用户名: 密码: 验证码:
准噶尔盆地西北缘布龙果尔泥盆系古油藏形成与破坏机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布龙果尔古油藏是新疆北部地区发现的首个泥盆系古油藏,它的发现和研究对于重新认识和评价北疆地区泥盆系的油气地质条件具有十分重要的指导意义。本文在野外考察和实测地层剖面的基础上,利用有机地球化学、流体包裹体、锆石U-Pb年龄测定等分析手段,对布龙果尔地区的地层发育特征、构造变形特征、构造演化过程,布龙果尔古油藏固体沥青的野外产状、有机地球化学特征,古油藏生储盖及其组合特征,古油藏形成时间、形成与破坏过程等进行了详细分析。
     通过研究,论文取得6方面的认识和新进展:
     1)布龙果尔地区断裂非常发育,其中压扭性断层最为发育并具有规模大,与区域地层走向、褶皱轴线平行展布的特点;扭性断层亦很发育,与压扭性断层配套成生;张性断裂区内不发育。区内的褶皱主要是在海西、燕山及喜马拉雅构造运动时期形成的。研究表明,布龙果尔地区构造演化过程具有明显的阶段性,其中海西、燕山及喜马拉雅期是区内3个最主要的构造演化阶段。
     2)古油藏的固体沥青在野外主要以储层沥青、沥青脉的形式产出。其中储层沥青和沥青脉的反射率相差很大,表明它们形成于不同地质时期,但这两种不同类型的沥青均为油藏后期遭受破坏,在氧化、水洗、生物降解作用下形成的非热解成因型沥青。
     3)古油藏沥青中可溶有机质以非烃的含量最高,饱和烃、芳烃和沥青质的含量较少;沥青正构烷烃碳数分布以前单高峰型和双峰型为主,规则甾烷分布型式为“V”字型,表明古油藏原生油气为混源型,其主要烃源岩为形成于海相蒸发环境下的碎屑岩。
     4)中泥盆统呼吉尔斯特组上部碎屑岩为古油藏的主要储集层,呼吉尔斯特组顶部局部区域发生强烈破碎的粗面岩为其次要储层。呼吉尔斯特组角质煤和暗色泥岩为古油藏的主要烃源岩,侏罗系八道湾组湖沼相泥岩是古油藏的次要烃源岩。
     5)通过对布龙果尔古油藏形成时间、形成过程分析,建立了古油藏成藏模式。认为古油藏可能存在两期成藏过程。第一期为中侏罗世时,呼吉尔斯特组烃源岩大量生排烃,在呼吉尔斯特组背斜高部位聚集成藏。第二期应该为早白垩世,八道湾组湖沼相泥质烃源岩生成的少量烃类,沿断层运聚到呼吉尔斯特组背斜圈闭内,聚集成藏。
     6)自古油藏形成以来,油气便沿破坏通道不断逸失,后期古油藏随谢米斯台山的隆升被抬至地表或近地表遭到完全破坏,形成了大量的储层固体沥青。
Bulonggoer paleo-oil reservoir (BPR) was the first paleo-oil reservoir found inDevonian around the whole northern Xinjiang, China. The discovery and researchabout it will lead us to knowledge and revaluate the geological conditions of thehydrocarbon accumulation of Devonian in north of Xinjiang. Based on field inspectionand measured geological section, Bulonggoer paleo-oil was studied intensively,including the structural features of Bulonggoer Area, the attitudes and geochemistrycharacteristics of solid bitumens, the characteristics of source rocks, reservoirs and coprocks, the time and process of pale-oil formation and destruction, using organicgeochemisty, fluid inclusion and Zircon U-Pb age dating analysis methods.
     The research results are as follows:
     1) According to unconformities, the Middle Devonian to Neogene formation ofBulongguoer can be divided into six stockwerkes. Faults are very developed inresearch area. Compresso-shear faults are the most developed and they are large inscale and parallel to the regional stratigraphy aligement and folds axial trend. Shearfaults are also very developed assorted with compresso-shear faults. However,extension faults can only be founded in few region. The folds of the Bulongguoermainly format during Hercynian, Yenshan and Himalayan movement epoch.
     2) Two different types of solid bitumen occur: reservoir solid bitumen and veinedsolid bitumen remaining in the oil degradation pathway. The reservoir solid bitumensand veined solid bitumens have the different bitumen reflectance, showing that theywere occurred in different time. All solid bitumens of Bulonggoer paleo-oil, formed byoxidation, water washing and other natural processes in low thermal condition, arenon-pyrogenic solid bitumens.
     3) The dissolved organic matter of palo-oil reservoir solid bitumen is rich innonhydrocarbon and poor in saturated hydrocarbon, aromatic hydrocarbon andasphaltine. The content distribution style of n-alkane mainly includes ante-single-peakand two-peaks. The distribution of n-alkane and C27>C29>C28normalized relativeabundance of regular steranes suggest a mixed organic matter for the source rock ofBPR.
     4) There are two different reservoir types in BPR -- clastic and andesitic. Foliatedcutinitic liptobiolite and mudstone of Hujiersite Formation were the principal sourerocks. Mudstone deposited in lake environment of Badaowan Formation were thesecondary source rocks. The proto-petroleum of Bulonggoer paleo-oil was preservedin a anticlinal trap formatted in late Early Carboniferous to Early Permian.
     5) The hydrocarbon accumulation model of BPR was builded up by analyzing thetime and process of paleo-oil reservior formation and destruction. There were Twohydrocarbon accumulation epoch of BPR. The first was in Middle Jurassic, then thesource rocks of Hujiersite Formation reached mature stage and massive hydrocarbonwere generated and accumulated in the anticline of Hujiersite Formation. The secondhydrocarbon accumulation epoch was in Early Crataceous. A small amount ofhydrocarbon were generated by the mudstones of Badaowan Formation and chargedinto the anticline of Hujiersite Formation.
     6)The hydrocarbon excaped along the destructive channel since the BPRformatting. The BPR was elevated to or near surface and destroied completely with theuplifted of Xiemisitai Mountain. Mass of reservoir solid bitumen was generated by thereservoir alteration processes of once liquid petroleum at that time.
引文
[1] Anthony J Lomando.The influence of solid reservoir bitumen on reservoir quality. AAPGBulletin,1992,76(8):1137-1152.
    [2] Buchan C, Pfander J, Kroner A, Brewer T S, Tomurtogoo O, Tomurhuu D, CunninghamD, Windley B F. 2002. Timing of accretion and collisional deformation in the CentralAsian orogenic Belt: implications of granite geochronology in the BayankhongorOphiolite Zone. Chemical Geology, 192: 23~45.
    [3] Buslov M M, Watanabe T, Fujiwara Y, Iwata K, Smirnova L V, Safonova I Yu, SemakovN N, Kiryanova A P. 2004. Late Paleozoic faults of the Altai region, Central Asia:tectonic pattern and model of formation. Journal of Asian Earth Sciences, 23: 655~671.
    [4] Clark, J.P., and Philp, R.P., 1989. Geochemical characterization of evaporite andcarbonate depositional environments and correlation of associated crude oils in theBlack Creek Basin, Alberta. Bull. Canadian Pet. Geol. 37:401-416.
    [5] Collins Adam Q, Kirill E Degtyarev, Natalia M Levashova, Mikhail L Bazhenov, RobVan der Voo. 2003. Early Paleozoic paleomagnetism of east Kazakhstan: implicationsfor paleolatitudinal drift of tectonic elements within the Ural-Mongol belt.Tectonophysics,377: 229~247.
    [6] Collins Adam Q. 2003. Evolution of structures of the Urals, Kazakhstan, Tien Shan, andAltal-Sayan region within the Ural-Mongolian fold belt. Geology and Geophysics,44(1~2): 28~39 (in Russia).
    [7] Cranwell, P.A., 1977. Organic geochemistry of Cam Loch (Sutherland) sediments.Chemical Geology 20,205-211.
    [8] Curiale J A. Origin of solid bitumens, with emphasis on biological marker results. Org.Geochem.1986,10(3):559-580.
    [9] Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., Eglinton, G., 1978. Organic geochemicalindicators of palaeoenvironmental conditions of sedimentation. Nature 272,216–222.
    [10] Dobretsov N L, M M Buslov, Uchio Yu. 2004. Fragments of oceanic islands inaccretion-collision areas of Gorny Altai and Salair, southern Siberia, Russia: earlystages of continental crustal growth of the Siberian continent in Vendian-EarlyCambrian time. Journal of Asian Earth Sciences, 23: 673~690.
    [11] Evans, C.R., Rogers, M.A., Bailey, N.J.L., 1971. Evolution and alteration of petroleumin western Canada. Chemical Geology 8, 147-170.
    [12] George, S. C., Llorca, S.M., Hamilton, P. J., 1993. An integrated analytical approachfor determining the origin of solid bitumens in the McArthur Basin, northern Australia.Organic Geochemistry 21, 235-248.
    [13] Gong, W.P., 2011. Late Paleozoic basement structures and deformationalcharacteristics of Santanghu Basin in Xinjiang Region. Journal of Oil and GasTechnology 33, 17-20.
    [14] Guo, J.J., Chen, J.F., Zhu, Z.Y., Chen, Z.Y., Xiao, J.B., 2006. Geochemicalcharacteristics of upper Permian source rocks and exploration directions in DabanchengSub-Depression of Chaiwopu Depression. Acta Sedimentologica Sinica 24, 446-454.
    [15] Hughes, W.B., 1984. The use of thiophenic organosulfur compounds in characterizingcrude oils derived from carbonate versus siliciclastic source rocks. In: Palacas, J.G.,(Ed.): Petroleum geochemistry and source rock potential of carbonate rocks. AAPGStudies in Geology 18, 181-196.
    [16] Hwang R J,Teerman S C,Carlson R M.Geochemical comparison of reservoir solidbitumens with diverse origins. Org. Geochem.1998,29(1-3):505-517.
    [17] Jacob H. Disperse solid bitumens as an indicator for migration and maturity inprospecting for oil and gas. Erdol and Kohle,1985,38:364-366.
    [18] Jacob H.Classification,structure, genesis and practical importance of natural solid oilbitumen (Migra-bitu-men).Int. J. Coal Geol.,1989, 11(1):65-79
    [19] Khain E V, Bibikova E V, Kroner A, Zhuravlev D Z, Sklyarov E V, Fedotova A A,Kravchenko-Berezhnoy I R. 2002. The most ancient ophiolite of the Central Asian foldbelt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia,and geodynamic implications. Earth and Planetary Science Letter,199:311~325.
    [20] Khain E V, Bibikova E V, Salnikova E B, Kroner A, Gibsher AS, Didenko A N,Degtyarev K E, Fedotova A A. 2003. The Palaeo-Asian ocean in the Neoproterozoicand early Palaeozoic: new geochronologic data and palaeotectonic reconstractions.Precambrian Research, 122: 329~358.
    [21] Klemd R, Brocker M, Hacker B R, Gao J,Gans P, Wemmer K.2005.New AgeConstraints on the Metamorphic Evolution of the High-Pressure/Low-Temperature Beltin the Western Tianshan Mountains, NW China. The Journal of Geology,113:157~168.
    [22] Kristal D. Guckerta,David J. Mossman.Pennsylvanian coal and associated bitumen atJohnson Mills,Shepody Bay, New Brunswick, Canada. International Journal of CoalGeology,2003,53:137-152.
    [23] Machel H.G., Krouse H.R., Sassen R., 1995. Products and distinguishing criteria ofbacterial and thermochemical sulfate reduction. Applied Geochemistry 10, 373-389.
    [24] Maria Mastalerz, Miryam Glikson.In-situ analysis of solid bitumen in coal: examplesfrom the Bowen Basin and the Illinois Basin.International Journal of CoalGeology,2000,42:207-220.
    [25] Mossman, D.J., Nagy, B.N., 1996. Solid bitumens: an assessment of theircharacteristics, genesis, and role in geological processes. Terra Nova 8 (2), 114- 128.
    [26] Ourisson, G., Albrecht, P., Rohmer, M., 1982. Predictive microbial biochemistry frommolecular fossils to prokaryotic membranes. Trends in Biochemical Science 7,236–239.
    [27] Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting MolecularFossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, NJ.
    [28] Peters, K.E., Walters, C.C., Moldowan, J.M.. The Biomarker Guide: Biomarkers andIsotopes in Petroleum andEarthHistory. Cambridge University Press, 2005.
    [29] Philp, B.R., 1993. Biomarkers for geologists In: Waples, D.W., Machihara, T., 1991.Ceochimica et Cosmo Chimica Acta 57(19), 48-62.
    [30] Radke, M., Welte, D.H., 1983. The methylphenanthrene index (MPI): a maturityparameter based on aromatic hydrocarbons. In: Bjor y, M. et al. (Eds.), Advances inOrganic Geochemistry. Wiley, Chichester, pp. 224–237.
    [31] Radke, M., Willsch, H., Leythaeuser, D., Teichmüller, M., 1982. Aromaticscomponents of coal: relation of distribution pattern to rank. Geochimica etCosmochimica Acta 46, 1831-1848.
    [32] Rogers, M. A., McAlary, J. D., Bailey, N. J. L., 1974. Significance of reservoirbitumens to thermal-maturation studies, West Canada Basin. Bulletin of the AmericanAssociation Petroleum Geologists 58, 1806-1824.
    [33] Seifert, W.K. and Moldowan, J.M., 1986. Use of biological markers in petroleumexploration. In: JOHNS, R.B. (Ed.), Methods in Geochemistry and Geophysics 24,261-190.
    [34] Seifert, W.K., Moldowan, J.M., 1978. Application of steranes, terpanes andmonoaromatics to the maturation, migration and source of crude oils. Geochimica etCosmochimica Acta 42, 77–95.
    [35] Stach, E., Mackowsky, M-Th., Teichmüller, M., Taylor, G.H., Chandra, D.,Teichmüller, R., 1982. Stach’s Textbook of Coal Petrology. Gebrüder Borntraeger,Berlin, pp.535.
    [36] Stasiuk, L.D., 1997. The origin of pyrobitumens in Upper Devonian Leduc Formationgas reservoirs, Alberta, Canada: an optical and EDS study of oil to gas transformation.Marine and Petroleum Geology 14, 915-929.
    [37] Ten Have, H.L., Rohmer, M, J.K., Rullk tter, J., et al., 1989. Tetrahymanol, the mostlikely precursor of gammacerane occurs ubiquitously in, marine sediments. Geochimicaet Cosmo Chimica Acta 53, 3073-3079.
    [38] Van Gijzel P. Applications of the geomicophotometry of kerogen, solid hydrocarbonsand crude oils to petroleum exploration. In: Brooks J, ed. Organic Maturation Studiesand Fossil Fuel Exploration. London: Academic Press,1981:351-377.
    [39] Zhang, L., Zhang, M., 2009. Geochemical research in LC-1Well of Tertiary sourcerock in the south area of western Qaidam Basin. Natural Gas Geoscience 20, 610-615.
    [40]蔡勋育,朱扬明,黄仁春.普光气田沥青地球化学特征及成因[J].石油与天然气地质,2006,27(3):340~347.
    [41]陈石,郭召杰.达拉布特蛇绿岩带的时限和属性以及对西准噶尔晚古生代构造演化的讨论.岩石学报,2010,26(8):2336-2342.
    [42]陈新,卢华复,舒良树,王惠民,张国清.准噶尔盆地构造演化分析新进展.高校地质学报,2002,8(3):257-267.
    [43]单玄龙,车长波,李剑,等.国内外油砂资源研究现状.世界地质, 2007, 26 (4) :459~464.
    [44]凡元芳,丰勇.南山坪古油藏的形成及其破坏因素分析.矿产与地质, 2005, 19 (3) :296~298.
    [45]凡元芳.储层沥青的研究进展及存在问题.石油地质与工程,2009,23(6):35-38
    [46]冯鸿儒,李旭,刘继庆.新疆托里县卡拉抽卡发现古海底火山群岛.中国北方板块构造论文集(第二集).北京:地质出版社,1987:174-176
    [47]冯乾文,郑光华,张晓帆,陈川.塔城盆地石炭系基底的重磁电震联合反演.新疆大学学报(自然科学版),2009,26(2):242-246
    [48]高成全.三塘湖盆地石炭系成藏要素及有利勘探方向.吐哈油气,2008,13(3) :208-213.
    [49]高飞.中国古油藏的分布和特点.内蒙古石油化工, 2009, (2):108-109.
    [50]龚一鸣,等.新疆北部泥盆纪火山沉积岩系的板块沉积学研究,武汉:中国地质大学出版社,1993.
    [51]辜平阳,李永军,王晓刚,张洪伟,王军年.西准噶尔达尔布特SSZ型蛇绿杂岩的地球化学证据及构造意义.地质评论,2011,57(1):36-43.
    [52]郭建军,陈践发.塔中志留系沥青砂岩的地质特征及研究进展.新疆石油地质,2006, 27(2) : 151~155.
    [53]郭汝泰,肖贤明,王建宝,等.塔里木盆地轮南下奥陶统沥青的发现及其意义.新疆石油地质,2002,23(1):21-23.
    [54]国建英,李志明.准噶尔盆地石炭系烃源岩特征及气源分析.石油实验地质,2009,31(3):275-281.
    [55]韩宝福,郭召杰,何国琦.“钉合岩体”与新疆北部主要缝合带的形成时限.岩石学报,2010,26(8):2233-2246.
    [56]韩世庆,王守德,胡惟元.黔东麻江古油藏的发现及其地质意义.石油与天然气地质, 1982, 3(4) : 315~326.
    [57]韩世庆,王守德,胡惟元.黔东麻江古油藏的发现及其地质意义.石油与天然气地质,1982(4):315-326.
    [58]何登发,陈新发,况军,袁航,吴晓智,杜鹏,唐勇.准噶尔盆地石炭系油气成藏组合特征及勘探前景.石油学报,2010,31(1):1-11.
    [59]贺训云,钟宁宁,陈建平,王飞宇.十万大山盆地古油藏沥青地球化学特征及来源.石油实验地质, 2009,31(4):394-398.
    [60]侯读杰,王铁冠,黄光辉,等.低熟烃源岩中五环三萜类的分布型式.江汉石油学院学报, 1994, 16 (4): 39-45.
    [61]黄第藩,秦匡宗,王铁冠,等.煤成油的形成和成烃机理.北京:石油工业出版社,1995.
    [62]姜勇彪,刘帅,巫建华,饶明辉,鲁克改,朱成刚.新疆准噶尔盆地西北缘吐谷鲁群沉积体系分析.铀矿地质,2008,24(1):17-23.
    [63]李玮.准噶尔西北缘造山带中生代盆地形成机制及构造演化(博士论文)北京:中国地质科学院, 2007:1-145.
    [64]李晓红.和什托洛盖盆地水文地质特征及铀成矿远景.新疆地质,2008,26(2):180-183.
    [65]李秀云.新疆和什托洛盖盆地和准噶尔盆地的构造演化关系探讨.西部探矿工程,2011 (3):63-68.
    [66]李亚萍,李锦铁,孙桂华,朱志新,杨之青.准噶尔盆地基底的探讨:来自原泥盆纪卡拉麦里组砂岩碎屑锆石的证据.岩石学报,2007, 23(7): 1577-1590.
    [67]梁狄刚,黄第藩,马新华,等.有机地球化学研究新进展.北京:石油工业出版社,2002:423-427.
    [68]梁云海,李文铅,李卫东,等.新疆古亚洲多岛有限洋盆的多旋回、软碰撞、弱造山的演化特征.第四届天山地质矿产资源学术讨论会论文集.乌鲁木齐:新疆人民出版社,2000:6-13.
    [69]刘得光,王飞宇.准噶尔盆地马桥凸起侏罗系油气成藏期次.新疆石油地质,1999,20(6):465-468.
    [70]刘俊田,朱有信,李在光,闫立纲,覃新平,刘媛萍.三塘湖盆地石炭系火山岩油藏特征及主控因素.岩性油气藏,2009,21(3):23-28.
    [71]刘洛夫,赵建章,张水昌,等.塔里木盆地志留系沥青砂岩的成因类型及特征.石油学报,2000,21(6):12-17.
    [72]刘玉祥,郭琴.沥青脉对油气运移的指示意义.内蒙古石油化工, 2008(3): 44-45.
    [73]刘运黎,沈忠民,丁道桂,冷德勋,刘光祥,饶丹.江南-雪峰山推覆体前缘沥青古油藏及油源对比.成都理工大学学报(自然科学版),2008,35(1):34-40.
    [74]鲁兵,张进,李涛,卢苗安.准噶尔盆地构造格架分析.新疆石油地质,2008,29(3):283-289.
    [75]陆克政,朱筱敏,漆家福,等.含油气盆地分析.中国石油大学出版社,2006:285-342.
    [76]吕喜朝.沙尔布尔山地区构造演化.新疆工学院学报,1994,15(2):95-100.
    [77]马宝军,曾文光,于福生,漆家福.新疆北缘和什托洛盖盆地构造与含油气远景.新疆石油地质,2009,30(1):13-16.
    [78]马宝军,曾文光,于福生,等.新疆西北部和什托洛盖盆地构造与含油气远景.新疆石油地质,2009,30(1):13–16.
    [79]马宝军,漆家福,于福生,等.新疆北缘和什托洛盖盆地构造演化与油气特征.试采技术,2007,28(2):1–3,14.
    [80]马晓鸣,何登发,吴晓智,等.前陆冲断带的后期演化:负反转与再次冲断——以中国新疆和什托洛盖盆地为例.地质科学, 2010, 45(04): 1066-1077.
    [81]孟磊,申萍,沈远超,等新疆谢米斯台中段火山岩岩石地球化学特征、锆石U-Pb年龄及其地质意义.岩石学报,2010, 26(10):3047-3055.
    [82]木合塔尔.扎日,张旺生.西准噶尔沙尔布尔山构造演化.地学前缘(中国地质大学,北京),2002,9(3).
    [83]钱志浩,曹寅,王丛凤,等.石油地质实验测试技术新进展.北京:地质出版社,1994:186-194.
    [84]秦黎明,张枝焕,孟闲龙,等.新疆西北部和什托洛盖盆地侏罗系低熟煤系烃源岩地球化学特征及生烃条件分析.沉积学报,2009,27(4):740-750.
    [85]邱楠生,杨海波,王绪龙.准噶尔盆地构造—热演化特征.地质科学,2002, 37(4):423-429.
    [86]渠洪杰,胡健民,李玮,等.新疆西北部和什托洛盖盆地早中生代沉积特征及构造演化.地质学报,2008,82(4):441-450.
    [87]曲国胜,马宗晋,陈新发,等.论准噶尔盆地构造及其演化.新疆石油地质,2009,3(1):1-5.
    [88]曲国胜,马宗晋,邵学钟,等.准噶尔盆地基底构造与地壳分层结构.新疆石油地质,2008,29(6):669-674.
    [89]申萍,沈远超,刘铁兵,等,代华五.西准噶尔谢米斯台铜矿的发现及意义.新疆地质,2010,28(4):413-418.
    [90]申萍,沈远超,刘铁兵,等.西准噶尔谢米斯台铜矿的发现及意义.新疆地质,2010,28(4):413-418.
    [91]王成善,伊海生,刘池洋,等.西藏羌塘盆地古油藏发现及其意义.石油与天然气地质, 2004, 25 (2) : 139~143.
    [92]王建宝,郭汝泰,肖贤明.塔里木盆地轮南低隆起早古生代油气藏形成时间的期次与时间研究.沉积学报,2002,20(2):320-325.
    [93]王敏芳,焦养泉,黄传炎.地层剥蚀量恢复方法浅述.承德石油高等专科学校学报,2005, 7(4): 7-11.
    [94]王庆明.新疆泥盆纪古地理[J].新疆地质,2000,18(4):319~323.
    [95]王守德,郑冰,蔡立国.中国南方古油藏与油气评价.海相油气地质, 1997, 2 (1) :44~50.
    [96]王涌泉,熊永强,王彦美.川东北固体沥青的有机地球化学.吉林大学学报(地球科学版),2008,38(1):76-79.
    [97]卫巍,庞绪勇,王宇,等.北疆沙尔布尔提山地区早泥盆一早石炭世沉积相、物源演变及其意义.岩石学报,2009,25(3):689-698.
    [98]魏荣珠,董挨管,李嵩,等.西准噶尔玛依勒山一带早泥盆世生物化石的发现及其意义.地质通报,2011,30(1):101-105.
    [99]肖世禄,侯鸿飞,吴绍组,等.新疆北部泥盆系研究.乌鲁木齐:新疆科技卫生出版社,1992.
    [100]谢增业,田世澄,魏国齐,等.川东北飞仙关组储层沥青与古油藏研究.天然气地球科学,2006,15(3):282-287.
    [101]徐新,周可法,王煜.西准噶尔晚古生代残余洋盆消亡时间与构造背景研究.岩石学报,2010,26(11):3206-3213.
    [102]闫玉魁.三塘湖盆地石炭系火山岩构造背景与油气成藏.中国矿业,2009,18(6):46-52.
    [103]杨珍祥,梁浩,罗权生.三塘湖盆地石炭系火山岩储集性能.新疆石油地质,2010,21(3):254-256.
    [104]叶军,王亮国,岳东明.从新场沥青地化特征看川西天然气资源前景.天然气工业,1999,19(3):18-22.
    [105]尹继元,袁超,王毓婧,等.新疆西准噶尔晚古生代大地构造演化的岩浆活动记录.大地构造与成矿学,2011,35(2):278-291.
    [106]余腾孝,曹自成,徐勤琪,等.准噶尔盆地北部古生代构造演化与石炭系烃源岩.石油与天然气地质,2010,31(1):91-97.
    [107]袁玉松,郑和荣,涂伟.沉积盆地剥蚀量恢复方法.石油实验地质, 2008,30(6):637-641.
    [108]臧春艳,单玄龙,李剑,等.准噶尔盆地西北缘中生代油砂分布特征及开发前景.世界地质, 2006, 25 (1) : 49~53.
    [109]张朝军,何登发,吴晓智,等.准噶尔多旋回叠合盆地的形成与演化.中国石油勘探,2006, (1):47-57.
    [110]张敏,蔡春芳,张俊.油气藏中沥青垫的研究进展.地质科技情报,1997, 16(1):81-84.
    [111]张敏.陆相凝析气藏中沥青垫的发现及其地质意义.科学通报,1996,41(21):1967-1969.
    [112]张越迁,张年富.准噶尔大型叠合盆地油气富集规律.石油地质,2006,59 (1):59-64
    [113]赵白.准噶尔盆地的构造特征与构造划分.新疆石油地质,1993,14(3): 209-216.
    [114]赵俊猛,马宗晋,姚长利,等.准噶尔盆地基底构造分区的重磁异常分析.新疆石油地质,2008,29(1):7-11.
    [115]赵孟军,张水昌,赵陵,等.南盘江盆地古油藏沥青地球化学特征及成因.地质学报,2006,86(6):893-901.
    [116]赵孟军,张水昌,赵陵,等.南盘江盆地古油藏沥青、天然气的地球化学特征及成因.中国科学D辑:地球科学, 2007,7(2):167-177.
    [117]赵永德,李策,敖林,等.新疆和什托洛盖盆地含油气评价.新疆石油地质,1997,18(2):114-118,134.
    [118]朱光儒,王晓伟,王启航.新疆谢米斯台东段早石炭世A型花岗岩地球化学特征及构造意义.甘肃地质,2011,20(2):29-34.
    [119]朱星南,玉素甫·艾里.试论沙尔布尔山构造演化.新疆工学院学报, 1994,15(2):79-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700