用户名: 密码: 验证码:
甲嘧磺隆的微生物降解作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用生物修复法来降低环境中的农药是行之有效的措施之一,在诸多的农药生物修复方法中以微生物修复的研究和应用最为广泛,尤其微生物修复环境中长残效农药的研究较多。甲嘧磺隆是一种超高效、广谱、持效期长的磺酰脲类除草剂,在世界范围内广泛应用于林业及非耕地杂草的防除。甲嘧磺隆性质稳定、不易降解、在环境中持效期长,因此对敏感作物很容易造成药害。甲嘧磺隆的水溶性较高,在土壤中的移动性较强,易造成对地下水的污染,因此,对甲嘧磺隆微生物降解作用的研究具有一定的实践意义。而关于甲嘧磺隆的微生物降解作用研究鲜见报道,本研究通过富集培养的方法从土壤和水中分离筛选出19株可降解甲嘧磺隆的微生物,对其中降解能力较强的JH2和JH3菌株进行了降解特性及降解机理研究,主要研究结果如下:
     1.降解甲嘧磺隆微生物的筛选。利用富集培养技术从生产甲嘧磺隆农药厂的废水中分离得到了19株能够降解甲嘧磺隆的微生物,通过测定不同菌株对甲嘧磺隆的降解率发现:供试菌株对低浓度甲嘧磺隆的降解率要显著高于高浓度的降解率,在培养基中甲嘧磺隆的含量为5 mg·L~(-1)时,JH3菌株的降解率最高,为98.9%,其次是JH2菌株,降解率为95.3%。对其中降解作用较强的7个菌株进行鉴定,其中JH3菌株为睾丸酮丛毛单胞菌(Comamonas testosteroni);JH2菌株为食酸丛毛单胞菌(Delftia subsp);JH10菌株为枯草芽孢杆菌(Bacillus subtilis);JH6菌株为解淀粉芽孢杆菌(Bacillus amyloliquefaciens);SH3菌株为枯草芽孢杆菌(Bacillus subtilis);SH5菌株为枯草芽孢杆菌(Bacillus subtilis);SH4菌株为沙门氏菌(salmonella sp.)。
     2. JH2、JH3菌株的降解特性及降解机理研究。结果表明,JH2菌株的最适降解培养基为基础培养基Ⅲ,以甲嘧磺隆浓度为5 mg·L~(-1)时JH2、JH3菌株降解率最高;JH2菌株对甲嘧磺隆降解的适宜温度为30℃,JH2菌株接种量为1×108 CFU·mL~(-1),转速为150 r·min~(-1),培养120 h对甲嘧磺隆的降解率最高;JH3菌株对甲嘧磺隆降解的适宜温度为35℃,接种量为1×107 CFU·mL~(-1),转速为150 r·min~(-1),培养72 h时对甲嘧磺隆的降解率最高;通过对JH2、JH3菌株进行作用机理研究,两菌株降解产物的特征峰基本相同,降解产物的主要碎片离子为m/z198、分子式为C8H7O4S的化合物,其紫外检测的保留时间为3.0 min,推断甲嘧磺隆结构式中的另一半结构可能降解为链状烷烃,没有紫外吸收,也不能离子化,因此没有特征峰。以此判断JH2、JH3对甲嘧磺隆降解的作用位点在S-N键。
     3. JH2、JH3菌株降解酶活性研究。通过JH2、JH3菌株对甲嘧磺隆降解酶定域表达试验表明,两菌株的胞内酶和胞外酶均有活性,降解甲嘧磺隆的关键酶都主要是胞外酶且降解酶诱导表达。在LB液体培养基中,当甲嘧磺隆浓度为5 mg·L~(-1)、接种量为2.3×108 CFU·mL~(-1)、初始pH值为8.0、温度30℃、转速为150 r·min~(-1)、培养时间120 h时JH2菌株胞外粗酶的酶比活最高达到85.8 U·mg~(-1);其酶促反应体系的甲嘧磺隆最适浓度为5 mg·L~(-1)、温度30℃、pH值为8.0时胞外酶对甲嘧磺隆的降解率最大为86.9%。在LB液体培养基中,当甲嘧磺隆浓度为5 mg·L~(-1)、接种量为2.3×107 CFU·mL~(-1)、初始pH值为9.0、温度35℃、转速为150 r·min~(-1)、培养时间72 h时JH3菌株胞外粗酶的酶比活最高达到88.4 U·mg~(-1);酶促反应体系的甲嘧磺隆最适浓度为5mg·L~(-1)、温度35℃、pH值为9.0时胞外酶对甲嘧磺隆的降解率最大为91.3%。两菌株甲嘧磺隆降解酶在25℃~ 45℃范围内热稳定性较好,pH值为7 ~ 9碱性条件下能够保持较高降解活性。
     4. JH2、JH3菌株降解甲嘧磺隆活性酶的纯化。胞外粗蛋白经过DEAE SepHarose Fast Flow阴离子交换柱分离,在280 nm下JH2菌株得到5个蛋白吸收峰,降解圈法检测发现3个洗脱峰P1~(-1)、P1-3、P1-5均有降解活性;JH3菌株得到2个蛋白吸收峰,降解圈法检测发现仅P2-2洗脱峰具有降解活性;SDS-PAGE电泳检测P1~(-1)、P1-3、P1-5和P2-2的分子量分别是43 kDa、32 kDa、15 kDa和46 kDa。将甲嘧磺隆降解酶P1~(-1)、P1-3、P1-5和P2-2利用生物质谱技术测定了氨基酸序列,得到4种降解酶分别为:信号转导组氨酸蛋白激酶、预苯酸脱氢酶、未知蛋白和糖基转移酶。根据得到的编码氨基酸的基因序列设计合成了简并引物,通过PCR分别从JH2、JH3菌株基因组中克隆出甲嘧磺隆降解酶基因G1~(-1)、G1-3、G1-5和G2-2,编码基因全长分别是1191 bp、886 bp、415 bp、1274 bp;G1~(-1)、G1-3、G1-5和G2-2分别与载体PMD19-Vector连接转入大肠杆菌,筛选得到阳性克隆并测序,通过Blast软件分析,所得结果与已测序得到的编码氨基酸的基因序列基本吻合。
     5.降解甲嘧磺隆微生物菌剂加工及应用的研究。本论文初步研制出JH2、JH3菌株的水剂和颗粒剂配方,筛选出了对甲嘧磺隆敏感的植物是小麦,生物活性测定甲嘧磺隆对小麦的IC50值为0.014 mg·kg~(-1)。在分别使用JH2和JH3菌株水剂20 d和15 d后能将土壤中甲嘧磺隆浓度为5 mg·kg~(-1)和1 mg·kg~(-1)的残留降解为对小麦无明显药害水平,通过HPLC检测处理后土壤中的甲嘧磺隆发现,土壤中甲嘧磺隆残留量小于0.0077 mg·kg~(-1),降解率达到了99%以上。
Sulfometuron-methyl is a member of the sulfonylurea herbicides, and has been applied in the woodlands. Sulfometuron-methyl has been widely used in the world because of its low-dosage and good effect. Sulfometuron-methyl has a long period of validity, was sensitive to crops, has a strong transferability, and can contaminate groundwater. Especially, high concentration of Sulfometuron-methyl exists in industry wastewater from the manufactory of producing this kind of herbicide. Therefore, studying on the degradation of Sulfometuron-methyl is very significant. In order to screen and obtain the microorganisms degrading Sulfometuron-methyl, nineteen strains of microorganisms degrading Sulfometuron-methyl were obtained and two strains of them were found to have the highest degradation rate and of which were studied the degrading characteristics and pathways. The main results were summarized as follows:
     1. The microorganisms degrading Sulfometuron-methyl were screened. The nineteen strains of microorganisms degrading Sulfometuron-methyl were obtained. All the microorganisms were cultured in medium that containing different concentrations of Sulfometuron-methyl, then put in swing bed at 30℃and shook at 150 r·min~(-1) for 5 days, detected the concentration of Sulfometuron-methyl by using HPLC and calculated the degradation efficiency. It was shown that the degradation rates of the seven strains of microorganisms were higher in low concentration than in high concentration for Sulfometuron-methyl, with JH3 having the highest degradation rate of 98.9%, secondly, JH2 having the degradation rate of 95.3%. It was also identified that JH3 was Comamonas testosteroni, JH2 was Delftia subsp, JH10 was Bacillus subtilis, JH6 was Bacillus amyloliquefaciens, SH3 was Bacillus subtilis, SH5 was Bacillus subtilis and SH4 was salmonella sp.
     2. The study on the degrading characteristics and pathways of Sulfometuron-methyl degrading JH2 and JH3 strain. The results showed that (1) the optimal culture medium was the basic mediumⅢ, (2) among the Sulfometuron-methyl concentrations tested, the highest degradation rates of JH2 and JH3 strain were found in treatments with 5 mg·L~(-1), (3) the appropriate temperatures for Sulfometuron-methyl degradation by JH2 was 30 oC, the appropriate inoculating quantity was 1×108 CFU·mL~(-1), the appropriate rotation rates was 150 r·min~(-1) and the appropriate cultured time was 120 hours, (4) the appropriate temperatures for Sulfometuron-methyl degradation by JH3 was 35oC, the appropriate inoculating quantity was 1×107 CFU·mL~(-1), the appropriate rotation rates was 150 r·min~(-1) and the appropriate cultured time was 72 hours, (4) with mass Sulfometuron-methyl spectrometric analysis on the degradation products of JH2 and JH3 strain, it was proved that the degradation products of JH2 and JH3 strain was same. Only one degradation product spectrometric peak was obtained. The main ion was m/z198 and retention time of the spectrometric peak was 3.0 min.
     3. Study on extracellular enzyme activity of JH2 and JH3 strain. The key enzyme(s) involved in the initial biodegradation of Sulfometuron-methyl was localized to extracellular proteins and shown to be induced expressed. JH2’enzyme specific activity was up to 86.9 U·mg~(-1) at pH 8.0 and 30℃, incubation at 150 r·min~(-1) for 120 h,inoculum 2.3×108 CFU·mL~(-1) in Luria-Bertani liquid medium with Sulfometuron-methyl of 5 mg·L~(-1). The maximum degradation rate of extracellular crude enzymes on Sulfometuron-methyl was 86.9% at pH 8.0, 30℃in the enzymatic reaction system with Sulfometuron-methyl of 5 mg·L~(-1). JH3’enzyme specific activity was up to 88.4 U·mg~(-1) at pH 9.0 and 35℃, incubation at150 r·min~(-1) for 72 h,inoculum 2.3×107 CFU·mL~(-1) in Luria-Bertani liquid medium with Sulfometuron-methyl of 5 mg·L~(-1). The maximum degradation rate of extracellular crude enzymes on Sulfometuron-methyl was 91.3% at pH 9.0, 35℃in the enzymatic reaction system with Sulfometuron-methyl of 5 mg·L~(-1). The degrading enzyme(s) was not sensitive to high temperature and kept high activity under alkaline conditions.
     4. The activity enzyme of JH2 and JH3 strain degrading Sulfometuron-methyl were purified. In this study,the extracellular crude proteins of JH2 were eluted by DEAE SepHarose Fast Flow anion exchange column and five peaks were found. The proteins were detected by by a clear zone, three peaks had activity. The extracellular crude proteins of JH3 were eluted by DEAE SepHarose Fast Flow anion exchange column and two peaks were found. The proteins were detected by a clear zone, only one peak had activity. Four components (P1~(-1), P1-3, P1-5, P2-2) had obviously activity. The molecular weight of four components were 43 kDa, 32 kDa, 15 kDa and 46 kDa through SDS-PAGE respectively. The amino acid sequences of Sulfometuron-methyl degrading enzymes (P1~(-1), P1-3, P1-5, P2-2) derived from JH2 and JH3 strain were determined by MALDI-TOF-MS and four degrading enzyme were signal transduction histidine kinase, prephenate dehydrogenase, unnamed protein, and glycosyltransferase, respectively. According to the gene sequence encoding amino acids (G1~(-1), G1-3, G1-5, G2-2) the degenerate primers were designed. The Sulfometuron-methyl degrading enzyme genes from the genome of JH2 and JH3 were amplified by PCR and full-length gene were 1191 bp, 886 bp, 415 bp and 1274 bp, respectively. G1~(-1), G1-3, G1-5 and G2-2 were connected with PMD19-Vector and transfered to E. coli DH5α. Positive clones were screened out by ampicillin and determined the sequences. The obtained results were compared with gene sequence reported in the Genbank and kept accordance with gene sequence encoding amino acids (G1~(-1), G1-3, G1-5, G2-2) by Blast analysis.
     5. Preliminarily studied on bacterial agent of JH2 and JH3. The formulation of AS and GR of JH2, JH3 were obtained. The plants sensitive with Sulfometuron-methyl were screened by activity determination. The result showed that wheat is sensitive with Sulfometuron-methyl and IC50 was 0.014 mg·kg~(-1). The residual amount of the soil contained Sulfometuron-methyl of 5 mg·kg~(-1) and 1 mg·kg~(-1) that degraded respectively by JH2 and JH3 AS for 15 days and 20 days were lower than 0.0077 mg·kg~(-1).
引文
[1]刘金胜,寇俊杰,刘桂龙.磺酰脲类除草剂的应用研究进展[J].农药, 2007, 46 (3): 145~147.
    [2]刘宝胜,刘志俊.浅析磺酰脲类除草剂的发展及未来[J].农药科学与管理, 2006, 25 (10): 46~48.
    [3] Lee J K, Ahn K C, Park O S, et al. Development of an immunoassay for the residues of the herbicide bensulfuron-methyl [J]. Journal of Agricultural and Food Chemistry, 2002, 50 (7): 1791~1803.
    [4] Sarmah A K, Sabadie J. Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions a review [J]. Journal of Agricultural and Food Chemistry, 2002, 50 (22): 6253~6265.
    [5]邓金保.磺酰脲类除草剂综述[J].世界农药, 2003, 25 (3): 24~29.
    [6]赵建庄.磺酰脲类除草剂药害规律[J].中国农学通报, 2001, 17 (1): 7~8.
    [7]秦炳权.磺酰脲类除草剂在谷物中的应用[J].农药译丛, 1997, 19 (2): 8~10.
    [8]姚东瑞,陈杰,宋小玲.磺酰脲类除草剂残留与降解研究进展[J].农药, 1997, 36 (7):32~37.
    [9]范志金,刘丰茂,钱传范.磺酰脲除草剂的现状和发展趋势分析[J].农药, 1999, 38 (5): 6~9.
    [10] Matocha M A, Kruta L J, Reddy K N. Foliar washoff of potential and simulated surface runoff losses of Trifloxysulfuron in Cotton [J]. Journal of Agricultural and Food Chemistry, 2006, 54 (15): 5498~5502.
    [11]王险峰,关成宏,辛明远.我国长残效除草剂使用概况、问题及对策[J].农药, 2003,42 (11): 5~10.
    [12]熊件妹,李火苟.甲磺隆对水稻不同品种抑制作用的研究[J].农药, 2003, 42 (4): 44~46.
    [13]姚东瑞,陈杰,宋晓玲,等.麦田后茬作物对氯磺隆残留敏感性研究[J].江苏农业科学, 1997, (4): 42~45.
    [14]黄明智,邓金保.磺酰脲类除草剂的作用方式及其对作物的选择性[J].世界农药, 1997, 19 (3): 24~31.
    [15]姚东瑞,宋小玲,陈杰,等.麦田后茬作物对甲磺隆残留敏感性研究[J].江苏农业学报, 1997, 13 (3): 171~175.
    [16] Dubelman A M, Solsten T R, Fujiwara H, et al. Metabolism of halosulfuron-methyl by corn and wheat [J]. Journal of Agricultural and Food Chemistry, 1997, 45: 2314~2321.
    [17]姚东瑞,陈杰,宋小玲.绿磺隆在太湖水稻土中降解速率的研究[J].农业生态环境, 1998, 14 (2): 37~39.
    [18]仇宏伟,胡继业,周革菲.磺酰脲类除草剂在土壤及植物中行为综述[J].莱阳农学院学报, 2000, 17 (2): 132~138.
    [19]闻长虹.磺酰脲类除草剂的微生物降解与转化[J].池州师专学报, 2004, 5 (18): 43~45.
    [20] Polubesova T. Adsorption of sulfometuron and other anions on pillared clay [J]. Journal of Environmental Quality, 2000, 29 (3): 948~954.
    [21]郎印海,蒋新,赵其国,等.磺酰脲类除草剂在土壤中的环境行为研究进展[J].应用生态学报,2002, 13 (9): 1187~1190.
    [22]宋文华,丁峰,胡卫萱,等.磺酰脲类除草剂定量结构-生物降解性关系(QSBR)研究[J].计算机与应用化学, 2005, 22 (2): 121~124.
    [23]王焕民.磺酰脲类除草剂及咪唑啉酮类除草剂的特性及其应用问题[J].农药科学与管理, 1995, (1): 18~21.
    [24]陶波,向文胜,王萍,等.作保灵(TNA)对水稻的保护作用及作用机理研究[J].农药学学报, 2000, 2 (1): 53~57.
    [25] Barrent M. Protection of corn and sorghum from imazethapy toxicity with antidotes [J]. Weed Science, 1989, 37: 296~301.
    [26]程慕如,孙致远.三种磺酰脲类除草剂的光解和水解作用[J].植物保护学报, 2000, 27 (1): 93~94.
    [27]陶波,苏少泉,刘金宇.农作物对磺酰脲类除草剂耐性的研究[J].东北农业大学学报,1995, 26 (2): 105~110.
    [28]苏少泉,周景恺.嗪磺隆在土壤中降解的研究[J].杂草学报, 1990, 4 (l): 1~7.
    [29]陈锡岭,王桂莲.磺酰脲类除草剂的化学作用方式选择及降解特性[J].河南职技师院学报, 1998, 36 (7): 32~37.
    [30] Blair A M. Martin areview of the activity: fate and mode of action of Sulfonylurea herbicides [J]. Pestic Science, 1988, 22: 195~219.
    [31]王建平,孙永泉,吴维中.绿磺隆残留对后茬水稻的药害及预防措施[J].农药, 1992, 31 (1): 3~4.
    [32]姜林,李长城,张玉雷,等.磺酰脲类除草剂的研制与应用[J].山东农业大学学报(自然科学版), 2003, 34 (4): 579~599.
    [33]陈祖义,程薇,成冰. 14C-绿磺隆的土壤结合残留及其有效性[J].南京农业大学学报,1996, 19 (2): 78~83.
    [34]徐汉虹.植物化学保护学[M].中国农业出版社, 2007, 200.
    [35]王险峰,进出口农药应用手册[M].中国农业出版社, 2000, 535~538.
    [36]韩厚安.关于“长残效”除草剂在应用中的几个问题[J].湖北植保, 1996, (1): 28~31.
    [37]虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状及策略[J].环境科学进展, 1996, 4 (3): 28~35.
    [38]阮少江,刘洁,王银善,等.微生物酶催化甲胺磷降解机理初探[J].武汉大学学报(自然科学版). 2000, 46 (4): 471~474.
    [39]薛琦.土壤微生物和农药[J].世界农药, 1994, 16 (4): 53~54.
    [40]胡荣桂.农药污染与土壤微生物[J].环境污染与防治, 1993, 15 (3): 24~27.
    [41]冯化成.土壤细菌和农药降解[J].世界农药, 1994, 16 (4): 47~50.
    [42]肖艳松,谭琳,陈桂华,等.磺酰脲类除草剂的微生物降解[J].农药研究与应用, 2007 (3):15~19.
    [43]仪美琴,王开运,姜兴印,等.微生物降解农药的研究进展[J].山东农业大学学报(自然科学版), 2002, 33 (4): 519~524.
    [44]王一奇.多菌灵降解菌Pseudomonas sp. CBW的分离、鉴定及其降解特性与降解机理[D].浙江大学硕士学位论文, 2010.
    [45]姜丹.油菜叶际微生物多样性及其对敌敌畏的降解[D].河北科技大学硕士学位论文, 2009.
    [46]王伟霞,李福后,王文锋.微生物在土壤污染中的生物修复作用[J].北方园艺, 2010 (4): 208~211.
    [47]朱亚伟.磺酰脲类除草剂苄嘧磺隆对水稻土微生物种群和酶活性影响及其降解菌的分离、鉴定[D].浙江大学硕士学位论文, 2005.
    [48]尹乐斌,张德咏,刘勇,等.降解氯氰菊酯光合细菌的分离鉴定及降解特性研究[J].生态环境学报2010, 19 (8): 1881~1886.
    [49]张丽萍.氯氰菊酯降解菌的筛选鉴定及其降解特性研究[J].生态与农村环境学报, 2009, 25 (3): 69~72.
    [50]王伟萍.纳米Fe3O4协同微生物对阿特拉津和2,4-D的降解研究[D].安徽农业大学硕士学位论文, 2010.
    [51]王小宁.甲基对流磷共代谢降解菌的筛选及降解机制和降解性能的研究[D].西北大学硕士学位论文, 2009.
    [52]汤琳.环境污染控制过程高灵敏生物传感技术研究及其检测体系构建[D].湖南大学博士学位论文, 2009.
    [53]仲汇慧,张晓君,思青,等.喹啉废水反硝化反应器中优势菌的代谢功能分析[J].微生物学通报, 2010, 37 (5): 645~650.
    [54] Alexnader M. Biodegardation and Bioermediation. SnaDiego [M]. Acdaemiea Perss,1999, 32~35.
    [55]刘建利.微生物降解有机磷农药酶促机制[J].微生物学通报, 2010, 45 (5): 1~5.
    [56] Singh B K, Walker A. Microbial degradation of organophosphorus compounds[J]. FEMS microbiology reviews, 2006, 30 (3): 428~471.
    [57]虞云龙,陈鹤鑫,樊德方.拟除虫菊酯类杀虫剂的酶促降解[J].环境科学, 1998, 19(3): 66~69.
    [58]和文祥,蒋新,朱茂旭,等.酶修复土壤农药污染的研究进展[J].生态学杂志, 2001,20 (3): 47~51.
    [59]翁林捷,李明伟,陈忍,等.拟除虫菊酯类农药微生物修复回顾与展望[J].中国农学通报, 2009, 25 (16): 194~200.
    [60] Guo P, Wang B, Hang B J, et al. Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase [J]. International biodeterioration & biodegradation, 2009, 63 (8): 1107~1112.
    [61]邓优锦. JS018菌OPD酶的纯化、特性研究及其基因克隆的初步探讨[D].福建农林大学硕士学位论文, 2006.
    [62] Jhadav A, Vamsi K, Khairnar Y, et al. Optimization of production and partial purification of laccase by Phanerochaete chrysosporium using submerged fermenation [J]. International journal Microbiology Research, 2009, 1: 9~12.
    [63]刘永峰.枯草芽抱杆菌(Baeillus subtilis)Bs-916胞外抗菌蛋白质的纯化及其鉴定[D].南京农业大学博士学位论文, 2006.
    [64] Liang B, Zhao Y, Lu P, et al. Biotransformation of the Diphenyl Ether herbicide lactofen and purification of a Lactofen Esterase from Brevundimonas sp. LY-2 [J]. Journal of Agricultural and Food Chemistry, 2010: 231~235.
    [65] Pizzul L, Castillo M P, Stenstr M J. Degradation of glyphosate and other pesticides by ligninolytic enzymes [J]. Biodegradation, 2009, 20 (6): 751~759.
    [66] Fragoeiro S, Magan N. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor [J]. Environmental Microbiology, 2005, 7 (3): 348~355.
    [67] Gorbatova O, Koroleva O, Landesman E, et al. Increase of the detoxification potential of basidiomycetes by induction of laccase biosynthesis [J]. Applied Biochemistry and Microbiology, 2006, 42 (4): 414~419.
    [68] Liu Y H, Chung Y C, Xiong Y. Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256,isolated from sewage [J]. Applied and Environmental Microbiology, 2001, 67 (8): 3746~3749.
    [69] Li X, He J, Li S P. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene [J]. Research in microbiology, 2007,158 (2): 143~149.
    [70]颜慧,李军红,宋文华,等.扑草净降解茵降解特性、降解基因保守序列的扩增及同源性分析[J].城市环境与城市生态, 2002, 15 (4): 61~63.
    [71]邓敏捷,伍宁丰,梁果义,等.一种新的有机磷降解酶基因ophc2的克隆与表达[J].科学通报, 2004, 49 (11): 1068~1072.
    [72]胡江,代先祝,李顺鹏.阿特拉津降解菌BTAH1的分离与鉴定[J].中国环境科学, 2004, 24 (6): 738~742.
    [73] Sajjaphan K, Shapir N, Wackett L P, et al.Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli [J]. Applied and Environmental Microbiology, 2004, 70 (7): 4402~4407.
    [74] Weir K M, Sutherland T D, Horne I, et al. A single monooxygenase, ese, is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp[J]. Applied and Environmental Microbiology, 2006, 72 (5): 3524~3530.
    [75] Hashimoto M, Fukui M, Hayano K, et al. Nucleotide sequence and genetic structure of a novel carbaryl hydrolase gene (cehA) from Rhizobium sp. strain AC100 [J].Applied and Environmental Microbiology, 2002, 68 (3): 1220~1227.
    [76] Lan W, Gu J, Zhang J, et al. Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium [J]. International biodeterioration & biodegradation, 2006, 58 (2): 70~76.
    [77] Shimazu M, Mulchandani A, Chen W. Simultaneous degradation of organophosphorus pesticides and pnitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase [J]. Biotechnology and bioengineering, 2001, 76 (4): 318~324.
    [78] Bhadbhade B, Dhakephalkar P, Sarnaik S, et al. Plasmid-associated biodegradation of an organophosphorus pesticide, Monocrotophos, by Pseudomonas mendocina [J].Biotechnology Letters, 2002, 24 (8): 647~650.
    [79] Singh D K. Utilization of monocrotophos as phosphorus source by Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp.insidiosum SBL 11 [J]. Canadian Journal of Microbiology, 2003, 49 (2): 101~109.
    [80]赵非.有机污染物降解菌的基因克隆、突变型筛选及趋化研究[J].中国科学院研究生院(武汉病毒研究所), 2004.
    [81]贾开志.久效磷降解菌的分离、鉴定及降解酶基因的克隆[D].南京农业大学硕士学位论文, 2006.
    [82]楚晓娜.甲基对硫磷水解酶(MPH)的纯化、性质及酶制剂的研究[J].中国科学院研究生院(武汉病毒研究所), 2002.
    [83]刘智,洪青,徐剑宏,等.甲基对硫磷水解酶基因克隆与融合表达[J].遗传学报, 2003, 30 (11): 1020~1026.
    [84]蒋建东,李荣,郭新强,等.多功能农药降解基因工程菌株m-CDS-1环境释放安全评价[J].微生物学报, 2008, 48 (11): 1479~1485.
    [85] Sebastianelli A, Bruce I J. Tn5530 from Burkholderia cepacia strain 2a encodes a chloride channel protein essential for the catabolism of 2, 4-dichlorophenoxyacetic acid [J]. Environmental Microbiology, 2007, 9 (1): 256~265.
    [86]张国顺.六六六降解富集液的获得、降解相关基因的克隆及脱氯酶基因的表达[D].南京农业大学硕士学位论文, 2005.
    [87]郭睿莉.甲胺磷降解菌的筛选及有机磷农药降解酶基因的克隆与表达[D].天津科技大学硕士学位论文, 2009.
    [88]张松柏,张德咏,刘勇,等.一株菊酯类农药降解菌的分离鉴定及其降解酶基因的克隆[J].微生物学报, 2009, 49 (11): 1520~1526.
    [89] Smith A E, Mortensen K, Aubin A J, et al. Degradation of MCPA, 2, 4-D, and other phenoxyalkanoic acid herbicides using an isolated soil bacterium [J]. Journal of Agricultural and Food Chemistry, 1994, 42: 401~405.
    [90]谢慧.粗酶和固定化酶对毒死蜱降解特性研究[D].山东农业大学硕士论文, 2005.
    [91]王秀国.一种降解酶及其固定化酶对莠去津降解特性的研究[D].山东农业大学硕士论文, 2006.
    [92]夏柳荫,孙永利,田庆玲,等.混合固定化耐受菌共代谢降解五氯苯酚[J].化学工业与工程, 2008, 25 (2): 139~142.
    [93]张明政.苏云金芽抱杆菌发酵液的浓缩及杀虫蛋白微胶囊化的研究[D].福建农林大学硕士学位论文, 2009.
    [94]王晓蕾.球孢白僵菌悬乳剂的研制[D].安徽农业大学硕士学位论文, 2008.
    [95]张保元.植物病害生防菌粉红粘帚霉67-1发酵工艺研究[D].北京林业大学硕士学位论文, 2009.
    [96]邹大庆.枯草芽袍杆菌(Bs-208)的半固体发酵研究及其可湿性粉剂的研制[D].华中农业大学硕士学位论文, 2007.
    [97]磺酰脲类除草剂知识[OL]. http://weed.njau.edu.cn/hcides/pinzh7. htm.
    [98]梅丽娟,任浩章,柴守权,等. 75%甲嘧磺隆水分散粒剂防除非耕地杂草试验[R].国家林业局森林病虫害防治总站,辽宁沈阳.
    [99]陈国海.简介新一代林用除草剂甲嘧磺隆及其混剂津锄[R].中国林科院林业所, 10009.
    [100]黄雅.微生物对有机磷农药乐果在水—气界面挥发与降解的研究[J].北京工商大学硕士学位论文, 2009.
    [101]张洪霞,张祺玲,王兆守,等.土壤农药降解微生物及其作用机理[J].世界科技研究与发展2009, 31 (1) : 13~14.
    [102]杨亚君.烟嘧磺隆的微生物降解代谢研究[J].河北农业大学硕士学位论文, 2008.
    [103]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248~254.
    [104]Yang C, Liu N, Guo X M, et al. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil [J]. FEMS Microbiology Letters,2006, 265 (1): 118~125.
    [105]Garénaux A, Guillou S, Ermel G, et al. Role of the Cj1371 periplasmic protein and the Cj0355c two-component regulator in the Campylobacter jejuni NCTC 11168 response to oxidative stress caused by paraquat [J]. Research in microbiology, 2008, 159 (9-10): 718~726.
    [106]Xu G M, Li Y Y, Zheng W, et al. Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp [J]. Biotechnology Letters, 2007, 29 (10): 1469~1473.
    [107]郑乐,刘宛,李培军.多环芳烃微生物降解基因的研究进展[J].生态学杂志, 2007, 3: 449~454.
    [108]Hong Y, Ji G, Lan X, et al. New Bacillus cereus strain designated as CCTCC No. M209001, useful for preparing a degrading enzyme for pyrethroids insecticides [P]. Chinese patent: CN101591623-A, 2009.
    [109]Sun W, Chen Y, Liu L, et al. Conidia immobilization of T-DNA inserted Trichoderma atroviride mutant AMT-28 with dichlorvos degradation ability and exploration of biodegradation mechanism [J]. Bioresource technology, 2010, 101 (23): 9197~9203.
    [110]Perez-Pascual D, Gomez E, Alvarez B, et al. Comparative analysis and mutation effects of fpp2-fpp1 tandem genes encoding proteolytic extracellular enzymes of Flavobacterium psychrophilum [J]. Microbiology, 2011, 157: 1196~1204.
    [111]文红秀,李昌平.渗压震扰法释放Aeromonas sp. 2016菌株外周间质中几丁质酶的研究[J].中国生物工程杂志, 2005, 25 (6): 84~86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700