pt particle size[J]. Catalysis Communications, 2008,9(5):747-750.
    [25]余长林,葛庆杰,徐恒泳,李文钊.助剂对Pt/γ-Al203催化剂丙烷脱氢性能的影响[J].石油化工,2006,35(3):4.
    [26]吴文海,李应成,吴省,缪长喜,贺鹤勇,陈庆龄.锡组分状态对Pt/Al203丙烷脱氢性能的影响[J].化学反应工程与工艺,2009,25(1):5.
    [27]黄宁表,陈骏如.铂锡双金属催化剂上丙烷脱氢反应研究[J].燃料化学学报,1996,24(2):108-113.
    [28]邱安定,范以宁.添加锡组分对Pt/ZSM-5催化剂丙烷脱氢反应性能的影响[J].燃料化学学报,2008,36(5):637-640.
    [29]Zhang Y, Zhou Y, Qiu A, Wang Y, Xu Y, Wu P. Propane dehydrogenation on PtSn/ZSM-5 catalyst:Effect of tin as a promoter[J]. Catalysis Communications, 2006,7(11):860-866.
    [30]董文生,王心葵.水蒸气对PtSn/ZnA12O4催化剂结构的影响[J].物理化学学报,1999,15(4):289-292.
    [31]NAWAZ Z,汤效平,褚玥,魏飞.丙烷脱氢反应中焙烧温度和反应气氛对Pt-Sn/SAPO-34催化性能的影响[J].催化学报,2010,31(5).
    [32]杨维慎,吴荣安PtSn/Al2O3负载型催化剂丙烷脱氢性能的改进[J].石油化工,1992,21(8):511-515.
    [33]Yu C, Ge Q, Xu H, Li W. Effects of Ce addition on the Pt-Sn/γ-Al2O3 catalyst for propane dehydrogenation to propylene[J]. Applied Catalysis A:General,2006,315: 58-67.
    [34]郭松.丙烷脱氢多组分铂催化剂的研究[D].南京:南京大学,2002.
    [35]Del Angel G, Torres G, Bertin V, Gomez R, Moran-Pineda M, Castillo S, Fierro J. The role of lanthanum oxide in the formation of NO2 over Pt-Pb/Al2O3-La2O3 catalysts under lean-burn conditions[J]. Catalysis Communications,2006,7(4): 232-235.
    [36]张一卫,周钰明,叶志良,王玉,许艺,吴沛成.镧对PtSnNa/Al2O3催化剂丙烷脱氢反应性能的影响[J].现代化工,2006,26(2):33-36,38.
    [37]Kogan S, Herskowitz M. Selective propane dehydrogenation to propylene on novel bimetallic catalysts[J]. Catalysis Communications,2001,2(5):179-185.
    [38]邱安定,李恩霞,范以宁.载体组成对负载型PtSn/ZSM-5催化剂上丙烷脱氢反应性能的影响[J].催化学报,2008,28(11):970-974.
    [39]陈光文,阳永荣.在Pt/Sn/Al2O3催化剂上丙烷脱氢反应动力学[J].化学反应工程与工艺,1998,14(2):130-137.
    [40]Chin S Y, Radzi S N R, Maharon I H, Shafawi M A. Kinetic model and Simulation Analysis for Propane Dehydrogenation in an Industrial Moving Bed Reactor: proceedings of the World Academy of Science, Engineering and Technology, NH Laguna Palace, Venice, Italy, April 27-29,2011 [C].2011.
    [41]Koltsova E, Tsaplin S, Skudin V. Determining the kinetic parameters of the reactions of propane dehydrogenation over a molybdenum catalyst by mathematical modeling[J]. Theoretical Foundations of Chemical Engineering,2010,44(5): 698-703.
    [42]Farjoo A, Khorasheh F, Niknaddaf S, Soltani M. Kinetic modeling of side reactions in propane dehydrogenation over Pt-Sn/γ-Al2O3 catalyst[J]. Scientia Iranica,2011, 18(3):458-464.
    [43]Wan B Z, Chu H M. Reaction kinetics of propane dehydrogenation over partially reduced zinc oxide supported on silicalite[J]. J Chem Soc, Faraday Trans,1992, 88(19):2943-2947.
    [44]陈海松,余立新.稀土助剂改良的铬铝催化剂上丙烷脱氢宏观动力学[J].高校化学工程学报,1999,13(1):38-43.
    [45]刘博贤,侯凯湖,徐志东.Pt纳米簇-Sn催化剂上丙烷脱氢反应本征动力学[J].石油与天然气化工,2009,38(3):179-182.
    [46]刘淑鹤,方向晨,张喜文,张海娟.丙烷脱氢催化反应机理及动力学研究进展[J].化工进展,2009,28(2):259-266.
    [47]Duprez D, Hadj-Aissa M, Barbier J. Effect of steam on the coking of platinum catalysts:I. Inhibiting effect of steam at low partial pressure for the dehydrogenation of cyclopentane and the coking reaction[J]. Applied Catalysis, 1989,49(1):67-74.
    [48]Liwu L, Tao Z, Jingling Z, Zhusheng X. Dynamic process of carbon deposition on Pt and Pt-Sn catalysts for alkane dehydrogenation[J]. Applied Catalysis,1990, 67(1):11-23.
    [49]Larsson M, Hulten M, Blekkan E A, Andersson B. The effect of reaction conditions and time on stream on the coke formed during propane dehydrogenation [J]. Journal of Catalysis,1996,164(1):44-53.
    [50]Barbier J, Marecot P, Martin N, Elassal L, Maurel R. Selective poisoning by coke formation on Pt/Al2O3[J]. Stud Surf Sci Catal,1980,6:53-62.
    [51]Rebo H, Chen D, Blekkan E, Holmen A. Application of the oscillating microbalance catalytic reactor:Kinetics and coke formation over Pt-Sn/Al2O3 in propane dehydrogenation [J]. Studies in surface science and catalysis,1998,119:617-622.
    [52]张新平,隋志军,周兴贵.丙烷脱氢制丙烯催化剂烧焦过程的模型化[J].化工学报,2009,(001):163-167.
    [53]Querini C, Fung S. Coke characterization by temperature programmed techniques[J]. Catalysis Today,1997,37(3):277-283.
    [54]Pieck C L, Verderone R J, Jablonski E L, Parera J M. Burning of coke on Pt Re/Al2O3 catalyst:Activation energy and oxygen reaction order[J]. Applied Catalysis,1989,55(1):1-10.
    [55]Weisz P B, Goodwin R D. Combustion of carbonaceous deposits within porous catalyst particles I. Diffusion-controlled kinetics[J]. Journal of Catalysis,1963,2(5): 397-404.
    [56]Weisz P B, Goodwin R B. Combustion of carbonaceous deposits within porous catalyst particles:Ⅱ. Intrinsic burning rate[J]. Journal of Catalysis,1966,6(2): 227-236.
    [57]Fuertes A B, Marban G, Pis J J. Combustion kinetics of coke particles in a fluidized bed reactor[J]. Fuel Processing Technology,1994,38(3):193-210.
    [58]Hashimoto K, Masuda T, Mori T. Kinetics of combustion of carbonaceous deposits on HZSM-5 zeolites[J]. Chemical Engineering Science,1988,43(8):2275-2280.
    [59]Song Y, Liu S, Wang Q, Xu L, Zhai Y. Coke burning behavior of a catalyst of ZSM-5/ZSM-11 co-crystallized zeolite in the alkylation of benzene with FCC off-gas to ethylbenzene[J]. Fuel Processing Technology,2006,87(4):297-302.
    [60]李再琮,洪英儿,嘁婺.AF-5分子筛催化剂再生过程的动力学研究及其数学模型建立[J].催化学报,1986,7(4):350-356.
    [61]米冠杰,李建伟,陈标华Fe-ZSM-5分子筛催化剂的再生烧炭[J].石油学报:石油加工,201 0,26(006):946-950.
    [62]刘耀芳,杨朝合,杨九金,施侠,杨光华.铂锡重整催化剂再生过程的研究——2.烧炭速度与氧分压的关系[J].石油炼制与化工,1989,5.
    [63]刘耀芳,杨朝合.石油炼制,1988,(11):24.
    [64]刘耀芳,杨朝合.铂锡重整催化剂再生过程研究:(3)烧炭过程的动力学参数[J].石油炼制,1989,(009):37-42.
    [65]王虹.连续重整催化剂再生烧炭动力学[J].北京石油化工学院学报,1998,1.
    [66]高劲松,卢春喜,吕瑾,刘耀芳.连续重整新型铂锡催化剂的表观烧炭动力学[J].炼油设计,1999,29(11):41-45.
    [67]卢春喜,赵志海,刘耀芳.连续重整新型再生器及再生过程动力学模型的开发[J].炼油设计,2001,31(012):15-18.
    [68]燕青芝,于丰东.催化裂化待生催化剂再生动力学模型[J].石油炼制与化工,2000,31(12):45-49.
    [69]徐春明,罗雄麟.几种新型裂化催化剂再生动力学的研究[J].炼油设计,1996,26(6):54-57.
    [70]常剑,高金森,徐春明.大颗粒FCC汽油芳构化催化剂烧碳再生动力学研究[J].燃料化学学报,2008,(6):673-677.
    [71]刘伟,赵修仁.结焦CRC-1催化剂再生过程的动力学[J].石油学报:石油加工,1998,1 4(3):47-50.
    [72]韩德刚,高盘良.化学动力学基础[M].北京大学出版社,1985.
    [73]沈俭一译.多相催化微观动力学[M].国防工业出版社,1998.
    [74]Le Page J. Applied heterogeneous catalysis (design, manufacture, use of solid catalysts)[Miller EB, Miller RL, Trans.][J]. Paris:Editions Technip,1987:22-32.
    [75]David Jackson S, Grenfell J, Matheson I M, Webb G. Modelling of alkane dehydrogenation under transient and steady state conditions over a chromia catalyst using isotopic labelling[J]. Studies in surface science and catalysis,1999,122: 149-155.
    [76]Biloen P, Dautzenberg F, Sachtler W. Catalytic dehydrogenation of propane to propene over platinum and platinum-gold alloys[J]. Journal of Catalysis,1977, 50(1):77-86.
    [77]Suzuki I, Kaneko Y. Dehydrogenation of propane over chromia-alumina-potassium oxide catalyst[J]. Journal of Catalysis,1977,47(2):239-248.
    [78]Yang M L, Zhu Y A, Fan C, Sui Z J, Chen D, Zhou X G. Density functional study of the chemisorption of C1, C2 and C3 intermediates in propane dissociation on Pt (111)[J]. Journal of Molecular Catalysis A:Chemical,2010,321(1-2):42-49.
    [79]Weinberg W H, Sun Y K. Quantification of Primary Versus Secondary CH Bond Cleavage in Alkane Activation:Propane on Pt[J]. Science,1991,253(5019):542.
    [80]Valcarcel A, Ricart J M, Clotet A, Markovits A, Minot C, Illas F. Theoretical study of the structure of propene adsorbed on Pt (111)[J]. Surface science,2002,519(3): 250-258.
    [81]Valcarcel A, Gil A, Ricart J M, Clotet A. Theoretical study of propene adsorbed on sulphated Pt (111)[J]. Chemical physics letters,2004,399(4-6):295-299.
    [82]van Sint Annaland M, Scholts H A R, Kuipers J A M, van Swaaij W P M. A novel reverse flow reactor coupling endothermic and exothermic reactions:Part Ⅱ: Sequential reactor configuration for reversible endothermic reactions[J]. Chemical Engineering Science,2002,57(5):855-872.
    [83]Szepe S, Levenspiel O. proceedings of the Proceedings of the Fourth European Symposium on Chemical Reactive Engineering, Brussels, NY,1971[C]. Pergamon Press.
    [84]Monzon A, Romeo E, Borgna A. Relationship between the kinetic parameters of different catalyst deactivation models[J]. Chemical Engineering Journal,2003, 94(1):19-28.
    [85]Corella J, Monzon A, Butt J B, Absil R P L. The modeling of the kinetics of deactivation of a commercial hydrocracking catalyst in the reaction of cumene disproportionation[J]. Journal of Catalysis,1986,100(1):149-157.
    [86]Srivastava R D, Guha A K. Kinetics and mechanism of deactivation of Pd/Al2O3 catalyst in the gaseous phase decarbonylation of furfural [J]. Journal of Catalysis, 1985,91(2):254-262.
    [87]Corella J, Asua J M. Kinetic equations of mechanistic type with nonseparable variables for catalyst deactivation by coke. Models and data analysis methods[J]. Industrial & Engineering Chemistry Process Design and Development,1982,21(1): 55-61.
    [88]Wolf E E, Petersen E E. On the kinetics of self-poisoning catalytic reactions[J]. Journal of Catalysis,1977,47(1):28-32.
    [89]Chu C. Effect of Adsorption on Fouling of Catalyst Pellets[J]. Industrial & Engineering Chemistry Fundamentals,1968,7(3):509-514.
    [90]Akaike M. Math Sci,1976,14:5-9.
    [91]Rioux R, Song H, Hoefelmeyer J, Yang P, Somorjai G. High-surface-area catalyst design:Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica[J]. The Journal of Physical Chemistry B,2005,109(6): 2192-2202.
    [92]Van Hardeveld R, Hartog F. The statistics of surface atoms and surface sites on metal crystals[J]. Surface science,1969,15(2):189-230.
    [93]Liu Z P, Hu P. General rules for predicting where a catalytic reaction should occur on metal surfaces:A density functional theory study of CH and CO bond breaking/making on flat, stepped, and kinked metal surfaces[J]. Journal of the American Chemical Society,2003,125(7):1958-1967.
    [94]Norskov J K, Bligaard T, Hvolbaek B, Abild-Pedersen F, Chorkendorff I, Christensen C H. The nature of the active site in heterogeneous metal catalysis[J]. Chemical Society Reviews,2008,37(10):2163-2171.
    [95]Rostrup-Nielsen J, N(?)rskov J. Step sites in syngas catalysis[J]. Topics in Catalysis, 2006,40(1):45-48.
    [96]Natal-Santiago M A, Podkolzin S G, Cortright R D, Dumesic J A. Microcalorimetric studies of interactions of ethene, isobutene, and isobutane with silica-supported Pd, Pt, and PtSn[J]. Catalysis letters,1997,45(3):155-163.
    [97]Cortright R D, Dumesic J A. Microcalorimetric, Spectroscopic, and Kinetic Studies of Silica Supported Pt and Pt/Sn Catalysts for Isobutane Dehydrogenation[J]. Journal of Catalysis,1994,148(2):771-778.
    [98]Corella J, Asua J M, Bilbao J. Kinetics of catalyst deactivation [J]. The Canadian Journal of Chemical Engineering,1981,59(5):647-647.
    [99]Praserthdam P, Mongkhonsi T, Kunatippapong S, Jaikaew B, Lim N. Determination of coke deposition on metal active sites of propane dehydrogenation catalysts [J]. Studies in surface science and catalysis,1997,111:153-158.
    [100]Santhosh Kumar M, Holmen A, Chen D. The influence of pore geometry of Pt containing ZSM-5, Beta and SBA-15 catalysts on dehydrogenation of propane[J]. Microporous and Mesoporous Materials,2009,126(1-2):152-158.
    [101]Yang J, Stansberry P G, Zondlo J W, Stiller A H. Characteristics and carbonization behaviors of coal extracts[J]. Fuel Processing Technology,2002,79(3):207-215.
    [102]Eisenbach D, Gallei E. Infrared spectroscopic investigations relating to coke formation on zeolites:I. Adsorption of hexene-1 and n-hexane on zeolites of type Y[J]. Journal of Catalysis,1979,56(3):377-389.
    [103]Van Doom J, Moulijn J A. Extraction of spent hydrotreating catalysts studied by fourier transform infra-red spectroscopy[J]. Fuel Processing Technology,1990, 26(1):39-51.
    [104]Cerqueira H S, Sievers C, Joly G, Magnoux P, Lercher J A. Multitechnique Characterization of Coke Produced during Commercial Resid FCC Operation[J]. Industrial & Engineering Chemistry Research,2005,44(7):2069-2077.
    [105]Geach A. Infrared analysis as a tool for assessing degradation in used engine lubricants [J]. Wearcheck Technical Bulletin,1990, (2).
    [106]Wolthuis E, Bossenbroek B, DeWall G, Geels E, Leegwater A. Reactions of Methyl-substituted 1,4-Epoxy-1,4-dihydronaphthalenes[J]. The Journal of Organic Chemistry,1963,28(1):148-152.
    [107]Sato K, Ikeda S, Iida M, Oshima A, Tabata Y, Washio M. Study on poly-electrolyte membrane of crosslinked PTFE by radiation-grafting[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,208(0):424-428.
    [108]Matsushita K, Hauser A, Marafi A, Koide R, Stanislaus A. Initial coke deposition on hydrotreating catalysts. Part 1. Changes in coke properties as a function of time on stream[J]. Fuel,2004,83(7-8):1031-1038.
    [109]Jong S-J, Pradhan A R, Wu J-F, Tsai T-C, Liu S-B. On the Regeneration of Coked H-ZSM-5 Catalysts[J]. Journal of Catalysis,1998,174(2):210-218.
    [110]Guichard B, Roy-Auberger M, Devers E, Rebours B, Quoineaud A A, Digne M. Characterization of aged hydrotreating catalysts. Part I:Coke depositions, study on the chemical nature and environment [J]. Applied Catalysis A:General,2009, 367(1-2):1-8.
    [111]Korhonen S T, Airaksinen S M K, Banares M A, Krause A O I. Isobutane dehydrogenation on zirconia-, alumina-, and zirconia/alumina-supported chromia catalysts[J]. Applied Catalysis A:General,2007,333(1):30-41.
    [112]Zeng Z, Natesan K. Relationship of Carbon Crystallization to the Metal-Dusting Mechanism of Nickel[J]. Chemistry of Materials,2003,15(4):872-878.
    [113]Airaksinen S M K, Banares M A, Krause A O I. In situ characterisation of carbon-containing species formed on chromia/alumina during propane dehydrogenation[J]. Journal of Catalysis,2005,230(2):507-513.
    [114]Chua Y T, Stair P C. An ultraviolet Raman spectroscopic study of coke formation in methanol to hydrocarbons conversion over zeolite H-MFI[J]. Journal of Catalysis, 2003,213(1):39-46.
    [115]Dumont M, Chollon G, Dourges M A, Pailler R, Bourrat X, Naslain R, Bruneel J L, Couzi M. Chemical, microstructural and thermal analyses of a naphthalene-derived mesophasepitch[J]. Carbon,2002,40(9):1475-1486.
    [116]Li J, Naga K, Ohzawa Y, Nakajima T, Shames A I, Panich A M. Effect of surface fluorination on the electrochemical behavior of petroleum cokes for lithium ion battery[J]. Journal of Fluorine Chemistry,2005,126(2):265-273.
    [117]Santhosh Kumar M, Chen D, Holmen A, Walmsley J C. Dehydrogenation of propane over Pt-SBA-15 and Pt-Sn-SBA-15:Effect of Sn on the dispersion of Pt and catalytic behavior[J]. Catalysis Today,2009,142(1-2):17-23.
    [118]Yang Z, Zhang Y, Wang X, Zhang Y, Lu X, Ding W. Steam Reforming of Coke Oven Gas for Hydrogen Production over a NiO/MgO Solid Solution Catalyst[J]. Energy & Fuels,2009,24(2):785-788.
    [119]Sun L, Guo X, Liu M, Wang X. Role of Acidity in the Ethylation of Coking Benzene with Ethanol over Nanosized HZSM-5[J]. Industrial & Engineering Chemistry Research,2009,49(2):506-514.
    [120]Li X, Zhang W, Li X, Liu S, Huang H, Han X, Xu L, Bao X. Insights into the Deactivation Mechanism of Heterogeneous MO/Hβ-Al2O3 Catalysts for Olefin Metathesis[J]. The Journal of Physical Chemistry C,2009,113(19):8228-8233.
    [121]Tao Z, Jingling Z, Liwu L. Relation between Surface Structure and Carbon Deposition on Pt/Al2O3 and Pt-Sn/Al2O3 Catalysts[J]. Studies in surface science and catalysis,1991,68:143-150.
    [122]Srihiranpullop S, Praserthdam P, Mongkhonsi T. Deactivation of the metal and acidic functions for Pt, Pt-Sn and Pt-Sn-K using physically mixed catalysts[J]. Korean Journal of Chemical Engineering,2000,17(5):548-552.
    [123]Novokshonova L A, Tsvetkova V I, Chirkov N M. Reaction rate and molecular weight of product as a function of monomer concentration in propylene polymerization on the VCl3-Al(i-Bu)3 system [J]. Russian Chemical Bulletin,1963, 12(7):1077-1082.
    [124]Soga K, Siono T. Effect of hydrogen on the molecular weight of polypropylene with Ziegler-Natta catalysts[J]. Polymer Bulletin,1982,8(5):261-268.
    [125]Azzam K G, Jacobs G, Shafer W D, Davis B H. Dehydrogenation of propane over Pt/KL catalyst:Investigating the role of L-zeolite structure on catalyst performance using isotope labeling[J]. Applied Catalysis A:General,2010,390(1-2):264-270.
    [126]Qing L, Zhijun S, Xinggui Z, Chen D. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3 catalyst[J]. Applied Catalysis A:General,2011,398(1-2):18-26.
    [127]Liu K, Fung S C, Ho T C, Rumschitzki D S. Hydrogasification of Coke in Heptane Reforming over Pt-Re/Al2O3[J]. Industrial & Engineering Chemistry Research, 2002,42(8):1543-1550.
    [128]Caeiro G, Carvalho R H, Wang X, Lemos MANDA, Lemos F, Guisnet M, Ramoa Ribeiro F. Activation of C2-C4 alkanes over acid and bifunctional zeolite catalysts[J]. Journal of Molecular Catalysis A:Chemical,2006,255(1-2):131-158.
    [129]Lieske H, Sarkany A, Volter J. Hydrocarbon adsorption and coke formation on Pt/Al2O3 and Pt-Sn/Al2O3 catalysts[J]. Applied Catalysis,1987,30(1):69-80.
    [130]Royo C, Menendez M, Santamaria J. Kinetics of catalyst regeneration by coke combustion. Ⅰ. Increased reaction rate due to the presence of chromium [J]. Reaction Kinetics and Catalysis Letters,1991,44(2):445-450.
    [131]Praserthdam P, Grisdanurak N, Yuangsawatdikul W. Cokeformation over Pt-Sn-K/Al2O3 in C3, C5-C8 alkane dehydrogenation[J]. Chemical Engineering Journal,2000,77(3):215-219.
    [132]Mears D E. Tests for transport limitations in experimental catalytic reactors[J]. Industrial & Engineering Chemistry Process Design and Development,1971,10(4): 541-547.
    [133]Weisz P B. Polyfunctional heterogeneous catalysis[J]. Advances in catalysis,1962, 13:137-190.
    [134]Ahmed R, Sinnathambi C, Subbarao D. Kinetics of De-coking of Spent Reforming Catalyst[J]. Journal of Applied Sciences,2011,11:1225-1230.
    [135]Bayraktar O, Kugler E L. Characterization of coke on equilibrium fluid catalytic cracking catalysts by temperature-programmed oxidation[J]. Applied Catalysis A: General,2002,233(1-2):197-213.
    [136]Bennett C, Che M. Some geometric aspects of structure sensitivity [J]. Journal of Catalysis,1989,120(2):293-302.
    [137]Che M, Bennett C O. The Influence of Particle Size on the Catalytic Properties of Supported Metals[M]. Advances in catalysis; Academic Press.1989:55-172.
    [138]Bond G C. The origins of particle size effects in heterogeneous catalysis[J]. Surface science,1985,156:966-981.
    [139]Barias O A, Holmen A, Blekkan E A. Propane dehydrogenation over supported platinum catalysts:Effect of tin as a promoter[J]. Catalysis today,1995,24(3): 361-364.
    [140]Padro C L, de Miguel S R, Castro A A, Scelza O A. Stability and regeneration of supported PtSn catalysts for propane dehydrogenation[J]. Studies in surface science and catalysis,1997,111:191-198.
    [141]QIU A, FAN Y. Effect of addition of tin on the catalytic properties of Pt/ZSM-5 catalyst in propane dehydrogenation[J]. J Fuel Chem Technol,2008,36(05): 637-640.
    [142]Kogan S, Schramm H, Herskowitz M. Dehydrogenation of propane on modified Pt/[theta]-alumina Performance in hydrogen and steam environment [J]. Applied Catalysis A:General,2001,208(1-2):185-191.
    [143]Jablonski E L, Castro A A, Scelza O A, de Miguel S R. Effect of Ga addition to Pt/Al2O3 on the activity, selectivity and deactivation in the propane dehydrogenation[J]. Applied Catalysis A:General,1999,183(1):189-198.
    [144]Vu B K, Song M B, Ahn I Y, Suh Y-W, Suh D J, Kim W-I L, Koh H-L, Choi Y G, Shin E W. Propane dehydrogenation over Pt-Sn/Rare-earth-doped Al2O3:Influence of La, Ce, or Y on the formation and stability of Pt-Sn alloys[J]. Catalysis today, 164(1):214-220.
    [145]Yu C, Xu H, Ge Q, Li W. Properties of the metallic phase of zinc-doped platinum catalysts for propane dehydrogenation[J]. Journal of Molecular Catalysis A: Chemical,2007,266(1-2):80-87.
    [146]Lobera M P, Tellez C, Herguido J, Menendez M. Transient kinetic modelling of propane dehydrogenation over a Pt-Sn-K/Al2O3 catalyst[J]. Applied Catalysis A: General,2008,349(1-2):156-164.
    [147]Zhang Y, Zhou Y, Liu H, Wang Y, Xu Y, Wu P. Effect of La addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation[J]. Applied Catalysis A:General,2007,333(2):202-210.
    [148]余长林,葛庆杰,徐恒泳,李文钊.助剂对Pt/γ-Al203催化剂丙烷脱氢性能的影响[J].石油化工,2006,35(3):217-220.
    [149]Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells[J]. The Journal of Physical Chemistry B,2003, 107(26):6292-6299.
    [150]Tsuji M, Hashimoto M, Nishizawa Y, Tsuji T. Synthesis of gold nanorods and nanowires by a microwave-polyol method[J]. Materials Letters,2004,58(17-18): 2326-2330.
    [151]Roosen A R, Carter W C. Simulations of microstructural evolution:anisotropic growth and coarsening[J]. Physica A:Statistical and Theoretical Physics,1998, 261(1-2):232-247.
    [152]Cardenas-Trivino G, Klabunde K J, Dale E B. Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media.14[J]. Langmuir,1987,3(6):986-992.
    [153]Bonnemann H, Richards R M. Nanoscopic Metal Particles-Synthetic Methods and Potential Applications [J]. European Journal of Inorganic Chemistry,2001,2001(10): 2455-2480.
    [154]Harpeness R, Peng Z, Liu X, Pol V G, Koltypin Y, Gedanken A. Controlling the agglomeration of anisotropic Ru nanoparticles by the microwave-polyol process[J]. Journal of colloid and interface science,2005,287(2):678-684.
    [155]Kim P, Joo J B, Kim W, Kim J, Song I K, Yi J. NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation[J]. Journal of power sources,2006,160(2):987-990.
    [156]Eustis S, Hsu H Y, El-Sayed M A. Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism[J]. The Journal of Physical Chemistry B,2005,109(11): 4811-4815.
    [157]Vang R T, Honkala K, Dahl S, Vestergaard E K, Schnadt J, Lasgsgaard E, Clausen B S, Norskov J K, Besenbacher F. Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking[J]. Nature materials,2005,4(2):160-162.
    [158]Liwu L, Tao Z, Jingling Z, Zhusheng X. Dynamic process of carbon deposition on Pt and PtSn catalysts for alkane dehydrogenation[J]. Applied Catalysis,1990,67(1): 11-23.
    [159]Li Q, Sui Z, Zhou X, Zhu Y, Zhou J, Chen D. Coke Formation on Pt-Sn/Al2O3 Catalyst in Propane Dehydrogenation:Coke Characterization and Kinetic Study[J]. Topics in Catalysis,2011,54:888-896.
    [160]李学军.催化裂化油浆富芳烃馏分的组成及其炭化行为[J].石油化工,2007,36(11):1104-1109.
    [161]Barnard A S, Lin X M, Curtiss L A. Equilibrium Morphology of Face-Centered Cubic Gold Nanoparticles>3 nm and the Shape Changes Induced by Temperature[J]. The Journal of Physical Chemistry B,2005,109(51):24465-24472.
    [162]Yang M L, Zhu Y A, Fan C, Sui Z J, Chen D, Zhou X G. Density functional study of the chemisorption of C1, C2 and C3 intermediates in propane dissociation on Pt (111)[J]. Journal of Molecular Catalysis A:Chemical,321(1-2):42-49.
    [163]Yang M L, Zhu Y A, Fan C, Sui Z J, Zhou X G. DFT study of propane dehydrogenation on Pt catalyst:effects of step sites[J]. Phys Chem Chem Phys, 2011,13:3257-3267.
    [164]Kresse G, Furthmiiller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science,1996,6(1):15-50.
    [165]Kresse G, Furthmiiller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B,1996,54(16): 11169.
    [166]Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B,1993,48(17):13115.
    [167]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77(18):3865-3868.
    [168]Blochl P E. Projector augmented-wave method[J]. Physical Review B,1994,50(24): 17953.
    [169]Methfessel M, Paxton A. High-precision sampling for Brillouin-zone integration in metals[J]. Physical Review B,1989,40(6):3616.
    [170]Valcarcel A, Ricart J M, Clotet A, Illas F, Markovits A, Minot C. Theoretical study of dehydrogenation and isomerisation reactions of propylene on Pt (111)[J]. Journal of Catalysis,2006,241(1):115-122.
    [171]Henkelman G, Jonsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives [J]. The Journal of chemical physics,1999,111:7010.
    [172]Barnard A S, Lin X, Curtiss L A. Equilibrium morphology of face-centered cubic gold nanoparticles> 3 nm and the shape changes induced by temperature [J]. The Journal of Physical Chemistry B,2005,109(51):24465-24472.
    [173]Patil A, Paithankar D, Otsuka N, Andres R. The minimum-energy structure of nanometer-scale gold clusters[J]. Zeitschrift fur Physik D Atoms, Molecules and Clusters,1993,26(1):135-137.
    [174]Yang M L, Zhu Y A, Fan C, Sui Z J, Chen D, Zhou X G. DFT study of propane dehydrogenation on Pt catalyst:effects of step sites[J]. Phys Chem Chem Phys, 2011.
    [175]Nykanen L, Honkala K. Density Functional Theory Study on Propane and Propene Adsorption on Pt (111) and PtSn Alloy Surfaces[J]. The Journal of Physical Chemistry C,2011,115(19):9578-9586.
    [176]Watwe R M, Cortright R D, N(?)rskov J K, Dumesic J A. Theoretical Studies of Stability and Reactivity of C2 Hydrocarbon Species on Pt Clusters, Pt (111), and Pt (211)[J]. The Journal of Physical Chemistry B,2000,104(10):2299-2310.
    [177]Spiewak B E, Cortright R D, Dumesic J A. Microcalorimetric Studies of H2, C2H4, and C2H2 Adsorption on Pt Powder[J]. Journal of Catalysis,1998,176(2):405-414.
    [178]Sharma S B, Miller M T, Dumesic J A. Microcalorimetric Study of Silica- and Zeolite-Supported Platinum Catalysts[J]. Journal of Catalysis,1994,148(1): 198-204.
    [179]Podkolzin S G, Watwe R M, Yan Q, de Pablo J J, Dumesic J A. DFT Calculations and Monte Carlo Simulations of the Co-Adsorption of Hydrogen Atoms and Ethylidyne Species on Pt (111)[J]. The Journal of Physical Chemistry B,2001, 105(36):8550-8562.
    [180]Barias O A, Holmen A, Blekkan E A. Propane Dehydrogenation over Supported Platinum Catalysts:The Influence of Tin on the Coking Properties[J]. Studies in surface science and catalysis,1994,88:519-524.
    [181]Jablonski E, Castro A, Scelza O, De Miguel S. Effect of Ga addition to Pt/Al2O3 on the activity, selectivity and deactivation in the propane dehydrogenation[J]. Applied Catalysis A:General,1999,183(1):189-198.
    [182]Burch R. Platinum-tin reforming catalysts::I. The oxidation state of tin and the interaction between platinum and tin[J]. Journal of Catalysis,1981,71(2):348-359.
    [183]Srinivasan R, De Angelis R J, Davis B H. Alloy formation in Pt-Sn-alumina catalysts:In situ X-ray diffraction study[J]. Journal of Catalysis,1987,106(2): 449-457.
    [184]Barias O A, Holmen A, Blekkan E A. Propane dehydrogenation over supported Pt and Pt-Sn catalysts:catalyst preparation, characterization, and activity measurements [J]. Journal of Catalysis,1996,158(1):1-12.
    [185]Bai L, Zhou Y, Zhang Y, Liu H, Tang M. Influence of calcium addition on catalytic properties of PtSn/ZSM-5 catalyst for propane dehydrogenation[J]. Catalysis letters, 2009,129(3):449-456.
    [186]Liwu L, Tao Z, Jingling Z, Zhusheng X. Dynamic process of carbon deposition on Pt and Pt-Sn catalysts for alkane dehydrogenation[J]. Applied Catalysis,1990,67(1): 11-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700