用户名: 密码: 验证码:
深部储存CO_2泄漏对浅层地下水水质影响的场地尺度数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深部地质储存的CO_2会通过盖层中可能存在的未知断层、裂隙或穿透盖层的废弃井等向上运移,通过与浅层含水层中的原水和含水介质矿物组分发生复杂的水文地球化学作用,从而对浅层地下水水质产生影响,有可能会使含水层丧失其原有的供水功能,而泄漏停止后含水层的天然条件和人为抽注水等条件下对地下水中组分浓度具有不同的修复效果。
     本次研究选择美国密西西比州某场地为野外注入试验区,在对场地的地质、水文地质条件和室内实验调查的基础上,收集野外饱和CO_2水注入试验中监测井处地下水中组分浓度监测结果,建立注入试验的反应性迁移转化模拟模型,分析注入试验过程中组分浓度变化的作用机理,并针对不同的天然和人工修复方案进行CO_2泄漏停止后的修复效果评价。
     在注入试验之前开展了近20个月的地下水水质背景值监测,共获取水质测试结果102组,有效检出组分45项,监测结果表明场地地下水中各组分浓度变化相对稳定,pH在7.5~8.5之间波动。根据统计所得各组分浓度平均值和选取的10组典型地下水水样对比分析结果表明:方解石的SI均在-0.09 ~ -0.95之间,处于未饱和状态,可能是地下水中组分浓度变化的控制性矿物;而白云石的SI在-2.41 ~ -4.12之间,虽处于未饱和状态,但不可能是地下水中组分浓度变化的控制性反应矿物;含铁矿物中菱铁矿和Fe(OH)_3的SI在0附近,可能会对地下水中组分浓度产生影响;氧化还原电位计算结果表明,HS-/SO_4~(2-)氧化还原电位在-0.322 ~ -0.263V之间,Fe~(2+)/Fe~(3+)氧化还原电位在0.101~ 0.243V之间,两组不同的氧化还原电位计算结果具有明显差别,说明目的含水层并未处于氧化还原平衡状态。各组分平均值组计算出的SI与典型地下水水样计算结果基本一致,说明注入试验前各组分浓度平均值可作为的地下水中组分浓度的背景值。
     饱和CO_2水的野外注入试验从2011年10月18日开始,主监测孔MW3处监测结果表明,地下水溶解组分中的pH、Ca、Mg、Sr、Mn、K、Na等浓度在试验期间发生显著变化,均在2011年11月13日左右出现峰值,其中pH和Mn浓度超过EPA的最大允许值;根据注入试验过程中溶解组分之间相关性分析结果,可将试验中浓度显著变化组分分为2组:(1)Ca、Mg、Sr和Mn等,该组组分浓度与Ca浓度相关性较好,斜率均在1.0左右,说明该组组分可能具有相似的来源;(2)Na和K,该组组分浓度与Ca浓度具有一定的相关性,但与第一组组分相关性相比较差,可能是其来源较为复杂的原因,且pH可以作为CO_2泄露的判定指标,金属离子的判定效果需要进一步研究。。
     根据场地水文地质调查结果,结合饱和CO_2水的野外注入试验监测结果,以TOUGHREACT 2.0为软件模拟平台,分别考虑了控制性反应矿物组分的溶解与沉淀作用、含水介质的阳离子交换作用等,建立了反应性迁移转化模拟模型,用于识别注入试验过程中地下水中组分浓度变化作用机理。模型模拟结果表明,由于饱和CO_2水的注入,降低了目的含水层中的pH,使得地下水中方解石矿物发生溶解作用,溶解产生的Ca作为置换动力,通过阳离子交换作用交换出含水介质中的Mg、Sr、Mn、K和Na等,使得地下水中相应离子组分浓度升高,模拟结果与野外注入试验监测结果拟合效果较好,说明建立的模型能够较好反映注入试验过程中含水层发生的水文地球化学作用。模型模拟结果同时表明,注入试验开始阶段Ca组分浓度空间分布表现为注入井浓度最高、向四周依次降低的规律;随着注入试验的进行,注入井周围方解石矿物溶解作用的降低、注入水的稀释作用影响,Ca组分浓度呈现出注入井中心浓度最低、向四周浓度逐渐升高至峰值后又逐渐降低至地下水背景值的圈状分布,影响范围向四周逐渐扩展;方解石矿物初始体积分数和溶解速率的参数敏感性分析结果表明,随着初始体积分数增加,地下水中Ca浓度组分峰值大小增大,峰值出现时间滞后,随着方解石溶解速率常数的增大,方解石溶解完毕时间逐渐提前,地下水中Ca浓度峰值逐渐减;阳离子交换容量的参数敏感性分析结果表明,当小于12meq/100g时,地下水中Ca的交换能力超过含水介质的交换容量,CEC数值变化对地下水中溶解组分浓度变化具有显著影响,当大于12 meq/100g时,地下水中Ca的交换能力低于含水介质的交换容量,CEC数值变化对地下水中溶解组分浓度变化影响不大,考虑到含水介质为中粗砂含砾,局部夹有高吸附容量的有机质,模型中阳离子交换容量设为12 meq/100g具有一定合理性。
     当CO_2泄漏停止后,目的含水层在天然条件下和人工抽注水条件下具有一定的修复能力。本次研究中基于已建立的反应性迁移转化模拟模型,以注入试验开始后第21d(MW3处地下水中Ca浓度达到峰值时刻)为修复初始时刻,通过改变抽注水条件设计了6中不同的修复方案,进行目的含水层修复能力评价。评价结果表明:(1)天然修复条件下地下水中pH和Ca组分空间分布均会随着地下水流向下游迁移,并逐渐由圆环分布形态变为椭圆状,增加了新的影响范围并有逐渐扩大的趋势;由于迁移过程中含水介质中碳酸盐矿物的溶解作用,pH高值分布范围随着时间变化逐渐缩小,但Ca组分浓度峰值由泄漏停止初期增大了一个数量级;(2)当前抽注水条件下的修复能够一定程度上有效降低各组分浓度,但由于抽水井较远,扩大了影响区域,且会在抽水井附近出现浓度高值区;(3)IW1单独注水修复在开始阶段各组分浓度变化规律与方案2较为相似,随后在天然流场作用下开始向下游方向移动,在修复过程中都虽能够一定程度上降低各组分浓度,但同时扩大了污染的影响范围或对未污染区造成新的影响;(4)IW1单独抽水修复对降低地下水中pH和Ca组分浓度具有非常显著的效果,在6个月时候基本上消除了CO_2泄漏对目的含水层地下水水质的影响;(5)MW1、MW2和MW4注水和IW1抽水可能会在IW1井远离注入井一侧形成浓度高值分布区,虽然分布范围较小,但其浓度值比泄漏停初始阶段峰值高约1.5倍,因此该方案对消除CO_2影响效果不佳;(6)MW1、MW2和MW4抽水和IW1注水的修复方案一定程度上可以起到修复作用,但修复耗时相对较长,影响范围相对于泄漏停止初始时候有一定的扩大,且在抽水井附近会出现局部峰值增高的情况。综上可以看出,相同条件下的抽水比注水修复效果更佳,选择在影响晕中心抽水效果最明显,但抽出的水需要在地表进行进一步的处理,且在评价中应综合考虑pH和Ca浓度变化进行目的含水层的修复效果评价。
The deep stored carbon dioxide would leak through the unknown fault, fracturein the cap rock and abandoned wells through the cap rock of storage formation, andreact with the original groundwater in the aquifer and mineral composition in theaquifer media through complicate geochemistry reactions, which would impact thegroundwater quality in shallow aquifer, and reduce the water supplement function ofthe drinking aquifer; and the natural remediation by the aquifer itself and artificialinjection/extraction would impact the concentration of groundwater species withdifferent degrees after the leakage stopped.
     In this study, a site has been chosen for the injection test, the groundwater withsaturated carbon dioxide have been injected into the target aquifer through injectionwell to simulation the leakage of carbon dioxide from deep formations, and monitorthe concentration variations of main species in groundwater. Based on the survey ofgeology, hydrogeology conditions, analysis the baseline of groundwater species intarget aquifer and the concentration variations during the injection test, establish areactive transport model to simulation the injection test, and inverse thehyrogeochemistry mechanisms, and compared effects with different remediationmethods.
     The baseline of groundwater quality has been taken based on the monitoringresults for 20 months before the injection test, and 102 samples and 45 species havebeen detected, and the results show that the species concentrations are stable; pHvaries between 7.5 and 8.5. According to the comparison results among the averagedata group and 10 typical samples have been chosen, the saturation index of calciteare between -0.09 and -0.95, which means the calcite are unsaturated and maybe thecontrol mineral of groundwater quality; the saturation index of dolomite are between-2.41 and -4.12, which means the dolomite are unsaturated, but it couldn’t be thecontrol mineral of groundwater quality, the saturation index of siderite and Fe(OH)_3 are near zero, which means they maybe impact the groundwater quality; theoxidation-reduction potential analysis results show that, the Eh of HS-/SO_4~(2-)arebetween -0.322 and -0.263V, the Eh of Fe~(2+)/Fe~(3+)are between 0.101 and 0.243V, thedifference means the aquifer is not in the equilibrium state. The averageconcentrations for every species could be used as the baseline of target aquifer.
     The field injection test began on Oct. 18, 2011, and the monitoring results ofMW3 well show that, pH and the concentrations of Ca, Mg, Sr, Mn, K and Na occurobvious changes during the injection test, the peak times are around Nov. 13, 2011,and the pH and concentration of Mn exceed the maximum control limit; according tothe correlation analysis results between species in groundwater during test, thespecies could be divided into 2 groups: (1) Ca, Mg, Sr and Mn, their concentrationhave good linear relationship with concentration of Ca species, the slope are near 1.0,which mean that they should be affected by the same mechanism; (2) Na and K, theirconcentration has good linear relationship with concentration of Ca species too, butcompare with the first group, the correlation worse than first group, maybe becausethey have different resources.
     Based on the field survey results and the monitoring results during the injectiontest, considering the dissolution and precipitation of controlling minerals and ionexchange affect, a reactive transport model has been established withTOUGHREACT 2.0. The simulation results show that, because of the injection withcarbon dioxide saturated groundwater, the pH of target aquifer decreased, and thedissolution of calcite enhance the concentration of Ca in groundwater, the increasingCa could be the driving force in the ion exchange process, and the concentrations ofMg, Sr, Mn, K and Na increased. The good fitting results show that, the establishedmodel could understand the hydrogeochemistry mechanism during the injection testwell. The simulation results show that, at beginning of the injection test, the spatialdistribution of Ca represented as the highest concentration around the injection welland decreased to the surround, as the test going, the weaken dissolution of calciteand the dilute of injected groundwater with baseline, the spatial distribution of Carepresented as the lowest concentration around the injection well and increased tothe surround until reach the peak concentration, and then decreased to the baseline at the edge of affected area, the affected area enlarged as the test going on; the initialvolume fraction and dissolution rate sensitivity analysis results of calcite show that,with the increasing of initial volume fraction, the peak concentration of Ca ingroundwater increased, and the peak time delay, with the increasing of dissolutionrate of calcite, the dissolution finishing quicker and quicker, and the peakconcentration of Ca decreased; the sensitivity analysis of Cation Exchange Capacity(CEC) results show that, when the CEC is larger than 12 meq/100g, the change ofCEC will impact the concentrations of groundwater dissolution species significantly,when the CEC is smaller than 12 meq/100g, there are no significant changes ofgroundwater species, and consider the composition of aquifer media as coarse sandand gravel, organic matters with high CEC, the initial number of CEC used in themodel do make sense.
     When the leakage of carbon dioxide stopped, the target aquifer could recoveryby itself under the natural condition or artificial injection and extraction. In this study,based on the established reactive transport model, consider the spatial and temporaldistribution of concentration at the 21stday after the beginning of injection test as theinitial conditions, there are 6 different remediation method through the change ofinjection and extraction conditions, and assess the remediation results under naturalcondition and artificial injection and extractions, and the results show that, (1) thedistribution of pH and Ca would move to the downstream under natural condition,and the circle formation would transform into oval, and affect new area, because ofthe dissolution of calcite, the area with high pH reduced, but the peak concentrationof Ca enlarged one order; (2) although the concentration of main species decreasedwhen keep present injection and extraction condition, but because the distance ofextraction, enlarged the affected area during the remediation, and several area withhigh concentration occurred around the extraction well; (3) the concentration of mainspecies under the condition of sole injection in IW1 are similar with case 2 at thebeginning, and then move to the downstream, but new area affected in this case; (4)the concentration of main species eliminate quickly under the condition of soleextraction in IW1, and all the concentrations decreased to baseline after 6 months; (5)there would be a local area with high concentration around the extraction well underthe condition of injection of MW1, MW2, MW4 and extraction of IW1, although it’s a small area, but the concentration of Ca could be 1.5 time of the beginningconcentration, and this case is not better than case 4; (6) under the condition ofextraction of MW1, MW2, MW4 and injection of IW1, the remediation time wouldlonger than case 4, and enlarged the affected area, several area with highconcentration occurred around the extraction wells. According the discussionaforementioned, the case 4 with sole extraction of IW1would the best method for theremediation of carbon dioxide leakage affected aquifer, but the extractedgroundwater should be further treated.
引文
[1] Bachu S. Sequestration of CO2in geological media: criteria and approach for siteselection in response to climate change. Energy Conservation Management, 2000,42: 953-970.
    [2] IPCC, IPCC special report on carbon dioxide capture and storage. Prepared byWorking GroupⅢof the intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 2005, 442pp.
    [3] Smyth R C, Hovorka S D, Lu J, et al. Assessing risk to fresh water resources fromlong term CO2injection- laboratory and field studies. Energy Procedia, 2009, 1:1957-1964.
    [4] Zheng L, Apps J A, Zhang Y, et al. On mobilization of lead and arsenic ingroundwater in response to CO2leakage from deep geological storage. Chemicalgeology, 2009, 268: 281-297.
    [5] Van der Meer L G H. Investigations regarding the storage of carbon dioxide inaquifers in the Netherlands. Energy Conversation and Management, 1992, 33:611-618.
    [6] Wang S. and Jaffe P R. Dissolution of a mineral phase in potable aquifers due toCO2 releases from deep formations: effect of dissolution kinetics. EnergyConversion and Management, 2004, 45: 2833-2848.
    [7] Birkholzer J T, Apps J A, Zheng L, et al. Research project on CO2geological storageand groundwater resources, quality effects caused by CO2Intrusion into ShallowGroundwater, Technical Report, Earth Sciences Division, Lawrence BerkeleyNational Laboratory, Berkeley, CA, 2008, 352 pp.
    [8] Zheng L, Apps J A, Spycher N, et al. Geochemical modeling of changes in shallowgroundwater chemistry observed during the MSU-ZERT CO2injectionexperiment. Internation Journal of Greenhouse Gas Control. 2012 (7):202-217.
    [9] Lemieux J-M, Review: The potential impact of underground geological storage ofcarbon dioxide in deep saline aquifer on shallow groundwater resources.Hydrogeology Journal, 2011, 19: 757-778.
    [10] Xu T. Numerical modeling of injection and mineral trapping of CO2with H2S andSO2in a sandstone formation. Chemical Geology, 2007, 242: 319-346.
    [11] Zhou Q, Birkholzer J T, Mehnert E, et al. Modeling basin- and plume-scale processof CO2storage for full scale deployment. Ground Water, 2010, 48:494-514.
    [12] Zheng L, Spycher N, Birkholzer J T, et al. Modeling Studies on the Transport ofBenzene and H2S in CO2-Water System. Technology Report by LBNL, 2010, PP130.
    [13] Vong C Q, Jacquemet N, Picot-Colbeaux G, et al. Reactive transport modeling forimpact assessment of a CO2 intrusion on trace elements mobility within freshgroundwater and its natural attenuation for potential remediation. Energy Procedia,2011, 4: 3171-3178.
    [14] Todaka N, Nakanishi S, Xu T, et al. Hydrogeochemical Modeling for NaturalAnalogue Study of CO2 Leakage due to Matsushiro Earthquake Swarm. EnergyProcedia, 2009, 1: 2413-2420.
    [15] Kharaka Y K, Thordsen J J, Kakouros E, et al. Changes in the chemistry of shallowgroundwater related to the 2008 injection of CO2at the ZERT field site, Bozeman,Montana. Environmental Earth Sciences, 2010, 60: 273-284.
    [16] Michael K, Gola A, Shulakov V, et al. Geological storage of CO2 in saline aquifer:a review of the experience from existing storage operations [J]. InternationalJournal of Greenhouse Gas Control, 2010, 4:659-667.
    [17] Spangler L H, Dobeck L M, Repasky K S, et al. A shallow subsurface controlledrelease facility in Bozeman, Montana, USA, for testing near surface CO2detection techniques and transport models. Environmental Earth Science, 2009,60:227-239.
    [18] Lu J M, Partin J W, Hovorka S D, et al. Potential risks to freshwater resources as aresult of leakage from CO2 geological storage: a batch-reaction experiment.Environmental Earth Sciences, 2010, 60: 335-348.
    [19] Little M G. and Jackson R B, Potential impacts of leakage from deep co2geosequestration on overlying freshwater aquifers. Environmental Science &Technology, 2010, 44: 9225-9232.
    [20] Carroll S, Hao Y, Aines R. Geochemical detection of carbon dioxide in diluteaquifers. Geochemical Transactions, 2009, 10: 1-18.
    [21] McGrath A E, Upson G L, Caldwell M D. Evaluation and mitigation of landfill gasimpact on cadmium leaching from native soil. Groundwater Monitoring &Remediation, 2007, 27: 99-109.
    [22] Apps J A, Zhang Y, Zheng L, et al. Identification of thermodynamic controlsdefining the concentrations of hazardous elements in potable ground waters andthe potential impact of increasing carbon dioxide partial pressure. Energy Procedia,2009, 1:1917–1924.
    [23] Apps J A, Zheng L, Zhang Y, et al. Evaluation of groundwater quality changes inresponse to CO2leakage from deep geological storage. Transport in Porous Media,2010, 82: 215-246.
    [24] Zheng L, Apps J A, Zhang Y, et al. Reactive transport simulations to studygroundwater quality changes in response to CO2 leakage from deep geologicalstorage. Energy Procedia, 2009, 1: 1887–1894.
    [25] Humez P, Audigane P, Lions J, et al. Modeling of CO2 leakage up through anabandoned well from deep saline aquifer to shallow fresh groundwater. Transportporous Meida, 2011, 90: 153-181.
    [26] Fahrner S, Schaefer D, Dahmke A, Reactive transport modeling to assessgeochemical monitoring for detection of CO2intrusion into shallow aquifers.Energy Procedia, 2011, 4: 3155-3162.
    [27] Kerfoot H B. Landfill gas effects on groundwater samples at a municipal solidwaster facility. The Journal of the Air & Waste Management Association, 1994, 44:1293-1298.
    [28] Xu T, Sonnenthal E L, Spycher N, et al. TOUGHREACT: a simulation program fornon-isothermal multiphase reactive geochemial transport in variably saturatedgeologic media. Computers & Geosciences, 2006, 32: 145-165.
    [29] Xu, T., Nicolas Spycher, Eric Sonnenthal, Guoxiang, Zhang, Liange Zheng,Karsten Pruess, 2011, TOUGHREACT Version 2.0: A simulator for subsurfacereactive transport under non-isothermal multiphase flow conditions. Computersand Geosciences, 37: 763-774.
    [30] Birkholzer J T, Zheng L, Spycher N, et al. Groundwater quality changes inresponse to CO2leakage from deep geological storage. Geological SocialAmerican Abstract, 2010, 42(5): 45.
    [31] Nicot J P, Hovorka S D, Choi J W. Investigation of water displacement followinglarge CO2sequestration operations. Energy Procedia, 2009, 1:4411-4418.
    [32] Nicot J P. Evaluation of large-scale CO2storage on freshwater sections of aquifers:an example from the Texas Gulf Coast Basin. International Journal of GreenhouseGas Control, 2008, 2: 582-593.
    [33] Esposito A and Benson S M. Remediation of possible leakage from geologic CO2storage reservoirs into groundwater aquifers. Energy Procedia, 2011, 4:3216-3223.
    [34] South Company Services, Inc. Impact of elevated dissolved CO2on a ShallowDrinking Water Aquifer: Hydrogeologic Characterization and PreliminaryGeochemical Findings. 2010.
    [35] South Company Services, Inc. Impact of elevated dissolved CO2on a ShallowDrinking WaterAquifer,Annual reports, (unpublished), 2011.
    [36] Rettich T R, Battino R, and Wilhelm E, Solubility of Gases in Liquids. 18.High-precision determination of Henry Fugacities for Argon in Liquid Water at 2to 40℃. Journal ofSolution Chemistry, 1992, 21(9): 987-1004.
    [37] Ford Derek, Williams Paul, Karst Hydrogeology and Geomorphology, John Wiley& Sons, Ltd. 2007.
    [38]钱会,马致远编著,水文地球化学,北京:地质出版社,2005.
    [39] Kehew A. E. Applied chemical hydrogeology. New Jersey: Prentice Hall, Inc.2001.
    [40] Xu T, Sonnenthal E, Spycher N, et al., TOUGHREACT user’s guider: a simulationprogram for nonisothermal multiphase reactive geochemical transport in variablysaturated geologic media. Lawrence Berkeley National Lab report (LBNL-55460),2004, pp 195.
    [41] Dobson P F, Salah S, Spycher N, et al. Simulation of water-rock interaction in theYellowstone geothermal system using TOUGHREACT, Geothermics, 2004, 33:493-502.
    [42] Xu T, Rose P, Fayer S, et al. On modeling of chemical stimulation of an enhancedgeothermal system using a high pH solution with chelating agent. Geofluid, 2009,9: 167-177.
    [43] Audigane P, Gaus I, Czernichowski-Lauriol I, et al. Two-dimensional reactivetransport modeling of CO2 injection in a saline aquifer at the Sleipner Site,American Journal of Science, 2007, 307: 974-1008.
    [44] Xu T, Apps J A, Pruess K, et al. Numerical modeling of injection and mineraltrapping of CO2 with H2S and SO2in a sandstone formation, Chemical Geology,2007, 242(3-4): 319-346.
    [45] Zhang W, Li Y, Xu T, et al, Long-term variations of CO2 trapped in differentmechanisms in deep saline formations: A case study of the Songliao Basin, China,Greenhouse Gas Control Technologies, 2009, 3(2):161-180.
    [46] Singleton M J, Sonnenthal E L, Conrad M E, et al. Multiphase reactive transportmodeling of stable isotope fractionation in unsaturated zone pore water and vapor:Application to seasonal infiltration events at the Hanford Site, WA. Vadose ZoneJournal, 3: 775-785.
    [47] Xu T, Senger R, and Finsterle S, Corrosion-induced gas generation in a nuclearwaste repository: Reactive geochemistry and multiphase flow effects, Appl.Geochem., 2008, 23, 3423–3433.
    [48] Gu C, Maggi F, Riley W J, et al, Aqueous and Gaseous Nitrogen Losses Inducedby Fertilizer Application, J. Geophys. Res., doi:10.1029/2008JG000788, 2008.
    [49] Maggi F, Gu C, Riley W J, et al, Mechanistic modeling of biogeochemical nitrogencycling: model development and application in an agricultural system, J. Geophys.Res. (Biogeosciences), J. Geophys. Res., 113, doi:10.1029/2007JG000578, 2008.
    [50] Spycher N F, Sonnenthal E L,Apps J A, Fluid flow and reactive transport aroundpotential nuclear waste emplacement tunnels at Yucca Mountain, Nevada, J.Contamination Hydrogeology 2003, 62-63: 653-673.
    [51] Sonnenthal E, Spycher N, Xu T, Linking reaction, transport, and hydrologicalparameters in unsaturated fractured rock: TOUGHREACT implementation andapplication. Proceedings of TOUGH Symposium, 2003.
    [52] Narasimhan T N and Witherspoon P A, An integrated finite difference method foranalyzing fluid flow in porous media. Water Resource Research, 1976, 12: 57-64.
    [53] Yeh G T and Tripathi V S. A method for simulating transport of reactivemultispecies components: model development and demonstration. WaterResource Research, 1991, 27: 3075-3094.
    [54] Xu T, Sonnenthal E L, Spycher N, et al. TOUGHREACT: a simulation program fornon-isothermal multiphase reactive geochemial transport in variably saturatedgeologic media. Computers & Geosciences, 2006, 32: 145-165.
    [55] Xu, T., Nicolas Spycher, Eric Sonnenthal, Guoxiang, Zhang, Liange Zheng,Karsten Pruess, 2011, TOUGHREACT Version 2.0: A simulator for subsurfacereactive transport under non-isothermal multiphase flow conditions. Computersand Geosciences, 37: 763-774.
    [56] Zheng L, Apps J A, Zhang Y, et al. On mobilization of lead and arsenic ingroundwater in response to CO2leakage from deep geological storage. Chemicalgeology, 2009, 268: 281-297.
    [57] Zheng L, Apps J A, Spycher N, Geochemical modeling of changes in shallowgroundwater chemistry observed during the MSU-ZERT CO2 injectionexperiment. International Journal of Greenhouse Gas Control. 2011, In press, pp16.
    [58] Apps J A, Zheng L, Zhang Y, et al. Evaluation of groundwater quality changes inresponse to CO2leakage from deep geological storage. Transport in Porous Media,2010, 82: 215-246.
    [59] Bear J, Hydraulics of groundwater, McGraw Hill, 1979: pp 567.
    [60] Wu Y, Forsyth P, Efficient Scheme for Reducing Numerical Dispersion inModeling Multiphase Chemical Transport in Porous and Fractured Media,Proceedings of TOUGH Symposium 2006, Lawrence Berkeley NationalLaboratory, Berkeley, California, May 15-17, 2006.
    [61] Pan L, Hinds J, Haukwa C, et al. WinGridder: An interactive grid generator forTOUGH Version 1.0 (User Manual), Earth Science Division, Ernest OrlandoLawrence Berkeley National Laboratory, 2001, pp106.
    [62] Pan L, WinGridder: An interactive grid generator for TOUGH2. Proceedings ofTOUGH Symposium 2003, Lawrence Berkeley National Laboratory.
    [63] Pan L, User information doucument for WinGridder Version 3.0. Earth ScienceDivision, Lawrence Berkeley National Laboratory, 2008, pp 85.
    [64] Pruess K, ECO2N: A TOHGH2 fluid property module for mixtures of water, NaCland CO2. Earth Science Division report (LBNL-57952), Ernest Orlando LawrenceBerkeley National Laboratory, 2005, pp76.
    [65] Pruess K, Garcia J, Kovscek T, et al., Code intercomparison builds confidence innumerical simulation models for geologic disposal of CO2. Energy, 2004, 29:1431-1444.
    [66] Pruess K, Spycher N, ECO2N- A fluid property module for the TOUGH2 code forstudies of storage in saline aquifer. Energy Conversion and Management, 2007(48): 1761-1767.
    [67] Spycher N and Pruess K, CO2-H2O mixtures in the geological sequestration ofCO2.Ⅱ. Partitioning in chloride brines at 12-100℃and up to 600 bar.Geochimica et Cosmochimica Acta, 2005, 69(13): 3309-3320.
    [68] Kerfoot H B. Landfill gas effects on groundwater samples at a municipal solidwaster facility. The Journal of the Air & Waste Management Association, 1994, 44:1293-1298.
    [69] Deutsch W J. Groundwater Geochemistry- Fundamentals and Applications toContamination. CRC Press. 1997.
    [70] Lasaga A C, Soler J M, Ganor J, et al., Chemical weathering rate laws and globalgeochemical cycles. Geochimica et Cosmochimica Acta, 1994,58(10):2361-2386.
    [71] Steefel C I, Lasaga A C, A coupled model for transport of multiple chemicalspecies and kinetic precipitation/dissolution reactions with application to reactiveflow in single phase hydrothermal systems. American Journal of Science, 1994,294: 529- 592.
    [72] Palandri J L and Kharaka Y K, A compilation of rate parameters of water-mineralinteraction kinetics for application to geochemical modeling. U. S. GeologicalSurvey report (2004-1068), 2004, pp70.
    [73] Brantley S L, Kubicki J D, White A F, Kinetics of water-rock interaction. Springer,2008, pp 843.
    [74] Zhang Y, Geochemical kinetics. Princeton University Press, 2008, pp 661.
    [75] Stumm W. Chemistry of solid–water interface. New York : John Wiley and Sons,1992.
    [76] Dragun J. The soil chemistry of hazardous materials. Silver Spring, MD:Hazardous Materials Control Research Institute. 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700