用户名: 密码: 验证码:
发育期PFOS暴露的肺损伤效应及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:由于宫内PFOS暴露导致的子代死亡风险增加可能与PFOS的肺毒性相关,因此本研究旨在探讨胚胎期PFOS暴露致仔鼠肺损伤及可能的毒性机制。
     方法:将雌、雄性成熟SD大鼠按2:1合笼后,经阴道涂片筛选受孕的雌鼠。然后将孕鼠随机分为对照组(0.05% Tween-20)、低剂量组(0.1 mg/kg/day PFOS)、高剂量组(2 mg/kg/day PFOS)。从母鼠受孕后第2天(gestational day 1,GD1)开始进行PFOS灌胃染毒,直至分娩结束。染毒体积为1 ml/kg。对出生后的仔鼠观察其3日内存活率及初生至断奶期间的体重增长情况。同时将初生(PND 0)和断奶期(PND 21)仔鼠经麻醉后处死,收集血液、肺脏等主要脏器。采用液相色谱-质谱串联(LC/MS/MS)分析血清及肺脏组织中PFOS的浓度,用H&E染色法、TUNEL技术、Real-time PCR、western blotting、酶学技术等分别检测肺脏的病理学改变、肺部细胞凋亡、细胞凋亡调控分子mRNA表达水平、cyt c蛋白的释放、caspase 3、8、9的酶活力,同时还检测了肺脏中MDA水平、GSH的含量以及SOD酶的活力等氧化损伤相关指标。
     结果:与对照组和低剂量组相比,孕鼠妊娠期高剂量PFOS暴露能明显诱导PND 0和PND 21仔鼠肺脏肺泡出血、肺间隔增厚、炎性浸润、肺实变等病理学改变,TUNEL显示高剂量组仔鼠肺组织出现明显的细胞凋亡(P<0.01)。胚胎期高剂量PFOS暴露组仔鼠肺脏Bax、Fas以及FasL的mRNA表达在PND 0和21明显上调(P<0.01),Bcl-2 mRNA水平在PND 0显著下调(P<0.01),而且胞浆cyt c蛋白的释放水平在PND 0和PND 21均明显增加(P<0.01),caspase 3、8、9酶的活力在PND 0和21也显著提高(P<0.01);此外,高剂量组仔鼠肺脏在PND 0和PND 21 MDA水平明显增加(P<0.01)、还原性生物分子GSH的含量显著减少、抗氧化酶SOD活力下降(P<0.01)。在低剂量组,仔鼠肺组织中没有明显的病理改变和细胞凋亡,3种caspase酶的活力没有明显改变,只是PND 0仔鼠肺脏的bax mRNA表达和MDA水平,以及PND 21肺脏Fas mRNA表达会轻微上调(P<0.05)。结论:宫内PFOS暴露能够引起仔鼠肺组织的损伤,而且这种损伤具有一定的持
     续性。本实验证实氧化应激损伤和细胞程序性死亡参与了肺组织的损伤过程,而且内源性和外源性凋亡通路均被活化。
     目的:在第一部分的动物研究结果显示,氧化损伤和细胞凋亡在胚胎期PFOS暴露致仔鼠肺损伤中起到了非常重要的作用。但尚不能断定这些损伤效应是PFOS对肺组织的直接毒作用。因此,该部分通过建立体外细胞染毒模型,探讨PFOS对肺上皮细胞株A549的直接毒效应。
     方法:通过将A549细胞在1%血清浓度培养基培养条件下,暴露于不同浓度的PFOS(0、12.5、25、50、100、200μM)一定时间后,用MTT法、流式细胞术、DCFH-DA荧光探针、JC-1荧光探针等分别检测细胞活力、细胞凋亡率、胞内ROS的产生以及线粒体膜电位;此外还检测了MDA水平、GSH含量以及SOD酶活力等氧化应激指标;用酶学的方法还检测了caspase 3、caspase 8、caspase 9三种酶的活力。此外,还探讨了用还原剂NAC预处理后,通过检测ROS的产生、细胞活力和凋亡率,看ROS是否介导了PFOS的毒效应。最后,还初步研究了不同血清浓度下(1%和10%)PFOS的毒性差异。
     结果:与溶剂对照组相比,A549细胞在低血清环境下(1%)经不同浓度的PFOS处理24-72 h后,细胞活力呈剂量和时间依赖性下降。此外,在该血清浓度下暴露于PFOS,细胞凋亡率、ROS的产生、MDA水平、SOD酶活力、caspase 3和caspase 9的活力呈剂量依赖性增加,同时,胞内GSH含量和线粒体膜电位均下降。但各暴露组细胞胞内caspase 8的活力并没有上升,甚至在低剂量组还有轻度下降。NAC预处理能显著抑制PFOS诱导的ROS的产生、细胞活力下降以及细胞凋亡。另外,在10%血清浓度培养条件下暴露于PFOS,只有最高剂量组(200μM)细胞出现活力下降,而且高血清能显著抑制200μM PFOS造成的细胞凋亡。
     结论:PFOS通过ROS介导的内源性细胞凋亡通路诱导A549细胞凋亡。同时高血清培养条件能够抑制PFOS的细胞毒性,可能与血清蛋白结合PFOS有关,或许这可以用来解释发育期PFOS暴露比成年期暴露更敏感的原因。
Objective: The main purpose of this study was to investigate the ability of prenatal PFOS exposure to induce oxidation and apoptosis in rat offspring lungs.
     Methods: Pregnant rats were dosed orally with PFOS (0, 0.1 and 2.0 mg/kg/day) from gestation days (GD) 1 to 21. Lung samples from postnatal day (PND) 0 and 21 pups were analyzed for the toxic effects of PFOS. The content of PFOS in serum and lung was analyzed using LC/MS/MS, H&E staining, TUNEL, Real time PCR and western blot were used to detect the histopathological changes, cell apoptosis, the expression of proapoptotic and antiapoptotic molecules mRNA, respectively. In addition, the release of cytochrome c (Cyt c) from mitochondria to cytoplasm, the activities of caspase 3, 8, 9 and SOD, levels of MDA, GSH were also detected. Results: The concentrations of PFOS in sera and lung were also increased in a
     dose-dependent manner. Compared to the controls, significant differences in body weight from PND 0 to PND 21and postnatal mortality within PND 3 were observed in the high dose group. It was shown that dams that received 2.0 mg/kg/day caused sever histopathological changes along with marked oxidative injuries and increased cell apoptosis in neonatal lungs, and further examinations showed that the ratio of Bax to Bcl-2, release of cyt c from mitochondria, expressions of proapoptotic genes (Fas and Fas-L), and activities of caspase-3, -8 and -9 were up-regulated correspondingly. There was no significant histopathological change and cell apoptosis in neonatal lungs at the low dose group, even though the level of MDA and bax mRNA of PND 0 lungs, and the expression of Fas mRNA of PND 21 lungs, were increased slightly.
     Conclution: In summary, the present study demonstrated that prenatal PFOS exposure could overwhelm the homeostasis of antioxidative systems to result in oxidative stress and activate both caspase-dependent death pathways in rat offspring lungs.
     Objective: The main purpose of this study was to investigate the direct effects of PFOS on A549 lung epithelial cells, since the study in part 1 could not distinguish whether the pulmonary toxicity induced by prenatal PFOS exposure represented direct lung toxic mechanisms as any of the innumerable possibilities from cryptic and overt systemic toxicity.
     Methods: After A549 cells were exposed to various concentration of PFOS (0-200μM),MTT, flow cytometry, DCFH-DA, and JC-1 were used to detect cell viability, cell apoptosis rate, ROS level and mitochondrial membrane potential (MMP), respectively. Levels of MDA and GSH, activities of SOD, caspase 3, 8, and 9 were also evaluated. In addition, we further investigated the protective effects of NAC against PFOS-induced cell apoptosis, and the different responses of A549 to PFOS under cultures supplemented with different concentration sera.
     Results: Compared to controls, after 24 h, 48 h or 72 h of PFOS exposure, the cell viabilities were clearly decreased in concentration and time-dependent manners. Furthermore, cell apoptosis rate, levels of ROS, MDA, activities of SOD, caspase 3 and 9, were increased, while levels of GSH and MMP were inclined significantly, after 24 h of PFOS exposure. Pre-treatment with NAC for 2 h obviously suppressed PFOS-induced increase of intracellular ROS levels, cell viability loss and apoptosis. In addition, it was also found that the addition of sera protected the cells from the detrimental effects of PFOS.
     Conclusion: PFOS has the obvious toxic effects on A549 cells, and the intrinsic cell death pathway, activated by ROS-mediated mitochondrial dysfunction, takes part in the PFOS-induced A549 cell apoptosis. In light of the protective effect of sera, the fact that the fetus and newborn possess lower content of these proteins suggested that greater lung toxicity may occur at blood levels of PFOS that are nontoxic to adults. Keywords:PFOS, A549, apoptosis, ROS, mitochondrial injury
引文
[1] Pelley J. Canada moves to eliminate PFOS stain repellents. Environ Sci Technol. 2004, 38:452A.
    [2] Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci. 2003, 74:382-92.
    [3] Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicol Sci. 2003, 74:369-81.
    [4] Wan YJ, Li YY, Xia W, Chen J, Lv ZQ, Zeng HC, et al. Alterations in tumor biomarker GSTP gene methylation patterns induced by prenatal exposure to PFOS. Toxicology. 2010, 274:57-64.
    [5] Kannan K, Yun SH, Rudd RJ, Behr M. High concentrations of persistent organic pollutants including PCBs, DDT, PBDEs and PFOS in little brown bats with white-nose syndrome in New York, USA. Chemosphere. 2010, 80:613-8.
    [6] Lau C, Butenhoff JL, Rogers JM. The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol. 2004, 198:231-41.
    [7] Apelberg BJ, Goldman LR, Calafat AM, Herbstman JB, Kuklenyik Z, Heidler J, et al. Determinants of fetal exposure to polyfluoroalkyl compounds in Baltimore, Maryland. Environ Sci Technol. 2007, 41:3891-7.
    [8] Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, et al. Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect. 2004, 112:1204-7.
    [9] Karrman A, Ericson I, van Bavel B, Darnerud PO, Aune M, Glynn A, et al. Exposure of perfluorinated chemicals through lactation: levels of matched human milk andserum and a temporal trend, 1996-2004, in Sweden. Environ Health Perspect. 2007, 115:226-30.
    [10] Midasch O, Drexler H, Hart N, Beckmann MW, Angerer J. Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate: a pilot study. Int Arch Occup Environ Health. 2007, 80:643-8.
    [11] So MK, Yamashita N, Taniyasu S, Jiang Q, Giesy JP, Chen K, et al. Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China. Environ Sci Technol. 2006, 40:2924-9.
    [12] Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci. 2007, 99:366-94.
    [13] Grasty RC, Wolf DC, Grey BE, Lau CS, Rogers JM. Prenatal window of susceptibility to perfluorooctane sulfonate-induced neonatal mortality in the Sprague-Dawley rat. Birth Defects Res B Dev Reprod Toxicol. 2003, 68:465-71.
    [14] Yahia D, Tsukuba C, Yoshida M, Sato I, Tsuda S. Neonatal death of mice treated with perfluorooctane sulfonate. J Toxicol Sci. 2008, 33:219-26.
    [15] Borg D, Bogdanska J, Sundstrom M, Nobel S, Hakansson H, Bergman A, et al. Tissue distribution of (35)S-labelled perfluorooctane sulfonate (PFOS) in C57Bl/6 mice following late gestational exposure. Reprod Toxicol. 2010.
    [16] Carnevali S, Petruzzelli S, Longoni B, Vanacore R, Barale R, Cipollini M, et al. Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2003, 284:L955-63.
    [17] MacNee W. Oxidants/antioxidants and COPD. Chest. 2000, 117:303S-17S.
    [18] Bjork JA, Lau C, Chang SC, Butenhoff JL, Wallace KB. Perfluorooctane sulfonate-induced changes in fetal rat liver gene expression. Toxicology. 2008, 251:8-20.
    [19] Liu L, Liu W, Song J, Yu H, Jin Y, Oami K, et al. A comparative study on oxidative damage and distributions of perfluorooctane sulfonate (PFOS) in mice at differentpostnatal developmental stages. J Toxicol Sci. 2009, 34:245-54.
    [20] Hu XZ, Hu DC. Effects of perfluorooctanoate and perfluorooctane sulfonate exposure on hepatoma Hep G2 cells. Arch Toxicol. 2009, 83:851-61.
    [21] Raff MC. Social controls on cell survival and cell death. Nature. 1992, 356:397-400.
    [22] Schittny JC, Djonov V, Fine A, Burri PH. Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol. 1998, 18:786-93.
    [23] Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980, 68:251-306.
    [24] Del Riccio V, van Tuyl M, Post M. Apoptosis in lung development and neonatal lung injury. Pediatr Res. 2004, 55:183-9.
    [25] Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997, 326 ( Pt 1):1-16.
    [26] Hengartner MO. The biochemistry of apoptosis. Nature. 2000, 407:770-6.
    [27] Gupta S. Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review). Int J Oncol. 2003, 22:15-20.
    [28] Orrenius S. Mitochondrial regulation of apoptotic cell death. Toxicol Lett. 2004, 149:19-23.
    [29] Shi X, Zhou B. The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol Sci. 2010, 115:391-400.
    [30] Shi X, Du Y, Lam PK, Wu RS, Zhou B. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicol Appl Pharmacol. 2008, 230:23-32.
    [31] Liu C, Yu K, Shi X, Wang J, Lam PK, Wu RS, et al. Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Aquat Toxicol. 2007, 82:135-43.
    [32] Zhang L, Li Y, Zeng H, Li M, Wan Y, Schluesener H, et al. Perfluorooctane Sulfonate Induces Apoptosis in N9 Microglial Cell Line. Int J Toxicol. 2010.
    [33] Lefebvre DE, Curran I, Armstrong C, Coady L, Parenteau M, Liston V, et al. Immunomodulatory effects of dietary potassium perfluorooctane sulfonate (PFOS) exposure in adult Sprague-Dawley rats. J Toxicol Environ Health A. 2008, 71:1516-25.
    [34] Melchiorri D, Del Duca C, Piccirilli S, Trombetta G, Bagetta G, Nistico G. Intrahippocampal injection of paraquat produces apoptotic cell death which is prevented by the lazaroid U74389G, in rats. Life Sci. 1998, 62:1927-32.
    [35] Banerjee S, Maity P, Mukherjee S, Sil AK, Panda K, Chattopadhyay D, et al. Black tea prevents cigarette smoke-induced apoptosis and lung damage. J Inflamm (Lond). 2007, 4:3.
    [36] Kaimul Ahsan M, Nakamura H, Tanito M, Yamada K, Utsumi H, Yodoi J. Thioredoxin-1 suppresses lung injury and apoptosis induced by diesel exhaust particles (DEP) by scavenging reactive oxygen species and by inhibiting DEP-induced downregulation of Akt. Free Radic Biol Med. 2005, 39:1549-59.
    [37] Demiralay R, Gursan N, Ozbilim G, Erdogan G, Demirci E. Comparison of the effects of erdosteine and N-acetylcysteine on apoptosis regulation in endotoxin-induced acute lung injury. J Appl Toxicol. 2006, 26:301-8.
    [1] Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicol Sci. 2003, 74:369-81.
    [2] Chen T, Zhang L, Yue JQ, Lv ZQ, Xia W, Wan YJ, et al. Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reprod Toxicol. 2011.
    [3] Giesy JP, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol. 2001, 35:1339-42.
    [4] Pelley J. Canada moves to eliminate PFOS stain repellents. Environ Sci Technol. 2004, 38:452A.
    [5] Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci. 2007, 99:366-94.
    [6] Naile JE, Khim JS, Wang T, Chen C, Luo W, Kwon BO, et al. Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environ Pollut.158:1237-44.
    [7] Olivero-Verbel J, Tao L, Johnson-Restrepo B, Guette-Fernandez J, Baldiris-Avila R, O'Byrne-Hoyos I, et al. Perfluorooctanesulfonate and related fluorochemicals in biological samples from the north coast of Colombia. Environ Pollut. 2006, 142:367-72.
    [8] Tao L, Kannan K, Kajiwara N, Costa MM, Fillmann G, Takahashi S, et al. Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seals, penguins, and polar skuas from the Southern Ocean. Environ Sci Technol. 2006, 40:7642-8.
    [9] Dai J, Li M, Jin Y, Saito N, Xu M, Wei F. Perfluorooctanesulfonate and periluorooctanoate in red panda and giant panda from China. Environ Sci Technol.2006, 40:5647-52.
    [10] Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, et al. Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect. 2004, 112:1204-7.
    [11] Kovarova J, Svobodova Z. Perfluorinated compounds: occurrence and risk profile. Neuro Endocrinol Lett. 2008, 29:599-608.
    [12] So MK, Yamashita N, Taniyasu S, Jiang Q, Giesy JP, Chen K, et al. Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China. Environ Sci Technol. 2006, 40:2924-9.
    [13] Olsen GW, Burris JM, Burlew MM, Mandel JH. Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J Occup Environ Med. 2003, 45:260-70.
    [14] Han X, Snow TA, Kemper RA, Jepson GW. Binding of perfluorooctanoic acid to rat and human plasma proteins. Chem Res Toxicol. 2003, 16:775-81.
    [15] Cui L, Zhou QF, Liao CY, Fu JJ, Jiang GB. Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol. 2009, 56:338-49.
    [16] Lau C, Thibodeaux JR, Hanson RG, Narotsky MG, Rogers JM, Lindstrom AB, et al. Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol Sci. 2006, 90:510-8.
    [17] Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci. 2003, 74:382-92.
    [18] Yahia D, Tsukuba C, Yoshida M, Sato I, Tsuda S. Neonatal death of mice treated with perfluorooctane sulfonate. J Toxicol Sci. 2008, 33:219-26.
    [19] Grasty RC, Wolf DC, Grey BE, Lau CS, Rogers JM. Prenatal window of susceptibility to perfluorooctane sulfonate-induced neonatal mortality in the Sprague-Dawley rat. Birth Defects Res B Dev Reprod Toxicol. 2003, 68:465-71.
    [20] Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006, 92:174-85.
    [21] Choi HS, Cho MC, Lee HG, Yoon DY. Indole-3-carbinol induces apoptosis through p53 and activation of caspase-8 pathway in lung cancer A549 cells. Food Chem Toxicol. 2010, 48:883-90.
    [22] Qin P, Liu R, Pan X, Fang X, Mou Y. Impact of carbon chain length on binding of perfluoroalkyl acids to bovine serum albumin determined by spectroscopic methods. J Agric Food Chem. 2011, 58:5561-7.
    [23] Qiao D, Seidler FJ, Slotkin TA. Developmental neurotoxicity of chlorpyrifos modeled in vitro: comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells. Environ Health Perspect. 2001, 109:909-13.
    [24] Zhang L, Li YY, Zeng HC, Li M, Wan YJ, Schluesener HJ, et al. Perfluorooctane sulfonate induces apoptosis in n9 microglial cell line. Int J Toxicol. 2010, 30:207-15.
    [25] Hu XZ, Hu DC. Effects of perfluorooctanoate and perfluorooctane sulfonate exposure on hepatoma Hep G2 cells. Arch Toxicol. 2009, 83:851-61.
    [26] Chen T, Li YY, Zhang JL, Xu B, Lin Y, Wang CX, et al. Protective effect of C(60) -methionine derivate on lead-exposed human SH-SY5Y neuroblastoma cells. J Appl Toxicol. 2010, 31:255-61.
    [27] Qian Y, Ducatman A, Ward R, Leonard S, Bukowski V, Lan Guo N, et al. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability. J Toxicol Environ Health A. 2010, 73:819-36.
    [28] Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998, 281:1309-12.
    [29] Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999, 341 ( Pt 2):233-49.
    [30] Xia W, Wan Y, Li YY, Zeng H, Lv Z, Li G, et al. PFOS prenatal exposure induce mitochondrial injury and gene expression change in hearts of weaned SD rats. Toxicology. 2011, 282:23-9.
    [31] Schnellmann RG. The cellular effects of a unique pesticide sulfluramid (N-ethylperfluorooctane sulphonamide) on rabbit renal proximal tubules. Toxicol In Vitro. 1990, 4:71-4.
    [32] Starkov AA, Wallace KB. Structural determinants of fluorochemical-induced mitochondrial dysfunction. Toxicol Sci. 2002, 66:244-52.
    [33] Hu W, Jones PD, Upham BL, Trosko JE, Lau C, Giesy JP. Inhibition of gap junctional intercellular communication by perfluorinated compounds in rat liver and dolphin kidney epithelial cell lines in vitro and Sprague-Dawley rats in vivo. Toxicol Sci. 2002, 68:429-36.
    [34] Chandrasekaran K, Swaminathan K, Chatterjee S, Dey A. Apoptosis in HepG2 cells exposed to high glucose. Toxicol In Vitro. 2010, 24:387-96.
    [35] Mesner PW, Jr., Budihardjo, II, Kaufmann SH. Chemotherapy-induced apoptosis. Adv Pharmacol. 1997, 41:461-99.
    [36] Vousden KH. p53: death star. Cell. 2000, 103:691-4.
    [37] Basu A, Haldar S. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod. 1998, 4:1099-109.
    [38] Orrenius S. Mitochondrial regulation of apoptotic cell death. Toxicol Lett. 2004, 149:19-23.
    [39] De Paepe ME, Mao Q, Embree-Ku M, Rubin LP, Luks FI. Fas/FasL-mediated apoptosis in perinatal murine lungs. Am J Physiol Lung Cell Mol Physiol. 2004, 287:L730-42.
    [40] Woo GH, Bak EJ, Nakayama H, Doi K. Hydroxyurea (HU)-induced apoptosis in the mouse fetal lung. Exp Mol Pathol. 2005, 79:59-67.
    [41] Kitamura Y, Hashimoto S, Mizuta N, Kobayashi A, Kooguchi K, Fujiwara I, et al. Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am J Respir Crit Care Med. 2001, 163:762-9.
    [42] Das KP, Barone S. Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: Is acetylcholinesterase inhibition the site of action? Toxicology and Applied Pharmacology. 1999, 160:217-30.
    [1] Chen T, Zhang L, Yue JQ, Lv ZQ, Xia W, Wan YJ, et al. Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reprod Toxicol. 2011.
    [2] Karrman A, Ericson I, van Bavel B, Darnerud PO, Aune M, Glynn A, et al. Exposure of perfluorinated chemicals through lactation: levels of matched human milk and serum and a temporal trend, 1996-2004, in Sweden. Environ Health Perspect. 2007, 115:226-30.
    [3] Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci. 2007, 99:366-94.
    [4] Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicol Sci. 2003, 74:369-81.
    [5] Paul AG, Jones KC, Sweetman AJ. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol. 2009, 43:386-92.
    [6] Naile JE, Khim JS, Wang T, Chen C, Luo W, Kwon BO, et al. Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environ Pollut.158:1237-44.
    [7] Olivero-Verbel J, Tao L, Johnson-Restrepo B, Guette-Fernandez J, Baldiris-Avila R, O'Byrne-Hoyos I, et al. Perfluorooctanesulfonate and related fluorochemicals in biological samples from the north coast of Colombia. Environ Pollut. 2006, 142: 367-72.
    [8] Tao L, Kannan K, Kajiwara N, Costa MM, Fillmann G, Takahashi S, et al. Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seals, penguins, and polar skuas from the Southern Ocean. Environ Sci Technol. 2006,40:7642-8.
    [9] Giesy JP, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol. 2001, 35:1339-42.
    [10] Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH. Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol. 2006, 40:32-44.
    [11] Dai J, Li M, Jin Y, Saito N, Xu M, Wei F. Perfluorooctanesulfonate and periluorooctanoate in red panda and giant panda from China. Environ Sci Technol. 2006, 40:5647-52.
    [12] Li X, Yeung LW, Taniyasu S, Li M, Zhang H, Liu D, et al. Perfluorooctanesulfonate and related fluorochemicals in the Amur tiger (Panthera tigris altaica) from China. Environ Sci Technol. 2008, 42:7078-83.
    [13] Li X, Yeung LW, Taniyasu S, Lam PK, Yamashita N, Xu M, et al. Accumulation of perfluorinated compounds in captive Bengal tigers (Panthera tigris tigris) and African lions (Panthera leo Linnaeus) in China. Chemosphere. 2008, 73:1649-53.
    [14] Jin YH, Dong GH, Shu WQ, Ding M, Zhai C, Wang L, et al. [Comparison of perfluorooctane sulfonate and perfluorooctane acid in serum of non-occupational human from Shenyang and Chongqing areas]. Wei Sheng Yan Jiu. 2006, 35:560-3.
    [15] Li X, Yin Yeung LW, Xu M, Taniyasu S, Lam PK, Yamashita N, et al. Perfluorooctane sulfonate (PFOS) and other fluorochemicals in fish blood collected near the outfall of wastewater treatment plant (WWTP) in Beijing. Environ Pollut. 2008, 156:1298-303.
    [16] Conder JM, Hoke RA, De Wolf W, Russell MH, Buck RC. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol. 2008, 42:995-1003.
    [17] Martin JW, Mabury SA, Solomon KR, Muir DC. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem. 2003, 22:196-204.
    [18] Ohmori K, Kudo N, Katayama K, Kawashima Y. Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology.2003, 184:135-40.
    [19] Kudo N, Suzuki E, Katakura M, Ohmori K, Noshiro R, Kawashima Y. Comparison of the elimination between perfluorinated fatty acids with different carbon chain length in rats. Chem Biol Interact. 2001, 134:203-16.
    [20] Kannan K, Perrotta E, Thomas NJ. Association between perfluorinated compounds and pathological conditions in southern sea otters. Environ Sci Technol. 2006, 40:4943-8.
    [21] Johnson JD, Gibson SJ, Ober RE. Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium [14C]perfluorooctanoate or potassium [14C]perfluorooctanesulfonate. Fundam Appl Toxicol. 1984, 4:972-6.
    [22] Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL. Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharamacokinetic parameters. Toxicology. 2005, 215:149-69.
    [23] Seacat AM, Thomford PJ, Hansen KJ, Olsen GW, Case MT, Butenhoff JL. Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci. 2002, 68:249-64.
    [24] Cui L, Zhou QF, Liao CY, Fu JJ, Jiang GB. Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol. 2009, 56:338-49.
    [25] Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci. 2003, 74:382-92.
    [26] Midasch O, Schettgen T, Angerer J. Pilot study on the perfluorooctanesulfonate and perfluorooctanoate exposure of the German general population. Int J Hyg Environ Health. 2006, 209:489-96.
    [27] Borg D, Bogdanska J, Sundstrom M, Nobel S, Hakansson H, Bergman A, et al. Tissue distribution of (35)S-labelled perfluorooctane sulfonate (PFOS) in C57Bl/6 mice following late gestational exposure. Reprod Toxicol. 2010, 30:558-65.
    [28] Fei C, McLaughlin JK, Tarone RE, Olsen J. Perfluorinated chemicals and fetal growth: a study within the Danish National Birth Cohort. Environ Health Perspect. 2007, 115:1677-82.
    [29] Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect. 2007, 115:1298-305.
    [30] Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SR, Elcombe CR, et al. Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology. 2003, 183:117-31.
    [31] Kudo N, Suzuki-Nakajima E, Mitsumoto A, Kawashima Y. Responses of the liver to perfluorinated fatty acids with different carbon chain length in male and female mice:in relation to induction of hepatomegaly, peroxisomal beta-oxidation and microsomal 1-acylglycerophosphocholine acyltransferase. Biol Pharm Bull. 2006, 29:1952-7.
    [32] Vanden Heuvel JP, Kuslikis BI, Van Rafelghem MJ, Peterson RE. Tissue distribution, metabolism, and elimination of perfluorooctanoic acid in male and female rats. J Biochem Toxicol. 1991, 6:83-92.
    [33] Kudo N, Katakura M, Sato Y, Kawashima Y. Sex hormone-regulated renal transport of perfluorooctanoic acid. Chem Biol Interact. 2002, 139:301-16.
    [34] Hinderliter PM, Mylchreest E, Gannon SA, Butenhoff JL, Kennedy GL, Jr. Perfluorooctanoate: Placental and lactational transport pharmacokinetics in rats. Toxicology. 2005, 211:139-48.
    [35] Butenhoff J, Costa G, Elcombe C, Farrar D, Hansen K, Iwai H, et al. Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months. Toxicol Sci. 2002, 69:244-57.
    [36] Cui L, Liao CY, Zhou QF, Xia TM, Yun ZJ, Jiang GB. Excretion of PFOA and PFOS in male rats during a subchronic exposure. Arch Environ Contam Toxicol. 2009,58:205-13.
    [37] Chang SC, Das K, Ehresman DJ, Ellefson ME, Gorman GS, Hart JA, et al. Comparative pharmacokinetics of perfluorobutyrate in rats, mice, monkeys, and humans and relevance to human exposure via drinking water. Toxicol Sci. 2008, 104:40-53.
    [38] Chengelis CP, Kirkpatrick JB, Myers NR, Shinohara M, Stetson PL, Sved DW. Comparison of the toxicokinetic behavior of perfluorohexanoic acid (PFHxA) and nonafluorobutane-1-sulfonic acid (PFBS) in cynomolgus monkeys and rats. Reprod Toxicol. 2009, 27:400-6.
    [39] Henderson WM, Smith MA. Perfluorooctanoic acid and perfluorononanoic acid in fetal and neonatal mice following in utero exposure to 8-2 fluorotelomer alcohol. Toxicol Sci. 2007, 95:452-61.
    [40] Haughom B, Spydevold O. The mechanism underlying the hypolipemic effect of perfluorooctanoic acid (PFOA), perfluorooctane sulphonic acid (PFOSA) and clofibric acid. Biochim Biophys Acta. 1992, 1128:65-72.
    [41] Liu RC, Hurtt ME, Cook JC, Biegel LB. Effect of the peroxisome proliferator, ammonium perfluorooctanoate (C8), on hepatic aromatase activity in adult male Crl:CD BR (CD) rats. Fundam Appl Toxicol. 1996, 30:220-8.
    [42] Son HY, Kim SH, Shin HI, Bae HI, Yang JH. Perfluorooctanoic acid-induced hepatic toxicity following 21-day oral exposure in mice. Arch Toxicol. 2008, 82:239-46.
    [43] Guruge KS, Yeung LW, Yamanaka N, Miyazaki S, Lam PK, Giesy JP, et al. Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA). Toxicol Sci. 2006, 89:93-107.
    [44] Yeung LW, Guruge KS, Yamanaka N, Miyazaki S, Lam PK. Differential expression of chicken hepatic genes responsive to PFOA and PFOS. Toxicology. 2007, 237:111-25.
    [45] Rosen MB, Thibodeaux JR, Wood CR, Zehr RD, Schmid JE, Lau C. Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses. Toxicology. 2007, 239:15-33.
    [46] Cheng X, Klaassen CD. Perfluorocarboxylic acids induce cytochrome P450 enzymes in mouse liver through activation of PPAR-alpha and CAR transcription factors. Toxicol Sci. 2008, 106:29-36.
    [47] Krovel AV, Softeland L, Torstensen B, Olsvik PA. Transcriptional effects of PFOS in isolated hepatocytes from Atlantic salmon Salmo salar L. Comp Biochem Physiol C Toxicol Pharmacol. 2008, 148:14-22.
    [48] Bjork JA, Lau C, Chang SC, Butenhoff JL, Wallace KB. Perfluorooctane sulfonate-induced changes in fetal rat liver gene expression. Toxicology. 2008, 251:8-20.
    [49] Hu XZ, Hu DC. Effects of perfluorooctanoate and perfluorooctane sulfonate exposure on hepatoma Hep G2 cells. Arch Toxicol. 2009, 83:851-61.
    [50] Wan YJ, Li YY, Xia W, Chen J, Lv ZQ, Zeng HC, et al. Alterations in tumor biomarker GSTP gene methylation patterns induced by prenatal exposure to PFOS. Toxicology. 2010, 274:57-64.
    [51] Reo NV, Narayanan L, Kling KB, Adinehzadeh M. Perfluorodecanoic acid, a peroxisome proliferator, activates phospholipase C, inhibits CTP:phosphocholine cytidylyltransferase, and elevates diacylglycerol in rat liver. Toxicol Lett. 1996, 86: 1-11.
    [52] Maher JM, Aleksunes LM, Dieter MZ, Tanaka Y, Peters JM, Manautou JE, et al. Nrf2- and PPAR alpha-mediated regulation of hepatic Mrp transporters after exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicol Sci. 2008, 106:319-28.
    [53] Lieder PH, Chang SC, York RG, Butenhoff JL. Toxicological evaluation of potassium perfluorobutanesulfonate in a 90-day oral gavage study with Sprague-Dawley rats. Toxicology. 2009, 255:45-52.
    [54] Jones-Burton C, Seliger SL, Scherer RW, Mishra SI, Vessal G, Brown J, et al. Cigarette smoking and incident chronic kidney disease: a systematic review. Am J Nephrol. 2007, 27:342-51.
    [55] Kawashima Y, Kobayashi H, Miura H, Kozuka H. Characterization of hepaticresponses of rat to administration of perfluorooctanoic and perfluorodecanoic acids at low levels. Toxicology. 1995, 99:169-78.
    [56] Shi Z, Zhang H, Ding L, Feng Y, Xu M, Dai J. The effect of perfluorododecanonic acid on endocrine status, sex hormones and expression of steroidogenic genes in pubertal female rats. Reprod Toxicol. 2009, 27:352-9.
    [57] Liu Y, Wang J, Wei Y, Zhang H, Xu M, Dai J. Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver. Aquat Toxicol. 2008, 89:242-50.
    [58] Zhang W, Liu Y, Zhang H, Dai J. Proteomic analysis of male zebrafish livers chronically exposed to perfluorononanoic acid. Environ Int. 2011.
    [59] Nakayama K, Iwata H, Tao L, Kannan K, Imoto M, Kim EY, et al. Potential effects of perfluorinated compounds in common cormorants from Lake Biwa, Japan: an implication from the hepatic gene expression profiles by microarray. Environ Toxicol Chem. 2008, 27:2378-86.
    [60] Kudo N, Iwase Y, Okayachi H, Yamakawa Y, Kawashima Y. Induction of hepatic peroxisome proliferation by 8-2 telomer alcohol feeding in mice: formation of perfluorooctanoic acid in the liver. Toxicol Sci. 2005, 86:231-8.
    [61] Xie W, Wu Q, Kania-Korwel I, Tharappel JC, Telu S, Coleman MC, et al. Subacute exposure to N-ethyl perfluorooctanesulfonamidoethanol results in the formation of perfluorooctanesulfonate and alters superoxide dismutase activity in female rats. Arch Toxicol. 2009, 83:909-24.
    [62] Hu W, Jones PD, Upham BL, Trosko JE, Lau C, Giesy JP. Inhibition of gap junctional intercellular communication by perfluorinated compounds in rat liver and dolphin kidney epithelial cell lines in vitro and Sprague-Dawley rats in vivo. Toxicol Sci. 2002, 68:429-36.
    [63] Yao X, Zhong L. Genotoxic risk and oxidative DNA damage in HepG2 cells exposed to perfluorooctanoic acid. Mutat Res. 2005, 587:38-44.
    [64] Shabalina IG, Panaretakis T, Bergstrand A, DePierre JW. Effects of the rodentperoxisome proliferator and hepatocarcinogen, perfluorooctanoic acid, on apoptosis in human hepatoma HepG2 cells. Carcinogenesis. 1999, 20:2237-46.
    [65] Kawamoto K, Oashi T, Oami K, Liu W, Jin Y, Saito N, et al. Perfluorooctanoic acid (PFOA) but not perfluorooctane sulfonate (PFOS) showed DNA damage in comet assay on Paramecium caudatum. J Toxicol Sci. 2010, 35:835-41.
    [66] Kennedy GL, Jr., Butenhoff JL, Olsen GW, O'Connor JC, Seacat AM, Perkins RG, et al. The toxicology of perfluorooctanoate. Crit Rev Toxicol. 2004, 34:351-84.
    [67] Takagi A, Sai K, Umemura T, Hasegawa R, Kurokawa Y. Short-term exposure to the peroxisome proliferators, perfluorooctanoic acid and perfluorodecanoic acid, causes significant increase of 8-hydroxydeoxyguanosine in liver DNA of rats. Cancer Lett. 1991, 57:55-60.
    [68] Zhang X, Chen L, Fei XC, Ma YS, Gao HW. Binding of PFOS to serum albumin and DNA: insight into the molecular toxicity of perfluorochemicals. BMC Mol Biol. 2009, 10:16.
    [69] Jernbro S, Rocha PS, Keiter S, Skutlarek D, Farber H, Jones PD, et al. Perfluorooctane sulfonate increases the genotoxicity of cyclophosphamide in the micronucleus assay with V79 cells. Further proof of alterations in cell membrane properties caused by PFOS. Environ Sci Pollut Res Int. 2007, 14:85-7.
    [70] Lindeman B, Maass C, Duale N, Gutzkow KB, Brunborg G, Andreassen A. Effects of per- and polyfluorinated compounds on adult rat testicular cells following in vitro exposure. Reprod Toxicol.
    [71] Biegel LB, Hurtt ME, Frame SR, O'Connor JC, Cook JC. Mechanisms of extrahepatic tumor induction by peroxisome proliferators in male CD rats. Toxicol Sci. 2001, 60:44-55.
    [72] Tilton SC, Orner GA, Benninghoff AD, Carpenter HM, Hendricks JD, Pereira CB, et al. Genomic profiling reveals an alternate mechanism for hepatic tumor promotion by perfluorooctanoic acid in rainbow trout. Environ Health Perspect. 2008, 116:1047-55.
    [73] Abdellatif AG, Preat V, Taper HS, Roberfroid M. The modulation of rat livercarcinogenesis by perfluorooctanoic acid, a peroxisome proliferator. Toxicol Appl Pharmacol. 1991, 111:530-7.
    [74] Nilsson R, Beije B, Preat V, Erixon K, Ramel C. On the mechanism of the hepatocarcinogenicity of peroxisome proliferators. Chem Biol Interact. 1991, 78:235-50.
    [75] Harada KH, Ishii TM, Takatsuka K, Koizumi A, Ohmori H. Effects of perfluorooctane sulfonate on action potentials and currents in cultured rat cerebellar Purkinje cells. Biochem Biophys Res Commun. 2006, 351:240-5.
    [76] Liao CY, Li XY, Wu B, Duan S, Jiang GB. Acute enhancement of synaptic transmission and chronic inhibition of synaptogenesis induced by perfluorooctane sulfonate through mediation of voltage-dependent calcium channel. Environ Sci Technol. 2008, 42:5335-41.
    [77] Slotkin TA, MacKillop EA, Melnick RL, Thayer KA, Seidler FJ. Developmental neurotoxicity of perfluorinated chemicals modeled in vitro. Environ Health Perspect. 2008, 116:716-22.
    [78] Zhang L, Li YY, Zeng HC, Li M, Wan YJ, Schluesener HJ, et al. Perfluorooctane sulfonate induces apoptosis in n9 microglial cell line. Int J Toxicol. 2010, 30:207-15.
    [79] Liu X, Liu W, Jin Y, Yu W, Liu L, Yu H. Effects of subchronic perfluorooctane sulfonate exposure of rats on calcium-dependent signaling molecules in the brain tissue. Arch Toxicol.84:471-9.
    [80] Fuentes S, Vicens P, Colomina MT, Domingo JL. Behavioral effects in adult mice exposed to perfluorooctane sulfonate (PFOS). Toxicology. 2007, 242:123-9.
    [81] Johansson N, Fredriksson A, Eriksson P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology. 2008, 29:160-9.
    [82] Johansson N, Eriksson P, Viberg H. Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain. Toxicol Sci. 2009, 108:412-8.
    [83] Butenhoff JL, Ehresman DJ, Chang SC, Parker GA, Stump DG. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: developmental neurotoxicity. Reprod Toxicol. 2009, 27:319-30.
    [84] Pinkas A, Slotkin TA, Brick-Turin Y, Van der Zee EA, Yanai J. Neurobehavioral teratogenicity of perfluorinated alkyls in an avian model. Neurotoxicol Teratol.32: 182-6.
    [85] Zeng HC, Zhang L, Li YY, Wang YJ, Xia W, Lin Y, et al. Inflammation-like glial response in rat brain induced by prenatal PFOS exposure. Neurotoxicology.32:130-9.
    [86] Zeng HC, Zhang L, Li YY, Wang YJ, Xia W, Lin Y, et al. Inflammation-like glial response in rat brain induced by prenatal PFOS exposure. Neurotoxicology. 2010, 32:130-9.
    [87] Zhang L, Li YY, Chen T, Xia W, Zhou Y, Wan YJ, et al. Abnormal development of motor neurons in perfluorooctane sulphonate exposed zebrafish embryos. Ecotoxicology. 2011, 20:643-52.
    [88] Pinkas A, Slotkin TA, Brick-Turin Y, Van der Zee EA, Yanai J. Neurobehavioral teratogenicity of perfluorinated alkyls in an avian model. Neurotoxicol Teratol. 2009, 32:182-6.
    [89] Fuentes S, Colomina MT, Vicens P, Franco-Pons N, Domingo JL. Concurrent exposure to perfluorooctane sulfonate and restraint stress during pregnancy in mice: effects on postnatal development and behavior of the offspring. Toxicol Sci. 2007, 98:589-98.
    [90] Chengelis CP, Kirkpatrick JB, Radovsky A, Shinohara M. A 90-day repeated dose oral (gavage) toxicity study of perfluorohexanoic acid (PFHxA) in rats (with functional observational battery and motor activity determinations). Reprod Toxicol. 2009, 27:342-51.
    [91] Shi X, Du Y, Lam PK, Wu RS, Zhou B. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicol Appl Pharmacol. 2008, 230:23-32.
    [92] Zhang L, Li YY, Zeng HC, Wei J, Wan YJ, Chen J, et al. MicroRNA expressionchanges during zebrafish development induced by perfluorooctane sulfonate. J Appl Toxicol.31:210-22.
    [93] Xia W, Wan Y, Li YY, Zeng H, Lv Z, Li G, et al. PFOS prenatal exposure induce mitochondrial injury and gene expression change in hearts of weaned SD rats. Toxicology. 2011, 282:23-9.
    [94] Harada K, Xu F, Ono K, Iijima T, Koizumi A. Effects of PFOS and PFOA on L-type Ca2+ currents in guinea-pig ventricular myocytes. Biochem Biophys Res Commun. 2005, 329:487-94.
    [95] Qian Y, Ducatman A, Ward R, Leonard S, Bukowski V, Lan Guo N, et al. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability. J Toxicol Environ Health A. 2010, 73:819-36.
    [96] Griffith FD, Long JE. Animal toxicity studies with ammonium perfluorooctanoate. Am Ind Hyg Assoc J. 1980, 41:576-83.
    [97] Yang Q, Xie Y, Depierre JW. Effects of peroxisome proliferators on the thymus and spleen of mice. Clin Exp Immunol. 2000, 122:219-26.
    [98] Yang Q, Xie Y, Eriksson AM, Nelson BD, DePierre JW. Further evidence for the involvement of inhibition of cell proliferation and development in thymic and splenic atrophy induced by the peroxisome proliferator perfluoroctanoic acid in mice. Biochem Pharmacol. 2001, 62:1133-40.
    [99] Yang Q, Xie Y, Alexson SE, Nelson BD, DePierre JW. Involvement of the peroxisome proliferator-activated receptor alpha in the immunomodulation caused by peroxisome proliferators in mice. Biochem Pharmacol. 2002, 63:1893-900.
    [100] Yang Q, Abedi-Valugerdi M, Xie Y, Zhao XY, Moller G, Nelson BD, et al. Potent suppression of the adaptive immune response in mice upon dietary exposure to the potent peroxisome proliferator, perfluorooctanoic acid. Int Immunopharmacol. 2002, 2:389-97.
    [101] Zheng L, Dong GH, Jin YH, He QC. Immunotoxic changes associated with a 7-dayoral exposure to perfluorooctanesulfonate (PFOS) in adult male C57BL/6 mice. Arch Toxicol. 2009, 83:679-89.
    [102] Lefebvre DE, Curran I, Armstrong C, Coady L, Parenteau M, Liston V, et al. Immunomodulatory effects of dietary potassium perfluorooctane sulfonate (PFOS) exposure in adult Sprague-Dawley rats. J Toxicol Environ Health A. 2008, 71: 1516-25.
    [103] Cooney CM. PFOS alters immune response at very low exposure levels. Environ Sci Technol. 2008, 42:3486-7.
    [104] Brieger A, Bienefeld N, Hasan R, Goerlich R, Haase H. Impact of perfluorooctanesulfonate and perfluorooctanoic acid on human peripheral leukocytes. Toxicol In Vitro. 2011, 25:960-8.
    [105] Peden-Adams MM, EuDaly JG, Dabra S, EuDaly A, Heesemann L, Smythe J, et al. Suppression of humoral immunity following exposure to the perfluorinated insecticide sulfluramid. J Toxicol Environ Health A. 2007, 70:1130-41.
    [106] Fang X, Feng Y, Wang J, Dai J. Perfluorononanoic acid-induced apoptosis in rat spleen involves oxidative stress and the activation of caspase-independent death pathway. Toxicology. 2010, 267:54-9.
    [107] Fang X, Zhang L, Feng Y, Zhao Y, Dai J. Immunotoxic effects of perfluorononanoic acid on BALB/c mice. Toxicol Sci. 2008, 105:312-21.
    [108] Fan YO, Jin YH, Ma YX, Zhang YH. [Effects of perfluorooctane sulfonate on spermiogenesis function of male rats]. Wei Sheng Yan Jiu. 2005, 34:37-9.
    [109] Feng Y, Shi Z, Fang X, Xu M, Dai J. Perfluorononanoic acid induces apoptosis involving the Fas death receptor signaling pathway in rat testis. Toxicol Lett. 2009, 190:224-30.
    [110] Feng Y, Fang X, Shi Z, Xu M, Dai J. Effects of PFNA exposure on expression of junction-associated molecules and secretory function in rat Sertoli cells. Reprod Toxicol. 2010, 30:429-37.
    [111] Shi Z, Zhang H, Liu Y, Xu M, Dai J. Alterations in gene expression and testosteronesynthesis in the testes of male rats exposed to perfluorododecanoic acid. Toxicol Sci. 2007, 98:206-15.
    [112] Shi Z, Ding L, Zhang H, Feng Y, Xu M, Dai J. Chronic exposure to perfluorododecanoic acid disrupts testicular steroidogenesis and the expression of related genes in male rats. Toxicol Lett. 2009, 188:192-200.
    [113] Shi Z, Zhang H, Ding L, Feng Y, Wang J, Dai J. Proteomic analysis for testis of rats chronically exposed to perfluorododecanoic acid. Toxicol Lett. 2010, 192:179-88.
    [114] Shi Z, Feng Y, Wang J, Zhang H, Ding L, Dai J. Perfluorododecanoic acid-induced steroidogenic inhibition is associated with steroidogenic acute regulatory protein and reactive oxygen species in cAMP-stimulated Leydig cells. Toxicol Sci. 2010, 114:285-94.
    [115] Langley AE, Pilcher GD. Thyroid, bradycardic and hypothermic effects of perfluoro-n-decanoic acid in rats. J Toxicol Environ Health. 1985, 15:485-91.
    [116] Gutshall DM, Pilcher GD, Langley AE. Effect of thyroxine supplementation on the response to perfluoro-n-decanoic acid (PFDA) in rats. J Toxicol Environ Health. 1988, 24:491-8.
    [117] Yu WG, Liu W, Jin YH, Liu XH, Wang FQ, Liu L, et al. Prenatal and postnatal impact of perfluorooctane sulfonate (PFOS) on rat development: a cross-foster study on chemical burden and thyroid hormone system. Environ Sci Technol. 2009, 43:8416 -22.
    [118] Liu Y, Wang J, Fang X, Zhang H, Dai J. The thyroid-disrupting effects of long-term perfluorononanoate exposure on zebrafish (Danio rerio). Ecotoxicology. 2011, 20:47 -55.
    [119] Shi X, Liu C, Wu G, Zhou B. Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. Chemosphere. 2009, 77: 1010-8.
    [120] Olsen GW, Burris JM, Burlew MM, Mandel JH. Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA)concentrations and medical surveillance examinations. J Occup Environ Med. 2003, 45:260-70.
    [121] Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ Health Perspect. 2010, 118:686-92.
    [122] Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, et al. Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect. 2004, 112:1204-7.
    [123] Ribes D, Fuentes S, Torrente M, Colomina MT, Domingo JL. Combined effects of perfluorooctane sulfonate (PFOS) and maternal restraint stress on hypothalamus adrenal axis (HPA) function in the offspring of mice. Toxicol Appl Pharmacol. 2009, 243:13-8.
    [124] Ishibashi H, Yamauchi R, Matsuoka M, Kim JW, Hirano M, Yamaguchi A, et al. Fluorotelomer alcohols induce hepatic vitellogenin through activation of the estrogen receptor in male medaka (Oryzias latipes). Chemosphere. 2008, 71:1853-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700