用户名: 密码: 验证码:
Zr、K改性费托合成铁基催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于石油资源的不断消耗以及原油价格的起伏不定,费托(简称F-T)合成作为可将煤、天然气及生物质等含碳资源经合成气(主要为CO和H2)催化转化为清洁液体燃料及其它化学品的重要途径而备受关注。F-T合成作为重要的煤间接液化过程技术,其关键技术之一就是催化剂的研究与开发。在F-T合成催化剂中,铁基催化剂因其具有价格低廉、操作灵活及较高的水煤气变换(WGS)反应活性,适合于低氢碳比的煤基合成气的F-T合成。
     本文选用Zr和K助剂为改性助剂,结合共沉淀、喷雾干燥及浸渍法等催化剂制备方法,同时采用N2物理吸附、X射线衍射(XRD)、程序升温还原(TPR)、程序升温脱附(TPD)和Mossbauer谱(MES)等表征方法着重研究Zr助剂添加方式、Zr和K助剂、Zr助剂添加量对铁基催化剂结构、还原碳化性能及F-T反应性能的影响,并在浆态床反应器中对催化剂进行CO消耗动力学研究,以期为F-T合成铁基催化剂的工业应用提供基础支持。
     制备了由共沉淀与浸渍法添加Zr助剂的改性Fe/SiO2催化剂,并结合多种表征手段研究了Zr助剂的添加方式对催化剂Fe/SiO2的结构、还原和碳化行为、物相结构以及F-T合成反应性能的影响。N2物理吸附结果表明,Zr助剂的添加明显降低了催化剂比表面积和总孔体积,但提高了催化剂的平均孔径。H2-TPR和CO-TPR结果表明由于存在Fe和Zr的相互作用,Zr助剂的添加抑制了催化剂在H2和CO气氛中的还原。经还原和反应后催化剂Fe/SiO2均具有最高的铁碳化物含量,因而其初始反应活性最高,但催化剂失活较快。Zr助剂抑制了催化剂在还原和反应过程中活性相的形成,降低了催化剂的活性,但Zr助剂的添加明显提高了催化剂的稳定性,采用浸渍法制备的Zr助剂改性催化剂稳定性最佳。Zr助剂抑制了气态烃(CH4及C2-C4)的生成,明显提高了C5+选择性。
     采用浸渍法引入助剂zr并制备Fe/SiO2、Fe/Zr/SiO2、Fe/K/SiO、Fe/Zr/K/SiO2系列催化剂,研究了Zr助剂、K助剂及Zr与K的协同作用对F-T合成铁基催化剂的结构、还原和碳化行为、体相结构以及F-T合成反应性能的影响。结果表明:Zr和K助剂降低了催化剂的比表面积。Fe和Zr间相互作用抑制了Fe/Zr/SiO2催化剂在H2和CO的还原或碳化;K助剂提高了CO的吸附并促进了催化剂在CO及原料气中的还原、碳化,但抑制了催化剂在H2中的还原和吸附;Zr、K助剂共存时,Zr和K助剂的协同效应进一步提高了对CO的吸附,还促进了催化剂在CO和原料气中的还原和碳化,从而使Fe/Zr/K/Si02催化剂具有最高的反应活性,此外,添加Zr和(或)K助剂明显提高了催化剂的稳定性。zr和(或)K助剂的添加抑制了气态烃(CH4、C2-C4)的生成,促进了链增长反应的进行。催化剂Fe/Zr/K/SiO2气态烃(CH4、C2-C4)选择性最低,C5+选择性最高。此外,烯烃选择性也随着Zr和(或)K助剂的添加而增大。单独添加Zr助剂后催化剂WGS反应活性基本不变,但添加K助剂催化剂的WGS反应活性则明显提高。
     通过制备不同Zr助剂浸渍量的Fe/Zr/K/SiO2催化剂,研究Zr助剂含量对Fe/K/SiO2催化剂催化结构、还原和碳化行为、物相结构以及F-T合成反应性能的影响。结果表明,添加少量的Zr助剂提高催化剂比表面积,促进催化剂的还原和碳化,提高催化剂的反应活性,但继续增加Zr浸渍量则降低催化剂比表面积,抑制催化剂的还原和碳化,降低催化剂的活性同时加速催化剂的失活。随着助剂zr浸渍量的增加,轻烃(CH4,C2-C4)选择性先减小后增加,而重烃(C5+)选择性变化趋势恰恰相反。此外,烯烃选择性也随着Zr助剂浸渍量的增加而增加。少量Zr助剂对催化剂的WGS反应活性的影响不大,但随着Zr助剂浸渍量的增加催化剂的WGS反应活性明显下降。当n(Zr):n(Fe)=0.01时,催化剂具有高的CO转化率和高的C5+选择性。
     在温度为240-270℃、压力为1.0-2.0MPa、H2/CO=0.67、空速为0.3~1.ONL/(g-h)条件下对100Fe/1Zr/3K/12Si02(原子比)催化剂进行了F-T合成反应的CO消耗宏观动力学测定。采用Levenberg-Maquardit算法对动力学参数进行估值,筛选出最终的动力学模型为rCO=9.96×107×exp(-103.90×103/RT)PCOPH20.5/(1+0.87PCO)2,统计检验和相对误差分析显示该模型是适宜的,模型计算值与实验值吻合良好。
Due to the limited supplement and unpredictable price of crude oil, Fischer-Tropsch (F-T) synthesis converting syngas (mainly composed with CO and H2) derived from coal, natural gas or biomass to clean liquid fuels and other chemicals, has been renewedly attracted much attention in recent years. One of the key technologies for indirect coal liquefaction is to explore high performance catalysts for F-T synthesis. The iron-based catalysts are often used in commercial operations, due to their low cost, flexible operation and high water-gas-shift (WGS) activity, which helps to make up the deficit of H2 in the syngas from coal gasification.
     Catalysts modified with Zr and K promoters in present study were prepared by a combination of coprecipitation. spry drying and impregnation techniques. The characterization technologies of N2-physisorption, X-ray diffraction (XRD), temperature-programming reduction (TPR), temperature-programming desorption (TPD) and Mossbauer effect spectroscopy (MES) were used to study the effects of incorporation manner of Zr, Zr and K promoters, different content of Zr addition on structure, reduction and carburization behaviors phase transformation and F-T synthesis performances of iron-based catalysts. The kinetics of CO consumption on selected catalytst was investigated in a stirred slurry autoclave. Works mentioned above can provide the basic support for industrial application of iron-based catalysts for F-T synthesis.
     Zr modified catalysts were prepared by adding Zr to Fe/SiO2 using coprecipitation and impregation. The effects of incorporation manner of Zr on structure, reduction, carburization, phase transformation and catalytic performance were investigated. The result of N2-physicorption shows that Zr decreases the catalyst surface area and total pore volume significantly, but increases the average pore size of the catalyst. Results of H2-TPR and CO-TPR indicate that Zr inhibites the reduction of catalyst in the atmosphere of H2 and CO. After reduction and reaction, catalyst Fe/SiO2 has the highest content of iron carbides, thus it owns the highest initial activity but deactivates quickly. Though Zr inhibits the formation of active phases and decreases the activity, Zr improves the stability of the catalyst apparently. Zr modified catalyst by impregnation possesses the best stability. Zr suppresses the formation of gaseous hydrocarbons (CH4 and C2-C4), but enhances the C5+selectivity significantly.
     Zr was added by impregnation and a series of catalysts (Fe/SiO2. Fe/Zr/SiO2, Fe/K/SiO2 and Fe/Zr/K/SiO2) were prepared in order to investigate the effects of Zr, K. the synergy effect of Zr and K on structure, reduction, carburization. phase transformation and catalytic performance. It is found that Zr and K decrease the surface area. The interaction between Zr and Fe suppresses the reduction or carbonization of Fe/Zr/SiO2 in H2 and CO. As an alkaline promoter, K enhances the adsorption of CO and promotes the reduction and carbonization in CO and feed gas. but obviously suppresses the adsorption and reduction in H2. When Zr and K coexit in catalyst, the synergy effect of Zr and K further enhances the adsorption of CO and facilitates the reduction and carbonization of the catalyst in CO and feed gas so that Fe/Zr/K/SiO2 has the highest activity. Zr and (or) K suppresses the formation of gaseous hydrocarbons (CH4 and C2-C4), but promotes the formation of heavy products to some extent. The selectivity to gaseous hydrocarbons (CH4 and C2-C4) reaches minimum on Fe/Zr/K/SiO2. In addition, the selectivity to olefin increases with the addition of Zr and K. Zr almost has no effect on WGS reaction activity, while K improves the WGS reaction activity significantly.
     A group of Fe/Zr/K/SiO2 catalysts with different content of Zr were prepared for the purpose of study the Zr loading on structure, reduction, carburization, phase transformation and catalytic performance. The results show that small amount of Zr increases the BET surface area, promotes the reduction/carburization and improves the activity of the catalyst. While large amounts of Zr addition decreases the surface area, suppresses the reduction/carburization of the catalyst, decreases the activity and speeds up the catalyst deactivation. With the increasing Zr loading, the selectivity to gaseous hydrocarbons (CH4 and C2~C4) first decreases then increases, while the selectivity to C5+is on the contrary.In addition, the selectivity to olefin increases and the activity of WGS reaction decreases with the increasing Zr loading. The optimal catalyst with n(Zr):n(Fe)=0.01 has high CO conversion and high selectivity to C5+hydrocarbons.
     The global kinetics of the Fischer-Tropsch synthesis on selected 100Fe/1Zr/3K/12SiO2 (in atomic ratio) catalyst was investigated in a 500mL stirred slurry autoclave. In the range of 240~270℃,1.0~2.2MPa.0.3~1.0NL/(g-h) and H2/CO=0.67. kinetic data were obtained under exclusion from effects of mass transfer. Parameters of rate constant, activation energy and adsorption coefficient are estimated by the Levenberg-Maquardit algorithm. The final kinetic model has the following rate expression: rco=9.96×10×exp(?)
     The results of statistical tests and relative error analysis show that the final kinetic model is appropriate.
引文
[1]应卫勇.曹发海,房鼎业.碳一化工主要产品生产技术[M].北京:化学工业出版社,2004.
    [2]刘珲,范楼珍.通过“BP 世界能源统计2008”解读中国能源状况[J].应用能源技术.2009.(2):1-5.
    [3]钱炜鑫.钻基催化剂费托合成反应动力学及浆态床反应器数学模拟[D].华东理工大学,2011.
    [4]钱伯章.朱建芳.天然气合成油发展现状和趋势[J].化工技术与开发.2007,(4):41-45.
    [5]Davis B H. Fischer-Tropsch synthesis:Current mechanism and futuristic needs [J]. Fuel Processing Technology,2001,71 (1-3):157-166.
    [6]Gregor J H. Fischer-Tropsch products as liquid fuels or chemicals [J]. Catalysis Letters,1990.7(1-4):317-331.
    [7]曹征彦.中国洁净煤技术[M].北京:中国物资出版社,1998.
    [8]Stranges A N. A history of the Fischer-Tropsch synthesis in Germany 1926-1945 [J]. Studies in Surface Science and Catalysis,2006,163:3-16.
    [9]Krishna R, Sie S T. Design and scale-up of the Fischer-Tropsch bubble column slurry reactor [J]. Fuel Processing Technology,2000,64(1-3):73-105.
    [10]相宏伟,唐宏青,李永旺.煤化工工艺技术评述与展望[J].燃料化学学报,2001,29(4):289-297.
    [11]Sie S T, Senden M M G, Van Wechem H M H. Conversion of natural gas to transportation fuels via the Shell Middle Distillate Synthesis process (SMDS) [J]. Catalysis Today,1991,8(3):371-394.
    [12]Shell公司网站. http://www.shell.com,2011.
    [13]Dry M E. The Fischer-Tropsch process:1950-2000 [J]. Catalysis Today,2002,71 (3-4):227-241.
    [14]Knott D. Gas-to-liquids projects gaining momentum as process list grows [J]. Oil & Gas Journal,1997,95(25):16-21.
    [15]相宏伟,钟炳.天然气制取液体燃料工艺技术进展[J].化学进展,1999,11(4):385-393.
    [16]杨勇.Fe-Mn催化剂的制备、表征及其F-T合成反应性能研究[D].中国科学院山西煤炭化学研究所,2004.
    [17]周敬来,张志新,张碧江.煤基合成液体燃料的MFT工艺技术[J],燃料化学学 报,1999,27(12):58-64.
    [18]林励吾,杨维慎,丁云杰等.应用催化—从实验室到产业化[A].第十四届全国催化学术会议论文集[C].2008.
    [19]张鸣林,韩梅.兖矿集团煤炭间接液化项目的进展及其煤气化多联产系统的应用前景[J].中国煤炭.2006.32(2):9.
    [20]李强.沈师孔.Co-Ce02/Si02催化剂上的费-托反应性能[J].催化学报.2002,23(6):513-516.
    [21]李晨,马向东.应卫勇等.Co-Ru/γ-A1203催化剂的F-T合成性能[J].石油化工2008,37(1):34-38.
    [22]Tang Q, Wang Y, Zhang Q, et al. Preparation of metallic cobalt inside NaY zeolite with high catalytic activity in Fischer-Tropsch synthesis [J]. Catalysis Communications,2003.4(5):253-258.
    [23]Xiong H F, Zhang Y H, Liew K Y, et al. Fischer-Tropsch synthesis:The role of pore size for Co/SBA-15 catalysts [J]. Journal of Molecular Catal:A,2008,295(1-2): 68-76.
    [24]Espinoza R L, Steynberg A P, Jager B. Low temperature Fischer-Tropsch synthesis from a Sasol perspective [J]. Appllied Catalysis A:General,1999,186(1-2):13-26.
    [25]Steynberg A P, Espinoza R L, Jager B. High temperature Fischer-Tropsch Synthesis in commercial practice [J]. Appllied Catalysis A:General,1999,186(1-2):41-54.
    [26]Schulz H. Short history and present trends of Fischer-Tropsch synthesis [J]. Appllied Catalysis A:General,1999,186(1-2):3-12.
    [27]Parmaliana A, Sanfilippo D, Frusteri F, et al. Natural Gas Conversion V, Proceedings of the 5th International Natural Gas Conversion Symposium[M]. Adsterdam:Elsevier BV,1998,961-966.
    [28]Kolbel H, Ackermann P. Commercial-scale experiments on Fischer-Tropsch synthesis in liquid phase [J]. Chemical Engineering & Technology,1956,28:381.
    [29]Delmon B, Froment G. F. Catalyst deactivation 1994, Proceedings of the 6th International Symposium [M]. Adsterdam:Elsevier BV,1994,3501.
    [30]张碧江.煤基合成液体燃料[M].山西:山西科技出版社,1993.
    [31]Jager B R, Espinoza R. Advances in low temperature Fischer-Tropsch synthesis [J]. Catalysis Today,1995,23:17-28.
    [32]吴宝.田磊.张志新等.沉淀铁催化剂在F-T合成中的研究与应用进展[J].化学进展.2004.16(2):256-265.
    [33]O'Brien R J, Xu L G, Spicer R L, et al. Activation study of precipitated iron Fischer-Tropsch catalysts[J]. Energy & Fuels,1996,10:921-926.
    [34]Kolbel H, Ralek M. Selective Fischser-Tropsch synthesis of short-chain olefin [J]. Chemistry & Industry.1979.31:700-702.
    [35]Ma W P. Ding Y J, Lin L W. Fischer-Tropsh synthesis over activated-carbon-supported cobalt catalysts:Effect of Co loading and promoters on catalyst performance [J]. Industrial & Engineering Chemistry Research.2004,43: 2391-2398.
    [36]Feller A. Claeys M, van Steen E. Cobalt cluster effects in zirconium promoted Co/SiO2 Fischer-Tropsch catalysts [J]. Journal of Catalysis,1999,185:120-130.
    [37]Oukaci R. Sigleton A H, Goodwin Jr J G. Comparision of patented Co F-T catalysts using fixed-bed and slurry bubble column reactors [J]. Appllied Catalysis A:General. 1999,186:129-144.
    [38]Ali S, Chen B, Goodwin Jr J G. Zr promotion of Co/SiO2 for Fischer-Tropsch synthesis [J]. Journal of Catalysis,1995,157:35-41.
    [39]Rohr F. Lindvag O A, Holmen A, et al. Fischer-Tropsch synthesis over cobalt catalysts supported on zirconia-modified alumia [J]. Catalysis Today,2000,58: 247-254.
    [40]Moradi G R. Basir M M, Taeb A, et al. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium [J]. Catalysis Communications,2003,4:27-32.
    [41]Bukur D B. Lang X. Highly active and stable iron Fischer-Tropsch catalyst for synthesis gas conversion to liquid fuels [J]. Industrial & Engineering Chemistry Research,1999,38(9):3270-3275.
    [42]Sudsakorn K, Goodwin Jr J G, Jothimurugesan K, et al. Preparation of attrition-resistant spray-dried Fe Fischer-Tropsch catalysts using precipitated SiO2 [J]. Industrial & Engineering Chemistry Research,2001,40(22):4778-4784.
    [43]Zhao R, Goodwin Jr J G, Jothimurugesan K, et al. Attrition resistance of cobalt F-T catalysts for slurry bubble column reactor use [J]. Industrial & Engineering Chemistry Research,2001,40(5):1320-1328.
    [44]Bukur D B, Ma W P, Carreto-Vazquez V, et al. Attrition resistance and catalytic performance of spray-dried iron Fischer-Tropsch catalysts in a stirred-tank slurry reactor [J]. Industrial & Engineering Chemistry Research,2004,43(6):1359-1365.
    [45]Bukur D B, Lang X, Mukesh D. Binder/support effects on the activity and selectivity of iron catalysts in the Fischer-Tropsch synthesis [J]. Industrial & Engineering Chemistry Research,1990,29(8):1588-1599.
    [46]Hou W J, Wu B S, Yang Y, et al. Effect of SiO2 content on iron-based catalysts for slurry Fischer-Tropsch synthesis [J]. Fuel Processing Technology,2008,89(3): 284-291.
    [47]Yang Y, Xiang H W, Tian L, et al. Structure and Fischer-Tropsch performance of iron-manganese catalyst incorporated with SiO2 [J]. Appllied Catalysis A:General. 2005,284(1-2):105-122.
    [48]Bukur D B. Sivaraj C. Supported iron catalysts for slurry phase Fischer-Tropsch synthesis [J]. Appllied Catalysis A:General,2002,231(1-2):201-214.
    [49]Wan H J. Wu B S. Zhang C H, et al. Effect of Al2O3/SiO2 ratio on iron-based catalysts for Fischer-Tropsch synthesis [J]. Fuel,2006,85(10-11):1371-1377.
    [50]Kolbel H, Giehring H. Zur wirkung von alkali-promotion auf eisenkatalysatoren [J]. Brennstojj-chem,1963,44:343-369.
    [51]Rankin J L, Bartholomew C H. Effects of calcinations on the CO hydrogenation activity/selectivity properties of potassium-promoted iron/silica [J]. Journal of Catalysis,1986.100:526-532.
    [52]Bukur D B, Mukesh D S, Patal A. Promoter effects on precipitated iron catalyst for Fischer-Tropsch synthesis [J]. Industrial & Engineering Chemistry Research,1990. 29(2):194-204.
    [53]Yang Y, Xiang H W, Xu Y Y, et al. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis [J]. Applied Catalysis A: General,2004,266(2):181-194.
    [54]刘福霞,郝庆兰,王洪等.钾助剂对F-T合成铁基催化剂浆态床反应性能的影响[J].催化学报.2004,11(11):878-886.
    [55]Pennline H W, Zarochak M F, Stencel J M, et al. Actication and promotion studies in a mixed slurry reactor with an iron-manganese Fischer-Tropsch catalyst [J]. Industrial & Engineering Chemistry Research,1987,26:595-601.
    [56]Ngantsoue-Hoc W, Zhang Y, O'Brien R J, et al. Fischer-Tropsch synthesis:activity and selectivity for Group I alkali promoted iron-based catalysts [J]. Appllied Catalysis A:General,2002,236(1-2):77-89.
    [57]An X, Wu B S, Wan H J, et al. Comparative study of iron-based Fischer-Tropsch synthesis catalyst promoted with potassium or sodium [J]. Catalysis Communications, 2007,8(12):1957-1962.
    [58]Luo M S, Davis B H. Fischer-Tropsch synthesis:Group II alkali-earth metal promoted catalysts [J]. Applied Catalysis A:General,2003,246(1):171-181.
    [59]Yang J, Sun Y C, Tang Y, et al. Effect of magnesium promoter on iron-based catalyst for Fischer-Tropsch synthesis [J]. Journal of Molecular Catalysis A:Chemical.2006, 245(1-2):26-36.
    [60]Tao Z C, Yang Y. Zhang C H, et al. Effect of calcium promoter on a precipitated iron-manganese catalyst for Fischer-Tropsch synthesis [J]. Catalysis Communications, 2006.7(12):1061-1066.
    [61]Ali N P, Seyed M K S, Hamid R B, et al. Effect of Mg. La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer-Tropsch synthesis [J]. Applied Catalysis A:General,2008,348(2):201-208.
    [62]Kolbel H. Ralek M. Fischer-Tropsch synthesis in the liquid phase [J]. Catalysis Reviews. Science and Engineering,1980,21(2):226-274.
    [63]Wielers A F H, Hop C E C A, van Beijnum J. et al. On the properties of silica-supported bimetallic Fe-Cu catalysts Part Ⅱ. Reactivity in the Fischer-Tropsch synthesis [J]. Journal of Catalysis,1990,121(2):375-385.
    [64]Li S, Krishnamoorthy S, Li A, et al. Promoted iron-based catalysts for the Fischer-Tropsch synthesis:design, synthesis, sited ensities and catalytic properties [J]. Journal of Catalysis,2002,206(2):202-217.
    [65]Zhang C H, Yang Y, Teng B T, et al. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper [J]. Journal of Catalysis.2006,237(2): 405-415.
    [66]Wan H J, Wu B S, Zhang C H, et al. Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer-Tropsch synthesis [J]. Journal of Molecular Catal:A: Chemical,2008,283(1-2):33-42.
    [67]Bai L, Xiang H W, Li Y W, et al. Slurry phase Fischer-Tropsch synthesis over manganese-promoted iron ultrafine particle catalyst [J]. Fuel,2002.81(11-12): 1577-1581.
    [68]Malessa R, Baerns M. Iron/manganese oxide catalysts for Fischer-Tropsch synthesis. 4. Activity and selectivity [J]. Industrial & Engineering Chemistry Research,1988, 27(2):279-283.
    [69]Wang C, Wang Q X, Sun X D, et al. CO hydrogenation to light alkenes over MnFe catalysts prepared by coprecipitation and sol-gel methods [J]. Catalysis Letters,2005, 105(1-2):93-101.
    [70]Li T Z, Yang Y, Zhang C H, et al. Effect of manganese on an iron-based Fischer-Tropsch synthesis catalyst prepared from ferrous sulfate [J]. Fuel,2007, 86(7-8):921-928.
    [71]Jaggi N K, Schwartz L H, Butt J B. Phase characterization of iron/manganese Fischer-Tropsch catalysts:effect of compositon and reduction conditions [J]. Appllied Catalysis,1985,13(2):347-361.
    [72]Butt J B. Carbide phases on iron-based Fischer-Tropsch synthesis catalysts part Ⅱ: Some reaction studies [J]. Catalysis Letters,1990,7(1-4):83-106.
    [73]Das C K, Das N S, Choudhury D P, et al. Hydrogenation of carbon monoxide on unsupported Fe-Mn-K catalysts for the synthesis of lower alkenes:promoter effect of manganese [J]. Appllied Catalysis A:General,1994,111(2):119-132.
    [74]Leith I R, Howden M G. Temperature-programmed reduction of mixed iron-manganese oxide catalysts in hydrogen and carbon monoxide [J]. Appllied Catalysis,1988,37(1):75-92.
    [75]Hughes I S C, Newman J O H, Bond G C. The characterisation of unsupported iron and manganese-promoted iron catalysts by x-ray photoelectron spectroscopy and temperature-programmed reduction [J]. Appllied Catalysis,1987.30(2):303-311.
    [76]Van Dijk W L, Niemantsverdriet J W, Van der Kraan A M, et al. Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the Fischer-Tropsch reaction [J]. Appllied Catalysis,1982,2(4-5):273-288.
    [77]Kreitman K M, Baerns M, Butt J B. Manganese-oxide-supported iron Fischer-Tropsch synthesis catalysts:Physical and catalytic characterization [J]. Journal of Catalysis, 1987.105(2):319-334.
    [78]Lohitharn N, Goodwin Jr J G, Lotero E. Fe-based Fischer-Tropsch synthesis catalysts containing carbide-forming transition metal promoters [J]. Journal of Catalysis,2008,255(1):104-113.
    [79]Zhang C H, Yang Y, Tao Z C, et al. Structural properties and reduction behavior of Ni promoted FeMnK/SiO2 catalysts for Fischer-Tropsch synthesis [J]. Journal of Fuel Chemistry and Technology,2006,34(6):695-699.
    [80]Davis B H, Occelli M L. Fisher-Tropsch synthesis, catalysts and catalysis [M]. Adsterdam:Elsevier BV,2007,125-140.
    [81]Fischer F, Tropsch H. Synthesis of petroleum at atmospheric pressure from gasification products of coal [J]. Brennstoff-Chemie,1926,7:97-104.
    [82]Storch H H, Goulombic N, Anderson R B. The Fischer-Tropsch and related syntheses [M]. New York:Wiley,1951.
    [83]Pichler H, Schluz H. Neuere erkenntnisse auf dem gebiet der synthese von kohlenwasserstoffen aus CO und H2 (New insights in the area of the synthesis of hydrocarbons from CO and H2) [J]. Chemie Ingenieur Technik,1970,42(18): 1162-1174.
    [84]Henrici-Olive G, Olive S. Die Fischer-Tropsch synthese:Molekular gewichtsverteilung der primarprodukte and reactionsmechanismus (The Fischer-Tropsch synthesis:molecular weigth distribution of primary products and reaction mechanism) [J]. Angewandte Chemie,1976,88(5):144-150.
    [85]Joyner R W. Mechanism of hydrocarbon synthesis from carbon monoxide and hydrogen [J]. Journal of Catalysis,1977,50(1):176-180.
    [86]Brady Ⅲ R C, Pettit R. Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction [J]. Journal of the American Chemical Society,1980,102(19):6181-6182
    [87]Brady III R C, Pettit R. Mechanism of the Fischer-Tropsch reaction. The chain propagation step [J]. Journal of the American Chemical Society,1981,103(5): 1287-1289.
    [88]Biloen P. Sachtler W H M. Mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts [J]. Advances in Catalysis,1981,30:165-216.
    [89]Turner M L, Long H C, Shenton A, et al. The alkenyl mechanism for Fischer-Tropsch surface methylene polymerisation; the reactions of C2 probes with CO-H2 over rhodium catalysts [J]. Chemistry-A European Journal.1995,1:145-152.
    [90]Turner M L, Long H C, Shenton A, et al. The alkenyl mechanism for Fischer-Tropsch surface methylene polymerisation; the reactions of vinylic probes with CO/H2 over rhodium catalysts [J]. Chemistry-A European Journal.1995.1:549-556.
    [91]Dry M E. Practical and theoretical aspects of the catalytic Fischer-Tropsch process [J]. Applied Catalysis A:General,1996,138:319-344.
    [92]Bub G, Baerns M. Prediction of the performance of catalytic fixed bed reactors for Fischer-Tropsch Synthesis [J]. Chemical Engineering Science,1980,35(1-2):348.
    [93]Zimmerman W H, Bukur D B. Reaction kinetics over iron catalysts used for the Fischer-Tropsch synthesis [J]. The Canadian Journal of Chemical Engineering,1990, 68(2):292.
    [94]Anderson R B. Catalysts for the Fischer-Tropsch synthesis [A]. In P H Emmett (eds.), Catalysis [C], New York:Reinhold,1956,4:257-371.
    [95]Huff G A, Satterfield C N. Intrinsic kinetics of the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst [J]. Industrial and Engineering Chemistry Process Design and Development,1984,23(4):696-705.
    [96]Ledakowicz S, Nettelhoff H, Kokuun R, et al. Kinetics of the Fischer-Tropsch synthesis in the slurry phase on a potassium promoted iron catalyst [J]. Industrial and Engineering Chemistry Process Design and Development,1985,24(4):1043-1049.
    [97]Van Berge P J. Fischer-Tropsch studies in the slurry phase favouring wax production [D]. Potchefstroomse Universiteit vir Christelike Hoer Onderwys,1994.
    [98]Van Steen E, Schulz H. Polymerisation kinetics of the Fischer-Tropsch CO hydrogenation using iron and cobalt based catalysts [J]. Applied Catalysis A:Genernal, 1999,186:309-320.
    [99]Van der Laan G P, Beenackers A A C M. Intrinsic kinetics of the gas-solid Fischer-Tropsch and water gas shift reactions over a precipitated iron catalyst [J]. Applied Catalysis A:Genernal,2000,193:39.
    [100]Botes F G, Breman B B. Development and testing of a new macro kinetic expression for the iron-based low-temperature Fischer-Tropsch reaction [J]. Industrial & Engineering Chemistry Research,2006,45(22):7415-7426.
    [101]Zhou L P, Hao X, Gao J H, et al. Studies and discriminations of the kinetic models for the iron-based Fischer-Tropsch catalytic reaction in a recycle slurry reactor [J]. Energy & Fuels,2011,25:52-59.
    [102]Yates I C, Satterfield C N. Effect of carbon dioxide on the kinetics of the Fischer-Tropsch synthesis on iron catalysts [J]. Industrial & Engineering Chemistry Research,1989,28(1):9-12.
    [103]Deckwer W D, Kokuun R, Sanders E, et al. Kinetic studies of Fischer-Tropsch synthesis on suspended iron/potassium catalyst-rate inhibition by carbon dioxide and water [J]. Industrial and Engineering Chemistry Process Design and Development, 1986,25(3):643-649.
    [104]Lox E S, Froment G F. Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst.2. Kinetic modeling [J]. Industrial & Engineering Chemistry Research,1993,32(1):71-82.
    [105]Schulz H, Claeys M. Kinetic modeling of Fishcer-Tropsch product distribution [J]. Applied Catalysis A:General,1999,186(1-2):91-107.
    [106]马文平,李永旺,赵玉龙等.工业Fe-Cu-K催化剂上费托合成反应动力学(I):基予机理的动力学模型[J].化工学报,1999,50(2):159-166.
    [107]马文平,李永旺,赵玉龙等.工业Fe-Cu-K催化剂上费托合成反应动力学(Ⅱ):模型筛选与参数估值[J].化工学报,1999,50(2):167-173.
    [108]Wang Y N, Ma W P, Lu Y J, et al. Kinetics modelling of Fischer-Tropsch synthesis over an industrial Fe-Cu-K catalyst [J]. Fuel,2003,82(2):195-213.
    [109]Yang J, Liu Y, Chang J, et al. Detailed kinetics of Fischer-Tropsch synthesis on an industrial Fe-Mn catalyst [J]. Industrial & Engineering Chemistry Research,2003,42 (21):5066-5090.
    [110]Teng B T, Chang J, Zhang C H, et al. A comprehensive kinetics model of Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst [J]. Applied Catalysis A: General,2006,301(1):39-50.
    [111]Chang J, Bai L, Teng B T, et al. Kinetic modeling of Fischer-Tropsch synthesis over Fe-Cu-K-SiO2 catalyst in slurry phase reactor [J]. Chemical Engineering Science, 2007,62(18-20):4983-4991.
    [112]吉媛媛,相宏伟,李永旺等.超细粒子 Fe-Mn工业催化剂F-T合成集总动力学(I):反应机理与动力学模型描述[JJ.化工学报,2005,56(6):1020-1025.
    [113]吉媛嫒,相宏伟,李永旺等.超细粒子 Fe-Mn工业催化剂F-T合成集总动力学(Ⅱ): 参数估算与模型筛选[J].化工学报.2005.56(6):1026-1030.
    [114]Zhao R, Goodwin Jr J G, Jothimurugesan K. et al. Spray-dried iron Fischer-Tropsch catalysts.1. Effect of structure on the attrition resistance of the catalysts in the calcined state [J]. Industrial & Engineering Chemistry Research,2001,40 (5): 1065-1075.
    [115]Moradi G R, Basir M M, Taeb A. et al. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium [J]. Catalysis Communications,2003,4(1):27-32.
    [116]Feller A, Claeys M, van Steen E. Cobalt cluster effects in zirconium promoted Co/SiO2 Fischer-Tropsch catalysts [J]. Journal of Catalysis,1999,185:120.
    [117]陈建刚,相宏伟,董庆年等.钻基费托合成催化剂上CO、H2的吸附行为[J].物理化学学报,2001,17(2):161-164.
    [118]Oukaci R, Sigleton A H, Goodwin Jr J G. Comparison of patented Co F-T catalysts using fixed-bed and slurry bubble column reactors [J]. Applied Catalysis A:General, 1999,186:129.
    [119]O'Brien R J, Xu L, Milburn D R, et al. Fischer-Tropsch synthesis:Impact of potassium and zirconium promoters on the activity and structure of an ultrafine iron oxide catalyst [J]. Topic Catalysis,1995,2(1-4):1-15.
    [120]Belosludov R V, Sakahara S, Yajima K, et al. Combinatorial computational chemistry approach as a promising method for design of Fischer-Tropsch catalysts based on Fe and Co [J]. Applied Surface Science,2002,189(3-4):245-252.
    [121]Zhang H J, Ma H F, Zhang H T, et al. Effects of Zr and K promoters on precipitated iron-based catalysts for Fischer-Tropsch synthesis [J]. Catalysis Letters,2012,142(1): 131-137.
    [122]Jothmurugesan K, Goodwin Jr J G, Gangwal S K, et al. Development of Fe Fischer-Tropsch catalysts for slurry bubble column reactors [J]. Catalysis Today,2000, 58:335-344.
    [123]Dlamini H, Motjope T, Joorst G, et al. Changes in physico-chemical properties of iron-based Fischer-Tropsch catalyst induced by SiO2 addition [J]. Catalysis Letters, 2002,78:201-207.
    [124]Wan H J, Wu B S, Tao Z C, et al. Study of an iron-based Fischer-Tropsch synthesis catalyst incorporated with SiO2 [J]. Journal of Molecular Catalysis A:Chemical,2006, 260:255-263.
    [125]Clausen B S, Tops(?)e H, Morup S. Preparation and properities of small silica-supported iron catalyst particles:Influence of reduction procedure [J]. Applied Catalysis,1989,48:327-340.
    [126]Zhao G Y, Zhang C H, Qing S D, et al. Effect of interaction between potassium and structural promoters on Fischer-Tropsch performance in iron-based catalyst [J]. Journal of Molecular Catalysis A:Chemical.2008.286:137-142.
    [127]Jin Y, Datye A K. Phase transformation in iron Fischer-Tropsch catalyst during temperature-programmed reduction [J]. Journal of Catalysis,2000,196(1):8-17.
    [128]Sudsakorn K, Goodwin Jr J G, Adeyiga A A. Effect of activation method on Fe FTS catalysts:investigation at the site level using SSITKA [J]. Journal of Catalysis,2003, 213(2):204-210.
    [129]Motiope T R, Dlamini H T, Hearne G R. Application of in situ Mossbauer spectroscopy to investigate the effect of precipitating agents on precipitated iron Fischer-Tropsch catalysts [J]. Catalysis Today,2002,71(3-4):335-341.
    [130]Dry M E.The Fischer-Tropsch synthesis [M]. New York:Springer-Verlag,1981.
    [131]Dry M E, Oosthuizen G J. The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer-Tropsch synthesis [J]. Journal of Catalysis, 1968,11:18-24.
    [132]Miller D G, Moskovits M. A study of the effects of potassium addition to supported iron catalysts in the Fischer-Tropsch reaction [J]. Journal of Physical Chemistry,1988, 92:6081-6085.
    [133]Dry M E, Shingles T, Boshoff L J, et al. Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-Tropsch synthesis [J]. Journal of Catalysis, 1969,15:190-199.
    [134]Ma W P, Kugler E L, Dadyburjor D B. Potassium effects on activated-carbon-supported iron catalysts for Fischer-Tropsch synthesis [J]. Energy & Fuels,2007,21:1832-1842.
    [135]Lohitharn N, Goodwin Jr J G. Effect of K promotion of Fe and FeMn Fischer-Tropsch synthesis catalysts [J]. Journal of Catalysis,2008,260:7-16.
    [136]Dictor R A, Bell A T. Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts [J]. Journal of Catalysis,1986,97(1):121.
    [137]Dry M E, Oosthuizen G J. The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer-Tropsch synthesis [J]. Journal of Catalysis, 1968,11:18-24.
    [138]Li S, Li A, Krishnamoorthy S, et al. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts [J]. Catalysis Letters,2001,77(4):197-205.
    [139]黄止而,张志新.用于 F-T合成的沉淀铁催化剂的X射线光电子谱的研究[JJ.燃料化学学报,1990,18(2):137-142.
    [140]Zhang C H, Zhao G Y. Liu K K, et al. Adsorption and reaction of CO and hydrogen on iron-based Fischer-Tropsch synthesis catalysts [J]. Journal of Molecular Catalysis A:Chemical,2010,328.35-48.
    [141]Brown J K, Luntz A C, Schultz P A. Long-range poisoning of D2 dissociative chemisorptions on Pt(111) by coadsorbed K [J]. Journal of Chemicl Physics,1991, 95(5):3767-3774.
    [142]Amenomiya Y, Pleizier G. Chemisorption of gases on a promoted iron catalyst:Ⅰ. Hydrogen, nitrogen, carbon monoxide and carbon dioxide [J]. Journal of Catalysis, 1973,28(3):442-454.
    [143]Benziger J, Madix R J.The effects of carbon, oxygen, sulfur and potassium adlayers on CO and H2 adsorption on Fe(100) [J]. Surface Science,1980,94:119-153.
    [144]Moon D W, Dwyer D J, Bernasek S L. Adsorption of CO on the clean and sulfur modified Fe(100) surface [J]. Surface Science,1985,163(1):215-229.
    [145]Cameron S D, Dwyer D J. Charge transfer effects on CO bond cleavage:CO and potassium on Fe(100) [J]. Surface Science,1988,198(3):315-330.
    [146]Cao D B, Zhang F Q, Li Y W. et al. Density Functional Theory study of CO adsorption on Fe5C2(001),-(100), and-(110) surfaces [J]. Journal of Physical Chemistry B,2004,108(26):9094-9104.
    [147]Kayakawa H, Tanaka H, Fujimoto K. Studies on precipitated iron catalysts for Fischer-Tropsch synthesis [J]. Applied Catalysis A:General,2006,310:24-30.
    [148]Shroff M D, Kalakkad D S, Coulter K E, et al. Activation of precipitated iron Fischer-Tropsch synthesis catalysts [J]. Journal of Catalysis,1995,156(2):185.
    [149]Ding M Y, Yang Y, Wu B S. et al. Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer-Tropsch synthesis [J]. Journal of Molecular Catalysis A:Chemical,2009,303:65-71.
    [150]Qing M, Yang Y, Wu B S, et al. Modification of Fe-SiO2 interaction with zirconia for iron-based Fischer-Tropsch catalysts [J]. Journal of Catalysis,2011,279:111-122.
    [151]Inderwildi O R, Jenkins S J, King D A. Fischer-Tropsch mechanism revisited: Alternative pathways for the production of higher hydrocarbons from synthesis gas [J]. Journal of Physical Chemistry C,2008,112(5):1305-1307.
    [152]Huo C F, Ren J, Li Y W, et al. CO dissociation on clean and hydrogen precovered Fe (111) surfaces [J]. Journal of Catalysis,2007,249(2):174-184.
    [153]Ojeda M, Nabar R, Nilekar A U,et al. CO activation pathways and the mechanism of Fischer-Tropsch synthesis[J]. Journal of Catalysis,2010,272(2):287-297.
    [154]Botes F G. The effects of water and CO2 on the reaction kinetics in the iron-based low-temperature Fischer-Tropsch synthesis:A literature review [J]. Catalysis Reviews, 2008,50:471-491.
    [155]Satterfield C N, Hanlon R T. Tung S E. et al. Effect of water on the iron-catalysed Fischer-Tropsch synthesis [J]. Industrial and Engineering Chemistry Process Design and Development,1986.25:407.
    [156]朱炳辰.化学反应工程[M].北京:化学工业出版社,2001.
    [157]候文娟,赵玉龙,张碧江.浆态搅拌釜中F-T合成的动力学研究[J].燃料化学学报.1997,25(1):42-48.
    [158]于遵宏.化学过程开发分析[M].上海:华东理工大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700