用户名: 密码: 验证码:
厚壁管件有芯棒开式冷挤压工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厚壁管件因其需求量大,应用范围广,是机械制造业中的一种重要零件。实际应用的大部分厚壁管件,均需对所购置的管件进行大量的切削加工才能满足使用要求。因此,存在着低效、高耗等问题。所以,研究高效、低耗的厚壁管件制造方法不仅具有重要的理论意义,而且也有很大的经济效益和社会效益。
     本文采用理论建模、数值模拟和实验研究相结合的方法,对厚壁管件有芯棒开式冷挤压成形工艺进行了系统的研究。
     对有芯棒开式冷挤压成形工艺进行了分析,把其分为外缩径内径不变、内扩径外径不变、外缩径内扩径三种变形形式,并确定了影响成形的关键工艺参数为:变形程度ε、模具锥角(凹模锥角2α,芯棒锥角2α′)、摩擦系数μ、坯料原始厚径比t_0/D_0、材料屈服强度σ_s。
     借助DEFORM软件对有芯棒开式冷挤压工艺进行了模拟分析。通过对应变场的分析,直观地把金属变形过程分为未变形区、变形区和已变形区。形象地模拟出了当参数选择不当发生挤压失效时的变形情况,确定了验证实验中最大镦粗量测量位置。模拟了金属质点的运动轨迹,与理论分析所得流线具有很好的一致性。
     通过引入流体力学理论建立了厚壁管件有芯棒开式冷挤压成形理论的综合分析方法。依据流体力学的理论,初次引入确定连续变形流动模型的动可容速度场的严格理论方法--流函数法,用速度边界条件和体积不变条件建立运动学许可的连续速度场模型;根据应变速率场与速度场关系求得应变速率场;采用上限法得出了厚壁管件有芯棒开式冷挤压外缩径内径不变、内扩径外径不变、外缩径内扩径三种变形形式统一功率计算公式,建立了力能与各影响参数之间的定量解析式,通过计算得到了一定参数组合下的力能关系。确定了最佳模具半锥角的取值范围:α_(opt)(α′_(opt))=6°~12°,确定了模具设计的关键参数。
     根据厚壁管件有芯棒开式冷挤压工艺的失稳判据,得到了厚壁管件有芯棒开式冷挤压外缩径内径不变、内扩径外径不变、外缩径内扩径三种变形形式统一的极限变形程度的理论判据模型;基于极限变形程度的理论模型,研究了各参数组合下的极限变形程度变化规律及成形极限条件,在给定参数范围内,厚径比t_0 / D_0 = 0.15,μ=0.03时,外缩极限变形程度ε_(max)取值可达41%,相应内扩极限变形程度ε_(max)最大值为36%,填补了有芯棒开式冷挤压工艺制订时无数据可查的空白。
     对理论结果进行了实验验证,验证结果表明:理论计算与实验结果最大相对误差小于10%,证明了理论计算的实用性。
     应用上述研究成果及相关数据,制订了液压支架上典型零件毛坯的节材、高效的挤压工艺,并设计制作了挤压模具。在自行研制的专用挤压机上,成功挤制了液压支架上的典型零件毛坯。为相关零件有芯棒开式冷挤压工艺的制订提供了借鉴和指导。
Thick-walled tube is an important manufacturing mechanical parts in a great demandand for a wide range of applications. Most of the required thick-walled pipe in theproduction would meet the using requirements only after a lot of machining, which resultsin low efficiency and material consumption. Therefore, the study on the efficient, low-costmanufacturing method of thick-walled tube has important theoretical significance andgreat economic benefits.
     In this paper, a lot of the system research on the process parameters related of thethick-walled tube open-die cold extrusion with mandrel technology by a combination ofcombining theoretical modeling, numerical simulation and experimental study.
     On the basis of preliminary studies, the open-die cold extrusion with mandrel wasanalyzed by dividing into the three kinds of deformation, reducing outer diameter with thesame inner diameter, expanding inner diameter with the same outer diameter and neckingouter diameter with expanded inner diameter. And the critical process parameters weredefined: deformationε, mold cone angle (cone angle of the die 2α, mandrel coneangle2α') coefficient of frictionμ, billet original thickness to diameter ratiot 0D0, theyield strength of materialσs.
     The open-die cold extrusion with mandrel was simulated and analyzed. The metaldeformation process was intuitively divided into the unreformed stage, deformation stageand the deformation stage. The failure form of extrusion was simulated when parameterswas not correctly selected, and the measurement of the upsetting value was determined inthe verification experiment. The trajectory of the metal particles which was simulated ingood agreement with the theoretical analysis of flow lines.
     As the simulation results is discrete, a large of systematic theoretical studies arecarried out in this paper. The comprehensive analysis methods of forming theory is createdfor open-die cold extrusion with mandrel.
     Based on the theory of fluid mechanics, stream function method was introduced firstlywhich is a rigorous theory of kinematically admissible velocity field to determine thecontinuous deformation flow model. The establishment of a continuous velocity fieldmodel in kinematics was performed by the introduction of stream function and the use ofvelocity boundary conditions and constant volume. strain rate field was obtained based onthe relationship between the strain rate field and velocity field. A unified expanding power calculation formula was deduced using the upper limit method for open-die cold extrusionof the thick-walled tubes with mandrel, including the three kinds of deformation, reducingouter diameter with the same inner diameter, expanding inner diameter with the sameouter diameter and necking outer diameter with expanded inner diameter. The quantitativeanalytic solution was established between the force and energy and the impact forceparameters, the relationship of the force and energy was obtained in the combinations ofcertain parameters. The best mold half cone angle range was detemined:α_(opt)(α′_(opt))=6°~12°,and the key parameters of the mold design was obtained.
     According to the instability criterion for thick-wall tube forming by open-die coldextrusion with mandrel, the theoretical criterion model for maximum deformation degreeis obtained for the three kinds of deformation, reducing outer diameter with the same innerdiameter, expanding inner diameter with the same outer diameter and necking outerdiameter with expanded inner diameter. Based on the theoretical maximum deformationdegree model, the variation law of maximum deformation degree in combinations of theparameters is investigated. Whent_0 / D_0 = 0.15,μ=0.03, the max value of the maximumreduction in reducing outer diameter with the same inner is up to 41%. Compounding theis up to 36% in expanding inner diameter with the same outer diameter, which filled theblank of no available data in formulating open die cold extrusion with mandrel.
     Based on the theoretical and simulated parameters range, targeted, feasibilityexperimental program was designed. A series of typical experiments is conducted and thetheoretical result was verified by experiments. The verification results show that: themaximum relative error of the theoretical calculations and experimental results is less than10%, and the accuracy of theoretical calculations is proved.
     The extrusion process of the typical part billet with material saving and efficient in ahydraulic cylinder bracket was developed initially by the application of research resultsand related data, and extrusion dies was designed. By the self-developed special extrusionmachine, the successful extrusion of the connecting column billet was realized whichprovides guidance and reference for formulating process of the relevant parts of open diecold extrusion.
引文
[1]杨长顺.冷挤压工艺实践[M].北京:国防工业出版社, 1984: 5-21.
    [2]刘玲玲,秦建平.套筒类零件的厚壁管生产新工艺[J].锻压设备与制造技术, 2004(4): 50-52.
    [3]董涛,曹福凯.厚壁管件开式冷挤压过程研究[J].经营管理者, 2010,(06): 387-388.
    [4]林黎锋,韩福祥,耿忠民.薄壁不锈钢管的加工[J].金属加工(冷加工), 2009,(04) : 32-33.
    [5] H. Yang and S. Li, Process optimization of the inverting-forming of thin-walled tubes withradiused dies[J]. Journal Materials Processing Technology, 1995 (52), 489–495.
    [6]李军,韩鹏彪.厚壁管件无芯棒开式冷挤压塑性变形的分析[J].锻压技术, 2000(2): 14-16.
    [7]李军,张双杰,韩鹏彪.开式冷挤压成形功率及挤压力的研究[J].河北科技大学学报,2000(2): 17-21.
    [8]谢建新,刘静安.金属挤压理论与技术[M].冶金工业出版社, 2001(5): 22-23.
    [9]葛金山.挤压工艺特点及挤压理论发展概况[J].机械制造与自动化, 1995 (04):11-26.
    [10] H. KUDO. An Upper-bound Approach to Plane Strain Forging and Extrusion[J]. Engineering forIndustry, 1960, 2(10): 10-18.
    [11]赵军,邓建新.廿一世纪制造业的发展趋势[J].国际学术动态, 2007,(02) : 56-57.
    [12]车建国.世界制造业的发展趋势和中国制造企业的路径选择[J].现代管理科学, 2008,(09) :74-75.
    [13] Sturgeon, T. , Industry Co- evolution and the Rise of a Shared Supply- base for ElectronicsManufacturing[J]. MI T Industrial Performance Center( I PC) , Cambridge, US, 2001.
    [14]邓安球,史忠良.全球化背景下我国制造业发展回顾与展望[J].理论视野, 2009,(03): 98-103.
    [15] Humphrey, J. and Schmitz, H.,How does Insertion in Global Value Chains Affect Upgrading inIndustrial Clusters [J], Regional Studies. 2009 (36): 1017- 1027.
    [16] H. Shin, W.C. Benton and M. Jun, Quantifying suppliers’product quality and deliveryperformance: a sourcing policy decision model[J]. Computers & Operations Research,2009(36 ):462–471.
    [17]郭会光.我国大型锻造的发展与提高[J].机械工人.热加工, 2005,(07): 14-15.
    [18]郭会光,田继红.大型锻造的质量控制和研究方略[J].大型铸锻件, 2007,(02): 45-46.
    [19] Hideki Kakimoto, Takefumi Arikawa, Yoichi Takahashi, Tatsuya Tanaka, Yutaka Imaida.Development of forging process design to close internal voids[J]. Journal of Materials ProcessingTechnology, Volume 210, Issue 3, 2010(02): 415-422.
    [20] G. Banaszek, H. Dyja, S. Berski and M. Janik, Theoretical and experimental analysis of the effectof die shape on the internal quality of forged rods, J. Mater. Process[J]. Technol. 2004(154): 571–577.
    [21] Xiao-Xun Zhang, Zhen-Shan Cui, Wen Chen, Yan Li . A criterion for void closure in large ingotsduring hot forging[J] . Journal of Materials Processing Technology, Volume 209, Issue 4,2009(02):1950-1959.
    [22] Ryuichiro Ebara. Fatigue crack initiation and propagation behavior of forging die steels[J].International Journal of Fatigue, Volume 32, Issue 5, 2010(05): 830-840.
    [23] P. H. KIM, M. S. CHUN, J. J. Yi. Pass Schedule Algorithms for Hot Open Die Forging[J]. Journalof Materials Processing Technology, 2005, 5(9): 216-223.
    [24] A.Caporalli, L. Antonio Gileno. Expert System for Hot Forging Design[J]. Journal of MaterialsProcessing Technology, 2006, 7(10): 131-135.
    [25]胡国军,冯方.现代冷挤压成形技术研究与应用[J].广西:模具工业, 2010 (02) .
    [26]杨煜.国内外冷挤压技术发展综述[J].锻压机械, 2001(01): 3-5.
    [27]李德成.我国汽车工业锻造技术的发展[J].锻压机械, 1995, 5(4): 3-9.
    [28] Dyi-Cheng Chen, Sheng-Kai Syu, Cing-Hong Wu, Sin-Kai Lin. Investigation into cold extrusionof aluminum billets using three-dimensional finite element method[J]. Original Research ArticleJournal of Materials Processing Technology, 2007, 192( 10): 188-193.
    [29] F. Dohmann, ch. Hartl. Tube hydorforming state of the art and future trends[J]. Journal ofMaterials Processing Technology, 1997, 7(2): 174-178.
    [30]王同海.管材塑性加工技术[M].北京:机械工业出版社, 1998.20-30.
    [31]张朝生.工具形状对管材冷挤压加工变形特性的影响[J].钢管, 2008(02):75.
    [32]汪家才.金属压力加工的现代力学原理[M].北京:冶金工业出版社, 1991.10-30.
    [33]林治平.上限法在金属塑性加工工艺中的应用[M].北京:中国铁道出版社,1991.
    [34] Fujikawa, H.Yoshioka, S.Shimamura. Cold and warm-forging applications in the automotiveindustry[J]. J. Mater. Process. Technol, 1992, 35: 317-341.
    [35] A. Lilleby, H. Hemmer. Cold pressure welding of severely plastically deformed aluminium bydivergent extrusion[J]. Materials Science and Engineering, 2010, 527(6): 1351-1360.
    [36] M. KAMMER, K. POLAND, A.E.TEKAYA. Non-conventional Extrusion of Less-commonMaterials[J]. Journal of Materials Processing Technology, 1995, 6(9): 345-348.
    [37] H. KUDO. A Review of Development and use of the Upper Bound Approach to Metal FormingPrcess[J]. Engineering for Industry, 1961, 7(31): 53-58.
    [38] N. Asnafi, A. Skoggsgardh. Theoretical of Plasticity stroke-contrlled tube hydroforming[J].Journal of Materials Processing Technology, 2000, 9 (2): 136-142.
    [39] N. Asnafi. Analytical modeling of tube hydroforming. Thin-walled Structures[J], 2002, 36(5):7-12.
    [40] J. Tirosh, A. Neuberger. On tube expansion by internal fluid pressure with additional compressivestress[J]. International Journal of Mechanical Sciences, 2004, 40(3): 58-65.
    [41] Y. M. Hwang, L. S. Hwang. Friction tests in tube hydroforming[J]. Journal of Materials ProcessingTechnology, 1997, 60(5): 114-118.
    [42]杨兵,张卫刚,林忠,等.管件液压成形中加载路径的优化设计方法研究[J].塑性工程学报,2006, 13(4): 10-14.
    [43]周立华,李双义,张振纯.厚壁管件上小尺寸深锥孔成形加工及工艺尺寸的预测[J].锻压技术, 1999, 4(3): 11-17.
    [44]黄克坚,包忠诩,陈泽中,等.关于挤压变形规律理论研究方法的一些探讨[J].塑性工程学报,2003(04): 45-51.
    [45]胡静安.金属挤压成形理论及技术发展现状与趋势[J].有色金属加工, 2002 (01): 4-9.
    [46] G. SACHS, W. EISBEIN. Power Consumption and Mechanson of Flow in the ExtrusionProcess[J]. Mitt. Mater, 1931, 2(16): 67-75.
    [47]王忠堂,郑洁,张士宏等.管材挤压力能参数物理模型[J ].塑性工程学报, 2003( 4): 49-51
    [48]刘志存,刘英贵.用主应力法计算TC11第八级压气机盘开式模锻变形力[J].大型铸锻件,1997(04): 21-23.
    [49] R. HILL. The Mathematical Theory of Plasticity. London[J]: Oxford University Press,1950.
    [50]张国泽,叶旭明,申奎东.滑移线法求变形力实验模拟与计算修正.锻压技术, 2004(01):54-56.
    [51]杨雄.用滑移线法解正挤压实心件的准确方法[J].长江大学学报(自科版)医学卷, 2006(4):89-90.
    [52] W. JOHNSON. Estimation of Upper Bound Loads for Extrusion and Coming Operations[J].Engineering for Industry, 1959, 173(1): 87-91.
    [53] H. KUDO. An Upper-bound Approach to Plane Strain Forging and Extrusion[J] . Engineering forIndustry, 1960, 2(10): 10-18.
    [54] H. KUDO. Some Analytical and Expermental Studies of Axisymmetric Cold Forging andExtrusion[J]. Engineering for Industry, 1960, 4(25): 53-58.
    [55] B. AVITZUR. The Application of Limit Analysis[J]. Metal Forming, 2006, 1(1): 15-19.
    [56]张玉忠.用上限法求解轴承套圈的冷挤压力[J].轴承, 1997(01): 14-17.
    [57]黄翔,周儒荣.型材挤压过程的上限法分析[J].应用科学学报, 1999 (01): 75-82.
    [58]陈胤,林涵,黎文锋,等.开式冷挤压工艺参数的上限法分析与实验研究[J].福建工程学院学报, 2009 (03): 12-16.
    [59]董涛,曹福凯.厚壁管件开式冷挤压过程研究[J].经营管理者, 2010 (06): 387-388.
    [60]李双义,张连洪,刘永泽.流函数的上限模式在挤压工艺中的应用[J].材料科学与工艺,1999(02): 27-33.
    [61] C. H. LEE, P. H. KING. Expermental Study on Spline of Open-die Forging[J]. Journal of MaterialsProcessing Technology, 1997, 2(8): 79-82.
    [62] Z. A. KEHAN, U. CHAKINGAL. Press for Aluminium Alloy on Forming Process[J]. Journal ofMaterials Processing Technology, 2001, 8(13): 101-104.
    [63] Y. C. LEE, F. K. CHEN. Failure Analysis of a Cold-extrusion Punch to Enhance its Quality andProlong its Life[J]. Journal of Materials Processing Technology, 2000, 105(1): 256-262.
    [64]李军.开式冷挤压成形的理论建模及工艺参数的应用研究[D]. [天津大学工学博士学位论文]. 1997.5-30.
    [65]李军,韩鹏彪.开式冷挤压成形极限变形程度的理论及实验研究[J].塑性工程学报, 2000,2(7): 31-34.
    [66]张连洪,徐英杰,钟宏辉.开式冷挤压无芯棒缩管内径尺寸的非稳态塑性有限元预测[J].塑性工程学报, 1997, 6(3): 79-81.
    [67]鲁素玲.开式冷挤压成形深小锥孔尺寸预测研究[J]. [燕山大学工学硕士学位论文]. 2004.
    [68]鲁素玲,刘玉忠.深小锥孔零件无芯棒开式冷挤压刚塑性边界分析[J].河北科技大学学报,2004, 25(1): 42-46.
    [69]魏志刚,汤文成,刘德仿.星形套冷挤压成形有限元方法研究[J].中国机械工程, 2006(16):23-26.
    [70]冯文杰,陈莹莹,米林,等.矩形花键轴冷挤压的数值模拟分析[J].现代制造工程, 2007(02) :111-113.
    [71]郑继明.无缝钢管局部径向模具塑性成形有限元分析[J].锻压技术, 2006, 4(5): 110-112.
    [72]李军,张玉强,孟宪举,等. Deform软件在实心轴开式冷挤压单位挤压力求解中的应用[J].机械工程师, 2010 (02): 98-99.
    [73]杨长顺.冷挤压工艺实践[M].北京:国防工业出版社, 1984.
    [74] J. MANFER, P. WILSON. Lubrication for Cold Extrusion[J]. Wire Industry, 2002, 1 (2): 69-73.
    [75] R. A. LORENZO. Analysis of Pressure Distribution on the Die in Cold Extrusion OperationsWire[J].Journal of Materials Processing Technology, 2000, 8(5): 69-73.
    [76] Dong-Myeong Shin, Jeong-Ah Seo, Jin-Gun Kim etc. Effects of the disaccharide concentrationand the extrusion speed on the size of unilamella vesicles [J] , Current Applied Physics, In Press,Corrected Proof, Available online 23 April 2011.
    [77] M. Hammad, A. Qualtrough, N. Silikas, Speed of removal and apical extrusion of different fillingmaterials[J]. Dental Materials, Volume 25, Issue 5, May 2009, 15-20.
    [78] P. A. GOUVEIA, J. M. C. RODRIGUES, P. A. F. MARTINS. Finite Element Modelling of ColdForward Extrusion Using Updated Lagrangianand Combined Eulerian-LagrangianFormulations[J].Journal of Materials Processing Technology, 1998, 21(2): 136-142.
    [79] N. BIBA, S. STEBOUNOV, A. LISHINY. Cost Effective Implementation of Forging Simulation[J].Journal of Materials Processing Technology, 2001, 12(6): 34-39.
    [80] W. Ca, Sh. Zhang, B. Cheng. Rigid-Plastic FEM analysis for Cold Extrusion[J]. Journal ofMaterials Processing Technology, 2004, 3(4): 12-16.
    [81] H. W. LIU, H. DING, J. CUI. Application of Analsys on a Section Extrusion Die[J]. ActaMetallurgica sinice, 2005, 5(12): 791-793.
    [82]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1986, 139-180.
    [83] S. A. Spiewak, R. Duggirala, K. Barnett. Predictive monitoring and control of the cold extrusionprocess[J]. CIRP Annals, 2000, 49(1): 34-38.
    [84] H. Hirschrogel, V. Donmelen. Some applications of cold and warm forging[J]. J. Mater. Process.Technol, 1992, 35 : 343-356.
    [85]贺礼清.工程流体力学[M].北京:石油工业出版社,2004,11.
    [86]吴向红,赵国群,孙胜,等.挤压速度和摩擦状态对铝型材挤压过程的影响[J].塑性工程学报,2007,(01): 36-41.
    [87]庞祖高,张银意,唐志强,等.挤压速度对铝型材分流模寿命影响的模拟分析[J].锻压技术,2010,(01): 142-145.
    [88] B P PAGouveia, J M C Rodrig ues, P A F M artins. Steady state finite element analysis of coldforward extrusion[ J] . Journal of Materials Processing Technology, 1998. 73, 281~ 288.
    [89]张双杰.中碳钢(45#)开式冷挤压极限变形程度的实验研究[J].河北科技大学学报, 2000,21(4):46-49.
    [90]王大勇,田孝飞.长轴类零件冷挤压工艺及模具设计研究[J].锻压技术, 2006, 4(5): 107-109.
    [91]黎文峰,林永南,张振纯.厚壁管件开式冷挤压成型的实验研究[J].锻压设备与制造技术,2004, 3(4): 55-57.
    [92]张双杰,李强,李占华,等.厚壁管件有芯棒开式冷挤压理论建模[J].塑性工程学报,2010(06): 67-71.
    [93]张双杰,李强,王丽娟,等.厚壁管件有芯棒开式冷挤压成形极限分析[J].机械工程学报,2010,(22): 53-56.
    [94] Zhang shuang-jie, Li qiang, Li zhan-hua, Gao ying, Yao yun-feng, Li jun. Theoretical andexperimental analysis of the forming limit of cold open-die extrusion with mandrel for thethick-walled tube[J]. 2011 international conference on information science and engineering,2011,(9): 699-701.
    [95]王雷刚,黄瑶,刘全坤.冷挤压塑性流体动力润滑分析[J].润滑与密封, 2006(02): 24-26.
    [96]廖海滨,牟相山,徐文渊.自制水基石墨涂料的优化[J].山东冶金, 2005(03): 62-63.
    [97]李竹滨,杨涛,周秋芬等.钻杆管端加厚水基石墨润滑剂的应用与改进[J].化学工程与装备,2010(07): 59-60.
    [98]定巍,江海涛,唐荻,等. TRIP钢塑性变形时加工硬化行为研究[J].热加工工艺, 2009,(20):15-17.
    [99]张御天,付彭怀,张满. TP2紫铜的加工硬化特性[J].热加工工艺, 2008,(05): 127-129.
    [100]邝霜,康永林,林浩,等. C-Si-Mn冷轧双相钢的应变硬化特性[J].材料工程,2009,(02):11-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700