用户名: 密码: 验证码:
海参脑苷脂的分离纯化、结构分析及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海参是一种名贵的海洋滋补品,富含多种生物活性成分,具有较高的营养价值和药用价值。海参脑苷脂及长链碱是存在于海参体壁中结构独特的鞘脂类化合物,具有抗肿瘤、免疫调节、神经保护、抗菌等生理活性。海参脑苷脂包括三种主要系列物,每种系列物中含有几十种单体化合物。本论文对仿刺参、海地瓜和叶瓜参三种海参的脑苷脂及长链碱的分离纯化、分子组成和结构以及生理活性进行了较为系统的研究,对于海洋新原料来源的发现、海参新型营养功效的补充、海参的高值化开发利用具有重要意义。本文研究内容和结果如下:
     1.建立海参中脑苷脂含量简便准确测定的新方法。采用高效液相色谱-蒸发光散射检测法(HPLC-ELSD),以TSKgel CN-80Ts柱为分离柱,正己烷-异丙醇-二氯甲烷-甲醇为流动相,在13min内实现了脑苷脂和神经酰胺的同时测定。其中,脑苷脂的检出限为0.01μg,加标平均回收率为94.28%,RSD为5.67%,方法稳定性良好。在所测13种水产样品中,海星的脑苷脂和神经酰胺含量最高,在所测8种海参中叶瓜参脑苷脂含量最高。结果表明该方法可行,样品前处理简单,快速准确。结果提示包括海参在内的海洋食品可以作为功能性鞘脂类的良好资源。
     2.建立一套用于各种海参脑苷脂分离纯化的快速高效的完整新体系。首次应用高速逆流色谱(HSCCC)技术成功优化了海参脑苷脂的分离过程。(1)海参总脑苷脂:采用石油醚-甲醇-水(5:4:1, V/V)为溶剂体系的高速逆流色谱法,从海参总脂中一步纯化制备出海参总脑苷脂,以总脂计得率约为7.6~12.4%,经正相HPLC-ELSD法检测其纯度达90%以上。(2)海参脑苷脂系列物:先经一次正相硅胶柱层析,收集氯仿:甲醇(80:20,V/V)洗脱组分,再采用乙酸乙酯-乙醇-水(5:3.5:3.5, V/V)为溶剂体系的高速逆流色谱技术,将上述洗脱组分中严重干扰海参脑苷脂纯化的硫酸酯化甾醇去除,制得海参脑苷脂系列物的总得率约为1.1~6.4%,纯度均在90%以上。并以优化出的正相HPLC制备法进行了验证比较。(3)海参脑苷脂单体化合物:采用反相HPLC法,C18半制备柱,98%甲醇水溶液洗脱,从海地瓜脑苷脂系列物中分离出4个脑苷脂单体化合物,纯度在90%以上。结果表明,所建立的脑苷脂纯化体系具有得率高、速度快、成本低等突出优点,从根本上解决了海参脑苷脂纯化的难题。
     3.建立海参脑苷脂分子种组成和结构筛选的高通量分析方法。
     先采用气相色谱质谱联用(GC-MS)法,分析比较了三种海参脑苷脂系列物的脂肪酸、长链碱和糖基组成差异。用10%盐酸/甲醇水解,正己烷萃取脂肪酸甲脂组分,甲醇保留长链碱和糖基组分。脂肪酸甲酯直接用INNOWax柱分析,长链碱和甲基糖经硅烷化衍生后用HP-5MS柱分析。测定结果:所有脑苷脂系列物的糖基都为葡萄糖基;脑苷脂系列物Ⅰ的脂肪酸以非羟基脂肪酸为主,系列物Ⅱ和Ⅲ的脂肪酸以羟基脂肪酸为主;系列物Ⅰ和Ⅱ中,少见的d17:1长链碱比例较高,系列物Ⅲ中以t17:0长链碱为主,三种海参相比,仿刺参与叶瓜参的长链碱组成相似,主要为d18:2和d17:1,而海地瓜长链碱组成较简单,主要为d17:1和t17:0。并推测出9种海参脑苷脂系列物的结构通式。
     又采用高效液相色谱-电喷雾离子阱-飞行时间质谱联用(LC-ESI-IT-TOF)技术,筛选分析三种海参总脑苷脂的脑苷脂分子种组成。采用TSKgel ODS-100Z柱分离,95%甲醇/水溶液洗脱,正ESI电离模式,根据一级质谱中同时出现的[M+H]~+、[M+Na]~+和[M+H-18]~+峰确定母离子,通过自动MS/MS采集m/z 200 ~ 300子离子数据,并分析它们的结构。分别从海地瓜、叶瓜参和仿刺参总脑苷脂中高通量筛选出12、41、26个脑苷脂化合物,其中包含疑似新化合物28个。最后,应用高效液相色谱-电喷雾四极杆-飞行时间质谱联用(LC-ESI-Q-TOF)技术,成功建立了高通量、准确筛选分析脑苷脂分子种组成及结构的新方法。采用Plus C18柱,95%乙腈/水洗脱,负ESI电离模式,自动MS/MS采集数据,一级质谱扫描范围m/z 500 ~ 1000,利用软件自动提取含m/z 179子离子的所有化合物,再根据二级子离子扫描筛出其中中性丢失为162的化合物。利用此方法,从海地瓜的三种脑苷脂系列物中分别筛选出28、20、12个脑苷脂化合物,其中31个为疑似新化合物。实验结果表明,与GC-MS和LC-ESI-IT-TOF法相比,此法测定灵敏度更高,结构信息全面,推测结果更准确。该方法的建立,为脑苷脂单体化合物的研究提供了捷径,为构效关系的深入研究提供了结构信息。
     4.建立海参长链碱的高效制备新方法。海参总脂经皂化酸解后,采用溶剂体系为正己烷-甲醇-水(1:2:1,V/V)的高速逆流色谱法分离,以正ESI-MS法确证了长链碱目标洗脱组分,分离制备出三种海参长链碱,得率约为6.3%~10.9%,纯度均达到92%以上。采用LC-MS法分析了海参长链碱的组成和结构。该法具有制备量大、纯化周期短、得率高等突出优点。说明高速逆流色谱技术在长链碱类的快速纯化制备研究中具有很强的应用潜力。
     5.研究海参脑苷脂及长链碱的抗肿瘤和抗炎活性,初步探讨其构效关系。
     (1)抗肿瘤作用:主要采用MTT法,分别考察了不同浓度、不同作用时间下海参脑苷脂及长链碱对Caco-2,S180和HL-7702三种细胞系的增殖抑制作用情况。结果表明,海参总脑苷脂对Caco-2癌细胞增殖均有极显著的抑制作用;不同脑苷脂系列物对Caco-2细胞的抑制率存在显著差异,且活性效果优于GalCer,海参长链碱的抗肿瘤细胞增殖活性远强于脑苷脂本身;提示脑苷脂抗肿瘤活性与化学结构之间存在构效关系。(2)抗炎作用:采用Caco-2分化成的小肠上皮细胞,通过添加TNF-α和不同浓度的叶瓜参脑苷脂,荧光定量PCR法检测Caco-2细胞炎症因子IL-8 mRNA的表达量,表明叶瓜参脑苷脂具有较强的抗炎作用。以上结果提示,海参脑苷脂尤其是长链碱是重要生物活性成分,在新型海洋功能食品或海洋药物开发领域具有一定的应用前景。
     通过以上研究,本文应用高速逆流色谱技术,解决了海参脑苷脂及长链碱分离纯化中存在的难题,针对海参脑苷脂组成复杂结构鉴定困难,采用液相色谱-串联质谱联用技术,实现了脑苷脂分子种的快速高通量筛选,并筛选出大量疑似新化合物,为海参鞘脂的深入研究及海参的营养和食疗评价提供了可靠的理论依据和研究基础。
Sea cucumber is a valuable tonic sea food, which is rich in a variety of biological active ingredients with high nutritional value and medicinal value. Cerebrosides and long-chain bases are the unique structure sphingolipids present in the body wall of sea cucumbers, which are proved to exhibit various physiological activities, including anti-tumor, immunomodulatory, neuroprotective, anti-bacterial. Sea cucumber cerebrosides are composed of three major series, which contains dozens of cerebroside molecular species. This thesis made a systemic study on the isolation, purification, molecular composition, structure analysis and physiological activities of cerebrosides and long-chain bases in three sea cucumbers (Apostichopus japonicus, Acaudina molpadioides and Cucumaria frondosa). These researches are important to discover new marine sources of raw materials and add new nutritional benefits of sea cucumbers. These results would provide theoretical basis for the development and high value utilization of sea cucumbers, to promote the healthy development of sea cucumber industry. In this paper, the main reserch contents and results are as follows:
     1. A new simple and accurate method is established for the determination of the cerebroside content in sea cucumbers. By high performance liquid chromatography- evaporative light scattering detector (HPLC-ELSD), the TSKgel CN-80Ts column for separation, n-hexane-isopropyl alcohol-methylene chloride-methanol as mobile phase at 13 min to achieve the separation of cerebroside and ceramide. Among them, the detection limit of cerebroside is 0.01μg, average recovery rate was 94.28%, relative standard deviation is 5.67%, and the method has a good stability. In 13 species of aquatic products, the contents of cerebroside and ceramide of starfish are the highest, and cerebroside content of Cucumaria frondosa is the highest in eight species of sea cucumber samples. The results show that it is a feasible, simple, fast and accurate method to determine the contents of cerebroside and ceramide. The results suggest that marine foods, including sea cucumbers, can be useful resources of the functional sphingolipids.
     2. A quickly, efficient, complete and new system is established for purification of sea cucumber cerebrosides. The first application of high-speed countercurrent chromatography (HSCCC) technique successfully optimized the separation process of sea cucumber cerebrosides. (1) Total cerebrosides from sea cucumber: using petroleum ether-methanol-water (5:4:1, V/V) as the solvent system of high-speed countercurrent chromatography, the total cerebrosides can be purifed in one step from the total lipids of sea cucumber. The yield of total cerebrosides of total lipids is about 7.6 ~ 12.4%, and its purity which detected by normal phase HPLC-ELSD method is more than 90%. (2) Cerebroside series from sea cucumber: firstly, using normal phase silica gel column chromatography, the fractions are collected eluting with chloroform/methanol (80:20, V/V) which contained cerebrosides. Then, ethyl acetate-ethanol-water (5:3.5:3.5, V/V) is used as the solvent system of high-speed countercurrent chromatography, to completely remove sulfated sterol which seriously interferes with the purification of sea cucumber cerebrosides. The yield of cerebroside series is about 1.1 ~ 6.4%, and its purity is more than 90%. The purification effect of HSCCC is validated and compared the optimized positive-phase HPLC method. (3) Sea cucumber cerebroside compounds: with the reversed phase-HPLC method which uses 98% methanol solution as mobile phase, four compounds are isolated from cerebroside series of sea cucumber Acaudina molpadioides, and their purities are more than 90%. The results show that the established system to purify cerebroside is high speed, low cost, with higher collection rate and outstanding merits. It is a fundamental solution to purification of sea cucumber cerebroside problems encountered in the process.
     3. The cerebroside series separated from the three sea cucumbers respectively are firstly analyzed by gaschromatographic mass spectrometry (GC-MS) to acquire the differences among the compositions of their long-chain bases (LCBs), fatty acids (FAs) and glycosides. The cerebroside samples are hydrolyzed in 10% HCl-methanol to produce a mixture of fatty acid methyl ester (FAMEs), LCBs and methyl glycosides. After extraction with n-hexane, the upper phase containing FAMEs is directly subject to a GC-MS instrument equipped with an INNOWax column. The LCBs and methyl glycosides retained in the lower phase are react with TMS regent and then inject into the GC-MS instrument equipped with an HP-5MS column. The results show that the glycoside of all cerebroside series is glucoside. There is a significant difference in the composition of LCBs. The major fatty acid is nonhydroxy fatty acid for cerebroside seriesⅠ, however, hydroxy fatty acids are mainly FA for seriesⅡandⅢ. For Cucumaria frondosa and Stichopus japonicus sea cucumbers, the major LCBs of cerebroside seriesⅠ,Ⅱare d17:1 and d18:2, it is only d17:1 LCB in Acaudina molpadioides. For all the three sea cucumbers, the major LCB of cerebroside seriesⅢis t17:0. Finally, 9 series structural formula of cerebrosides in three sea cucumbers are speculated.
     Secondly, a LC-ESI-IT-TOF technology is applied to screen the cerebroside compounds from the total cerebrosides of the three kinds of sea cucumbers. The preseperation of cerebroside compounds is performed on an ODS-100Z column, 95% methanol-water as eluent. The mass spectrometer is operated at positive electrospray ionization mode. The ions due to [M+H]+, [M+Na]+, [M-H2O+H]+ in MS scan spectra are used for determination of precusor ions. The product ions from m/z 200 to 300 are recorded automatically for structure determination. According to the methodology above, 12, 41, 26 cerebroside compounds are high throughput screened from Acaudina molpadioides, Cucumaria frondosa and Stichopus japonicus cerebrosides respectively, among which 28 suspected new compounds are found.
     Finally, a more sensitive LC-ESI-Q-TOF methodology is successfully applied to the screening and structure determination of cerebroside molecular species. The preseperation is performed on a Plus C18 column, 95% acetonitrile-water as eluent. Mass spectrometer is operated at negative electrospray ionization mode, the data is recorded automatically. For mass scan, the full scan range is seted from 500 to 1000; for precursor ion scan, m/z 179 ion is used as the product ion. For product ion scan, the moleculars produce a fragment ion [M-162]- due to a neutral loss of a glucoside was remarked as cerebroside compounds. By application of the methodology above 28, 20, 12 cerebroside compounds were screened out from cerebroside seriesⅠ,ⅡandⅢrespectively, among which 31 suspected new compounds are found. The methodology is sensitive, and the information reflecting the structure is obtained more comprehensively and accurately compared to GC-MS and LC-ESI-IT-TOF method. The establishment of methodology provides a new approach for analysis of cerebroside monomers, and afforded the structure information in the relationship of structure-activity reasearch.
     4. A new efficient method of preparing the sea cucumber long-chain base using high speed countercurrent chromatography (HSCCC) is established. The two-phase solvent systems were composed of hexane - methanol - water (1:2:1, V/V). The total lipids of sea cucumber are hydrolyzed with acid after saponification, then separated by HSCCC and monitored with the ESI-MS, the long-chain base is yield 6.3% ~ 10.9% with purities higher than 92%. The composition and structure of the sea cucumber is analyzed with LC-MS. Compared with the traditional Si-gel chromatographic separation method, the HSCCC separation process is a simple, solvent-saving, efficiency and of high recovery. The technology of HSCCC has a broad application prospect on the research of long-chain base.
     5. Studies on the anti-tumor and anti-inflammatory activities of sea cucumber cerebrosides and long-chain bases, does pilot studies on their structure-activity relationship. (1) Anti-tumor effects: all total cerebrosides of three sea cucumbers have anti-proliferation activities on Caco-2 colon cancer cells in different concentrations, different time by MTT method. Compared with galactocerebrosides from mammals, cerebroside series from sea cucumbers suppresses the proliferation of Caco-2 colon cancer cells. The anti-tumor cell proliferation activity of long-chain bases from sea cucumber Cucumaria frondosa is much stronger than cerebrosides. These results suggest that antitumor activity of cerebroside have the relationship with its chemical structure. (2) Anti-inflammatory effect: Caco-2 cells can convert to normal intestinal epithelial cells after 14 days incubation, adds TNF-αand Cucumaria frondosa cerebroside, extracts RNA, and analyzes by semi-quantitative RT-PCR. The results suggest that the participation of different concentrations of cerebroside can significantly reduce the inflammatory cytokines IL-8 mRNA expression, indicating its strong anti-inflammatory effect. All of above elucidates that sea cucumber cerebrosides, especially long-chain bases, are important bioactive components, which suggests their potential applications on the new ocean marine functional food or a certain area of drug development.
     In short, the puzzle is solved which exists in separating and purificating sea cucumber cerebrosides and long-chain bases using high-speed counter-current chromatography in this paper. On account of complex structure and difficulties identified of sea cucumber, we use chromatographic-tandem mass spectrometry to realize rapid high-throughput screening of cerebroside molecular species, and lots of suspected new compounds are found by this method. Researches in this thesis would provide reliable theoretical basis and experimental foundation for the further study, evaluation of nutrition and diet sea cucumbers.
引文
[1] Thudichum J L W. Reports of the Medical Officer of Privy Council and Local Government Board, N serial No. VIII, 1876: 117
    [2] Runuana K, Martin C. Phases and phase transitions of the sphingolipids, Biochimica et Biophysica Acta, l995, 1255: 213~236
    [3] Chester MA. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids--recommendations 1997. European Journal of Biochemistry, 1998, 257(2): 293~298
    [4] Kelly M.S. Echinoderms: Their Culture and Bioactive Compounds. Progress in Molecular and Subcellular Biology, 2005, 39: 139~165
    [5]陈颖,吕丽洁,段金廒,等.从生物进化看脑苷脂类化合物的分布及其生物活性研究进展.国际药学研究杂志,2009,36(2):121~126
    [6] Morita M, Motoki K, Akimoto K, et al. Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. Journal of Medicinal Chemistry, 1995, 38: 2176~2187
    [7] Hirosuke Oku, Sawitree Wongtangtintharn, Hironori Iwasaki, et al. Tumor specific cytotoxicity of glucosylceramide. Cancer Chemotherapy and Pharmacology, 2007, 60: 767~775
    [8] Hirosuke Oku, Changchun Li, Masayuki Shimatani, et al. Tumor specific cytotoxicity ofβ-glucosylceramide: structure–cytotoxicity relationship and anti-tumor activity in vivo. Cancer Chemother Pharmacol, 2009, 64: 485~496
    [9] Margalit M, Shalev Z, Pappo O, et al. Glucocerebroside ameliorates the metabolic syndrome in OB/OB mice. The Journal of Pharmacology and Experimental, 2006, 319: 105~110
    [10] Zigmond E, Preston S, Pappo O, et al. Beta-glucosylceramide: a novel method for enhancement of natural killer T lymphocyte plasticity in murine models of immune-mediated disorders. Gut, 2007, 56: 82~89
    [11] Y.伊兰,M.玛格丽特,A.齐曼.葡糖脑苷脂治疗疾病.中国专利,101123986A,2008-02-13
    [12] Jung JH, Lee CO, Kim YC, et al. New bioactive cerebrosides from Arisaema amurense. Journal of Natural Products, 1996, 59: 319~322
    [13] Kim SY, Choi YH, Huh H, et al. New antihepatotoxic cerebroside from Lycium chinensefruits. Journal of Natural Products, 1997, 60(3): 274~276
    [14] Zigmond E, Papo O, Zangen S, et al. Treatment of non-alcoholic steatohepatitis byβ-glucosylceramide: a phase I/II clinical study (Abstract). Hepatology, 2006, 44: 180A
    [15] Boggs JM, GaoW, Hirahara Y. Myelin glycosphingolipids, galactosylceramide and sulfatide, participate in carbohydrate carbohydrate interactions between apposed membranes and may form glycosynapses between oligodendrocyte and/or myelin membranes. Biochimica et Biophysica Acta, 2008, 1780(3): 445~455
    [16] Kurosu M, Katayama S, Shibuya H, et al. A study of the calcium complex of a glucosylceramide, soyacerebrosideⅡ. Chemical and Pharmaceutical Bulletin, 2007, 55(12): 1758~1761
    [17] Francesca Cateni, Jelena Zilic, Gioacchino Falsone, et al. New cerebrosides from Euphorbia peplis L.: antimicrobial activity evaluation. Bioorganic and Medicinal Chemistry Letters, 2003, 13(24): 4345~4350
    [18] Takenori Natori, Masahiro Morita, Kohji Akimoto, et al. Agelasphins, Novel Antitumor and Immunostimulatory Cerebrosides from the Marine Sponge Agelas mauritianus. Tetrahedron, 1994, 50(9): 2771~2784
    [19] Wenzao Jin, Rinehart K L, Jares-Erijman E. A. Ophidiacerebrosides: cytotoxic glycosphingolipids containing a novel sphingosine from a sea star. Journal of organic Chemistry, 1994, 59(1): 144~147
    [20] Hannun Y. A, and L. M. Obeid. Principles of bioactive lipid signaling: lessons from sphingolipids. Nature Reviews Molecular Cell Biology, 2008, 9: 139~150
    [21] Sugawara T, M Kinoshita, M Ohnishi, et al. Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. Nutrient Metabolism, 2003, 133: 2777~2782
    [22] Sugawara T, M Kinoshita, M Ohnishi, et al. Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Bioscience Biotechnology and Biochemistry, 2004, 68: 2541~2546
    [23]桑已曙,闵知大.脑苷脂类化合物研究进展.中国生化药物杂志,2000,21(4):211~213
    [24] Itonori S, Shirai T, Kiso Y, et al. Glycosphingolipid composition of rat Placema: changesassociated with stage of pregnancy. Biochemistry Journal, 1995, 307: 399~405
    [25] Duvar S, Peter Katalinic J, Hanisch FG, et al. Isolation and structural characterization of glycosphingolipids of in vitro propagated bovine aortic endothelial cells. Glycobiology, 1997, 7(8): 1099~1109
    [26] Schnaar RL. Isolation of glycosphingolipids. Methods in Enzymology, 1994, 230: 348~370
    [27] Firoze B. Jungalwala, Lyle Hayes, and Robert H. McCluer. Determination of less than a nanomol of cerebrosides by high performance liquid chromatography with gradient elution analysis. Journal of Liquid research, 1977, 18(3): 287~292
    [28] Johanna E.M. Groener, Ben J.H.M. Poorthuis, Sijmen Kuiper, et al. HPLC for Simultaneous Quantification of Total Ceramide, Glucosylceramide, and Ceramide Trihexoside Concentrations in Plasma. Clinical Chemistry, 2007, 53(4):742~747
    [29] Minoru Kashima, Kiyotaka Nakagawa, Tatsuya Sugawara, et al. Method for Quantitative Determination of Cerebroside in“Plant Ceramide”Foodstuffs by High Performance Liquid Chromatography with Evaporative Light Scattering Detection. Journal of Oleo Science, 2002, 51(5): 347~354
    [30] Keita Yunoki, Mayumi Sato, Kazuto Seki, et al. Simultaneous Quantification of Plant Glyceroglycolipids Including Sulfoquinovosyldiacylglycerol by HPLC–ELSD with Binary Gradient Elution. Lipids, 2009, 44(1): 77~83
    [31] Tatsuya Sugawara and Teruo Miyazawa. Separation and Determination of Glycolipids from Edible Plant Sources by High-Performance Liquid Chromatography and Evaporative Light-Scattering Detection. Lipids, 1999, 34(11): 1231~1237
    [32] Jingjing Duan, Tatsuya Sugawara and Takashi Hirata. Rapid Quantitative Analysis of Sphingolipids in Seafood Using HPLC with Evaporative Light-Scattering Detection: Its Application in Tissue Distribution of Sphingolipids in Fish. Journal of Oleo Science, 2010, 59(9): 509~513
    [33] Lei Chen, Jin Jiang Wang, Hong Tao Song, et al. New cytotoxic cerebroside from Gynura divaricata. Chinese Chemical Letters, 2009, 20: 1091~1093
    [34] Taeseong Park, Tayyab Ahmad Mansoor, Pramod Bapurao Shinde, et al. New Cerebrosides from a Marine Sponge Haliclona (Reniera) sp. Chemical and Pharmaceutical Bulletin, 2009,57(1): 106~111
    [35]丁宁.海洋鞘糖脂clarhamnoside的全合成及系列KRN7000类似物的合成研究:[博士学位论文].青岛:中国海洋大学医药学院,2006
    [36]陈雪松,陈迪华,刘珂.脑甙类化合物的研究概况.天然产物研究与开发,2001,13(2):63~68
    [37] Han X L, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. Journal of Lipid Research, 2003, 44: 1071~1079
    [38]王涛,钟秀丽,梅旭荣,等.基于电喷雾电离串联质谱技术的植物脂质组学研究进展.生物化学与生物物理进展,2010,37(10):1074~1081
    [39]蔡潭溪,刘平生,杨福全,等.脂质组学研究进展,2010,37(2):121~128
    [40] Alfred H. Merrill Jr., M. Cameron Sullards, Jeremy C. Allegood, et al. Sphingolipidomics: High-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods, 2005, 36(2): 207~224
    [41] Rebecca L. Shaner, Jeremy C. Allegood, Hyejung Park, et al. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. The Journal of Lipid Research, 2009, 50: 1692~1707
    [42] Bartke N, Fischbeck A, Humpf HU. Analysis of sphingolipids in potatoes (Solanum tuberosum L.) and sweet potatoes (Ipomoea batatas (L.) Lam.) by reversed phase high- performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Molecular Nutrition and Food Research, 2006, 50(12): 1201~1211
    [43] Tatsuya Sugawara, Kazuhiko Aida, Jingjing Duan, et al. Analysis of Glucosylceramides from Various Sources by Liquid Chromatography-Ion Trap Mass Spectrometry. Journal of Oleo Science, 2010, 59(7): 387~394
    [44] Sugawara T, Duan J, Aida K, et al. Identification of glucosylceramides containing sphingatrienine in maize and rice using ion trap mass spectrometry. Lipids, 2010, 45(5): 451~455
    [45] Levitina MV. Comparative research on the cerebroside and sulfocerebroside content of the mammalian brain. Zhurnal Evoliutsionnoi Biokhimii i Fiziologii, 1988, 24(1): 14~20
    [46] R. X. Tan and J. H. Chen. The cerebrosides. Natural Product Reports, 2003, 20: 509~534
    [47]王艳丽,张晓琦,王国才,等.灵芝子实体的化学成分研究.江苏药学与临床研究,2006,14(6):349~351
    [48] Kawai G, Ikeda Y. Structure of biologically active and inactive cerebrosides prepared from Schizophyllum commune. Journal of Lipid Research, 1985, 26: 338
    [49]谢芬,郭顺星.真菌来源鞘脂的结构及其活性研究进展.中国药学杂志,2002,37(7):481~484
    [50] Li X, Sun DD, Chen JW, et al. New sphingolipids from the root of Isatis indigotica and their cytotoxic activity. Fitoterapia, 2007, 78: 490~495
    [51] Ryu J, Kim JS, Kang SS. Cerebrosides from Longan arillus. Archives of Pharmacal Research, 2003, 26(2): 138~142
    [52]刘润华,江文波,余迪求.植物鞘脂的结构、代谢途径及其功能.植物学报,2009,44(5):619~628
    [53]侯雪,王红,李娟.魔芋中脑苷脂类化合物的分离与结构鉴定.天然产物研究与开发,2009,21(6):913~915
    [54] María E. Díaz de Vivar, Alicia M. Seldes, Marta S. Maier. Two Novel Glucosylceramides from Gonads and Body Walls of the Patagonian Starfish Allostichaster inaequalis. Lipids, 2002, 37(6): 597~603
    [55]詹永成,裴月湖,许兴友,等.罗氏海盘车中两个新的脑苷类化合物—罗氏脑苷B和罗氏脑苷C.天然产物研究与开发,2007,19(1):1~3
    [56] Maruta T, Saito T, Inagaki M, et al. Biologically Active Glycosides from Asteroidea, 41. Isolation and Structure Determination of Glucocerebrosides from the Starfish Linckia laevigata. Chemical and Pharmaceutical Bulletin, 2005, 53(10): 1255~1258
    [57] Satoshi KAWATAKE, Kazufumi NAKAMURA, Masanori INAGAKI, et al. Isolation and Structure Determination of Six Glucocerebrosides from the Starfish Luidia maculata. Chemical and Pharmaceutical Bulletin, 2002, 50(8): 1091~1096
    [58] Masanori INAGAKI, Tomohide NAKATA, and Ryuichi HIGUCHI. Isolation and Structure of a Galactocerebroside Molecular Species from the Starfish Culcita novaeguineae1). Chemical and Pharmaceutical Bulletin, 2006, 54(2): 260~261
    [59] Masanori INAGAKI, Akemi OYAMA, Kazuyoshi ARAO, et al. Constituents of Crinoidea, 4. Isolation and Structure of Ceramides and Glucocerebrosides from the Feather Star Comanthus japonica. Chemical and Pharmaceutical Bulletin, 2004, 52(11): 1307~1311
    [60] Natori T, Morita M, Akimoto K, et al. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas Mauritianus. Tetrahedron, 1994, 50(9): 2771~2784
    [61] Li HY, Matsunaga S, Fusetani N. Halicylindrosides, antifungal and cytotoxic cerebrosides from the marine sponge Halichondria cylindrata. Tetrahedron, 1995, 51(8): 2273~2280
    [62] Rosario Duran, Eva Zubia, Maria J. Ortega, et al. Phallusides, New Glucosphingolipids from the Ascidian Phallusia fumigata. Tetrahedron, 1998, 54: 14597~14602
    [63] Karl-Anders Karlsson, Hakon Leffler and Bo. E. Samuelsson. Characterization of cerebroside (monoglycosylceramide) from the sea anemone, Metridium senile: Identification of the major long-chain base as an unusual dienic base with a methyl branch at a double bond. Biochimica et Biophysica Acta, 1979, 574(2): 79~93
    [64] Higuchi R, Inagaki M, Togawa K, et al. Isolation and structure of three new cerebrosides, CE-2b, CE-2c, and CE-2d, from the sea cucumber Cucumaria echinata. Liebigs Annalen der Chemie, 1994, 1: 79~81
    [65] Higuchi R, Inagaki M, Togawa K, et al. Isolation and structure of cerebrosides from the sea cucumber Pentacta australis. Liebigs Annalen der Chemie, 1994, 7: 653~658
    [66] Petra Sperling, Ernst Heinz. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochimica et Biophysica Acta, 2003, 1632: 1~15
    [67] D. Warnecke and E. Heinz. Recently discovered functions of glucosylceramides in plants and fungi. Cellular and Molecular Life Sciences, 2003, 60(5): 919~941
    [68]廖玉麟.我国的海参.生物学通报,2001,36(9):1~3
    [69]邢湘臣.海参的药用.东方药膳,2006,12:10~20
    [70]廖玉麟.中国动物志(第1卷).北京:科学出版社.1997,61
    [71]崔桂友.烹饪原料学.北京:中国商业出版社,1997,80
    [72]邹峥嵘,易杨华,姚新生,等.海地瓜化学成分研究.中国天然药物,2006,2(6): 348~350
    [73]罗先群,王新广.海地瓜的开发和利用.食品研究与开发,2000,21(3):34~35
    [74]侯付景,李妍妍,金春华,等.白肛海地瓜和刺参体壁的比较分析.食品科学,2010,31(11):38~41
    [75]喇明平.叶瓜参生物活性成分研究:[硕士学位论文].上海:第二军医大学药学院海洋药物研究中心,2008
    [76]樊绘曾.海参:海中人参——关于海参及其成分保健医疗功能的研究与开发.中国海洋药物,2001,4:37~44
    [77]吴萍茹,苏文金.二色桌片参的化学成分研究:I.二色桌片参的化学成分分析.中国海洋药物,2000,19(1):17~19,28
    [78]赵学敏.本草纲目拾遗.北京:商务印书馆,1995.495
    [79]马天舒,葛迎春.海参活性物质的药理研究进展.特产研究,2003,1:57~61
    [80] M Saito, N Kunisaki, N Urano, et al. Collagen as the Major Edible Component of Sea Cucumber (Stichopus japonicus). Journal of Food Science. 2002, 67(4): 1319~1322
    [81] Paulo A S. Mour?o, Catherine Boisson-Vidal, Jacqueline Tapon-Bretaudière, et al. Inactivation of thrombin by a fucosylated chondroitin sulfate from Echinoderm. Thrombosis Research, 2001, 102: 167~176
    [82] Yutaka Kariya, Barbara Mulloy, Kyoko Imai, et al. Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis. Carbohydrate Research, 2004, 339: 1339~1346
    [83]董平.革皮氏海参(Pearsonthria graeffei)皂苷化合物的分离鉴定、结构修饰及活性研究:[博士学位论文].青岛:中国海洋大学食品科学与工程学院,2008
    [84]韩玉谦,冯晓梅,管华诗.海参皂甙的研究进展.天然产物研究与开发,2005,17(5):669~672
    [85]邹峥嵘,易杨华,张淑瑜,等.海参皂苷研究进展.中国海洋药物,2004,1:46~53
    [86]王奕,王静凤,张瑾,等.日本刺参胶原肽对B16黑素瘤细胞黑素合成的影响.营养学报,2007,29(4):401~404
    [87]崔凤霞.海参胶原蛋白生化性质及胶原肽活性研究:[博士学位论文].青岛:中国海洋大学食品科学与工程学院,2007
    [88]苏秀榕,娄永江,常亚青,等.海参的营养成分及海参多糖的抗肿瘤活性的研究.营养学报,2003,25(2):181~182
    [89] Borsig L, Wang L, Cavalcante M C, et al. Selectin blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber. Effect on tumor metastasis and neutrophil recruitment. Journal of Biological Chemistry, 2007, 282: 14984~14991
    [90] Naveena B Janakiram, Altaf Mohammed, Yuting Zhang, et al. Chemopreventive Effects of Frondanol A5, a Cucumaria frondosa Extract, against Rat Colon Carcinogenesis and Inhibition of Human Colon Cancer Cell Growth. Cancer Prevention Research, 2010, 3(1): 82~91
    [91] Yunguang Tong, Xiongwen Zhang, Fang Tian, et al. Philinopside A, a novel marine– derived compound possessing dual anti– tumor effects. International Journal of Cancer, 2005, 114(6): 843~853
    [92] Fang Tian, Cai-hua Zhu, Xiong-wen Zhang, et al. Philinopside E, a new sulfated saponin from sea cucumber, blocks the interaction between kinase insert domain-containing receptor (KDR) andαvβ3 Integrin via Binding to the Extracellular Domain of KDR. Molecular Pharmacology, 2007, 72: 545~552
    [93] Fonseca R J, Mourao P A. Fucosylated chondroitin sulfate as a new oral antithrombotic agent. Thrombosis and Haemostasis, 2006, 96: 822~829
    [94] Li J Z, Lian E C. Aggregation of human platelets by acidic mucopolysaccharide extracted from Stichopus japonicus Selenka. Thromb Haemost, 1988, 59(3): 435~439
    [95] Chen, S G, Xue C H, Yin L A, et al. Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers. Carbohydrate Polymers, 2011, 83: 688~696
    [96] Mulloy B, Mour?o P A S, Gray E. Structure/function studies of anticoagulant sulphated polysaccharides using NMR. Journal of Biotechnology, 2000, 77(1): 123~135
    [97] Tapon-Bretaudiere J, Chabut D, Zierer M, et al. A fucosylated chondroitin sulfate from echinoderm modulates in vitro fibroblast growth factor 2-dependent angiogenesis. Molecular Cancer Research, 2002, 1: 96~102
    [98] Li Z G, Wang H L, Li J Z, et al. Basic and clinical studies on the thrombotic mechanism of glycosaminoglycan extracted from sea cucumber. Chinese Medical Journal, 2000, l13:706~711
    [99] Imanari T, Washio Y, Huang Y, et al. Oral absorption and clearance of partially deploymerized fucosy chondroitinsulfate from sea cucumber. Thrombosis Research, 1999, 93(3): 129~135
    [100] V.I. Kalinin, N.G. Prokofieva, G.N. Likhatskaya, et al. Hemolytic activities of triterpene glycosides from the Holothurian order Dendrochirotida: some trends in the evolution of this group of toxins. Toxicon, 1996, 34(4): 475~483
    [101] Mats M.N, Korkhov V.V, Stepanov V.R, et al. The contraceptive activity of triterpene glycosides–the total sum of holotoxins A1 and B1 and holothurin A in an experiment. Farmakol Toksikol, 1990, 53(2): 45~47
    [102]沈鸣.海参的化学成分和药理研究进展.中成药,2001,23(l0):758~761
    [103]姜健,杨宝灵,邰阳.海参资源及其生物活性物质的研究.生物技术通讯,2004,15(5):537~540
    [104] Kaneko M, Yamada K, Miyamoto T, et al. Neuritogenic activity of gangliosides from echinoderms and their structure-activity relationship. Chemical and Pharmaceutical Bulletin, 2007, 55(3): 462~463
    [105] Koji Yamada. Chemo-Pharmaceutical Studies on the Glycosphingolipid Constituents. Journal of the Pharmaceutical Society of Japan, 2002, 122(12): 1133~1143
    [106] K. Yamada, K. Sasaki, Y. Harada, et al. Constituents of Holothuroidea. 12. Isolation and Structure of Glucocerebrosides from the Sea Cucumber Holothuria pervicax. Chemical and Pharmaceutical Bulletin, 2002, 50(11): 1467~1470
    [107] Koji Yamada, Noriko Wada, Hiroyuki Onaka, et al. Constituents of Holothuroidea, 15. Isolation of Ante-iso Type Regio-isomer on Long Chain Base Moiety of Glucocerebroside from the Sea Cucumber Holothuria leucospilota. Chemical and Pharmaceutical Bulletin, 2005, 53(7): 788~791
    [108] Fumiaki Kisa, Koji Yamada, Masafumi Kaneko, et al. Constituents of Holothuroidea, 14. Isolation and Structure of New Glucocerebroside Molecular Species from the Sea Cucumber Stichopus japonicas. Chemical and Pharmaceutical Bulletin, 2005, 53(4): 382~386
    [109] Yuriko Ikeda, Masanori Inagaki, Koji Yamada, et al. Isolation and Structure of a Galactocerebroside from the Sea Cucumber Bohadschia argus. Chemical and PharmaceuticalBulletin, 2009, 57(3): 315~317
    [110]张永娟,易杨华.可疑翼手参中4个脑苷脂.中草药,2006,37(7):979~982
    [111] Karlsson KA. Sphingolipid long chain bases. Lipids, 1970, 5: 878~891
    [112] Sarah T. Pruett, Anatoliy Bushnev, Kerri Hagedorn, et al. Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. Journal of Lipid Research, 2008, 49:1621~1639
    [113]黄韵,余应年,杨军.鞘脂类研究进展.浙江大学学报(医学版),2005,34(4):375~379
    [114] Sperling P, U Zahringer and E Heinz. A sphingolipid desaturase from higher plants. The Journal of Biological Chemistry, 1998, 273(44): 28590~28596
    [115] IMAI Hiroyuki, OHNISHI Masao, HOTSUBO Kenmi, et al. Sphingoid Base Composition of Cerebrosides from Plant Leaves. Bioscience, Biotechnology, and Biochemistry, 1997, 61(2): 351~353
    [116] Hiroki Minamioka, Hiroyuki Imai. Sphingoid long-chain base composition of glucosylceramides in Fabaceae: a phylogenetic interpretation of Fabeae. Journal of Plant Research, 2009, 122: 415~419
    [117] Tatsuya S, Tsuyoshi T, Saeko Y, et al. Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. Journal of Lipid Research, 2010, 51: 1761~1769
    [118]陈建新,杜红旺,夏炽中.二氢鞘氨醇化合物的结构及抗癌增效作用.大同医专学报,1999,19(2):1~3
    [119]鲁明良.鞘氨醇对人结肠癌细胞(HT-29)生长抑制作用的研究.2009浙江省大肠肛门病学术交流会暨肛肠外科新技术培训资料汇编,2009
    [120] Tatsuya Sugawara, Nobuhiro Zaima, Akiyo Yamamoto, et al. Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against Huaman Colon Cancer Cells. Bioscience Biotechnology and Biochemistry, 2006, 70(12): 2906~2912
    [121] Herbert E. Carter, R. A. Hendry, S. Nojima, et al. Biochemistry of the Sphingolipids. The Journal of Biological Chemistry, 1961, 236, 7: 1912~1916
    [122] H. Kadowaki, E. G. Bremer, J. E. Evans, et al. Acetonitrile- hydrochloric acid hydrolysis ofgangliosides for high performance liquid chromatographic analysis of their long chain bases. Journal of Lipid Research, 1983, 24: 1389~1397
    [123] Morrison, W. R. and Hay, J. D. Polar lipids in bovine milk: II. long-chain bases, normal and 2-hydroxy fatty acids, and isomeric cis and trans monoenoic fatty acids in the sphingolipids. Biochimica et Biophysica Acta, 1970, 202: 460~467
    [124] Sambasivarao, K., and McCluer, R. H. Thin-layer chromatographic separation of sphingosine and related bases. Journal of Lipid Research, 1963, 4: 106~108
    [125] Jacques Bodennec, Cécile Famy, Gérard Brichon, et al. Purification of Free Sphingoid Bases by Solid-Phase Extraction on Weak Cation Exchanger Cartridges. Analytical Biochemistry, 2000, 279: 245~248
    [126] Solfrizzo M, Avantaggiato G and Visconti A. Rapid method to determine sphinganine/sphingosine in human and animal urine as a biomarker for fumonisin exposure. Journal of Chromatography B: Biomedical Sciences and Application, 1997, 692: 87~93
    [127] K.-A. Karlsson, B.E. Samuelsson and G.O. Steen. Identification of hitherto unknown branched-chain bases in sulphatides of the salt (rectal) gland of spiny dogfish. Biochimica et Biophysica Acta, 1973, 306: 307~316
    [128] Toshiko Matsubara and Akira Hayashi. Fragmentation pathways of O-trimethylsilyl ethers of dihydroxy long-chain bases analysed by linked-scan mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 1991, 562(1-2): 119~124
    [129] Alexandre Pons, Juliana Popa, Jacques Portoukalian, et al. Single-Step Gas Chromatography–Mass Spectrometry Analysis of Glycolipid Constituents as Heptafluorobutyrate Derivatives with a Special Reference to the Lipid Portion. Analytical Biochemistry, 2000, 284(2): 201~216
    [130] Fumiaki KISA, Koji YAMADA, Tomofumi MIYAMOTO, et al. Constituents of Holothuroidea, 18. Isolation and Structure of Biologically Active Disialo- and Trisialo-Gangliosides from the Sea Cucumber Cucumaria echinata. Chemical and Pharmaceutical Bulletin, 2006, 54(9): 1293~1298
    [131] Thomas J. McNabb, Aida E. Cremesti, Phyllis R. Brown, et al. The Separation and Direct Detection of Ceramides and Sphingoid Bases by Normal-Phase High-Performance LiquidChromatography and Evaporative Light-Scattering Detection. Analytical Biochemistry, 1999, 276: 242~250
    [132] Merrill AH Jr, Wang E, Mullins RE, et al. Quantitation of free sphingosine in liver by high-performance liquid chromatography. Analytical Biochemistry, 1988, 171: 373~381
    [133]邱茂锋,刘秀梅,王玉华,等.高效液相色谱法测定人尿中神经鞘氨醇和二氢神经鞘氨醇,2000,28(4):473~475
    [134] Bernd Lieser, Gerhard Liebisch, Wolfgang Drobnik, et al. Quantification of sphingosine and sphinganine from crude lipid extracts by HPLC electrospray ionization tandem mass spectrometry. Journal of Lipid Research, 2003, 44: 2209~2216
    [135]齐元英,孟兆玲,柳仁民.高速逆流色谱技术及其在天然产物研究中的应用进展.化学分析计量,2006,15(6):95~98
    [136] Ito Y, Sandlin J, Bowers W G. High-speed preparative counter-current chromatography with a coil planet centrifuge.Journsal of Chromatography A, 1982, 244(2): 247~258
    [137]戴德舜.高速逆流色谱实验体系的选择和优化.分析仪器,2001,3:31~35
    [138] LA Sutherland, Q Du, and P Wood. The Relationship between Retention, Linear Flow and Density Difference in Countercurrent Chromatography. Journal of Liquid Chromatography and Related Technologies, 2001, 24(11): 1669~1683
    [139]高荫榆,魏强,范青生,等.高速逆流色谱分离提取天然产物技术研究进展.食品科学,2008,29(2):61~465
    [140]田桂莲,张天佑,杨福全.应用高速逆流色谱(HSCCC)分离纯化山茱萸中的没食子酸.天然产物研究与开发,2000,12(6):52~55
    [141] Sahar A. Saddoughi, Pengfei Song and Besim Ogretmen. Roles of Bioactive Sphingolipids in Cancer Biology and Therapeutics. Subcellular Biochemistry, 2008, 49: 413~440
    [142] Douglass Wu, Masakazu Fujio and Chi-Huey Wong. Glycolipids as immunostimulating agents. Bioorganic and Medicinal Chemistry, 2008, 16: 1073~1083
    [143] Wennekes T, van den Berg RJ, Boot RG, et al. Glycosphingolipids—Nature, Function, and Pharmacological Modulation. Angewandte Chemie (International ed. In English), 2009, 48: 8848~8869
    [144] Timothy Coetzee, Nobuya Fujita, Jeffrey Dupree, et al. Myelination in the Absence ofGalactocerebroside and Sulfatide: Normal Structure with Abnormal Function and Regional Instability. Cell, 1996, 86:209~219
    [145] Wenjing Zheng, Jessica Kollmeyer, Holly Symolon. Ceramides and other bioactive sphingolipid backbones in health and disease: Lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochimica et Biophysica Acta, 2006, 1758(12): 1864~1884
    [146] Aida, K., Kinoshita, M., Sugawara, T., et al. Apoptosis inducement by plant and fungus sphingoid bases in human colon cancer cells. Journal of Oleo Science, 2004, 53: 503~510
    [147] Kai Zhang, Melissa Showalter, Javier Revollo, et al. Sphingolipids are essential for differentiation but not growth in Leishmania. The EMBO Journal, 2003, 22(22): 6016~6026
    [148] Hubert Vesper, Eva-Maria Schmelz, Mariana N. Nikolova-Karakashian, et al. Spingolipids in food and the emerging importance of sphingolipids to nutritution. Journal of Nutrition, 1999, 129: 1239~1250
    [149] Yunoki K, Ogawa T, Ono J, et al. Analysis of sphingolipid classes and their contents in meals. Bioscience Biotechnology and Biochemistry, 2008, 72: 222~225
    [150] Zhou Q, Zhang L, Fu X.Q, et al. Quantitation of yeast ceramides using high performance liquid chromatography-evaporative light-scattering detection. Analytical Technologiesin the Biomedical and Life Sciences, 2002, 780: 161~169
    [151] Rombaut R, Camp J.V, Dewettinck K. Analysis of phospho- and sphingolipids in dairy products by a new HPLC method. Journal of Dairy Science, 2005, 88: 482~488
    [152] Rombaut R, Dewettinck K, Camp J.V. Phospho- and sphingolipid content of selected dairy products as determined by HPLC coupled to an evaporative light scattering detector (HPLC-ELSD). Journal of Food Composition and Analysis, 2007, 20: 308~312
    [153] Counihan J, Zani P, Fried B, et al. Characterization and Quantification of the Polar Lipids in the Lizard Uta stansburiana by HPTLC-Densitometry. Journal of Liquid Chromatography and Related Technologies, 2009, 32(9): 1289~1298
    [154]李乃胜,薛长湖等.中国海洋水产品现代加工技术与质量安全.北京:海洋出版社,2010.4
    [155] Lei Chen, Houquan Li, Hongtao Song, et al. A new cerebroside from Gynura divaricata.Fitoterapia, 2009, 80: 517~520
    [156] Francesca CATENI, Jelena ZILIC, Marina ZACCHIGNA. Isolation and Structure Elucidation of Cerebrosides from Euphorbia Platyphyllos L. Scientia Pharmaceutica, 2008; 76: 451~469
    [157]曹学丽.高速逆流色谱分离技术及应用.北京:化学工业出版社,2005
    [158]周婷婷,范国荣.高速逆流色谱在天然产物活性成分分离制备中的应用.中国药科大学,2007,38(5):391~395
    [159] Ping Dong, Chang-Hu Xue, Qi-Zhen Du. Separation of two main triterpene glycosides from sea cucumber Pearsonothuria graeffei by high-speed counter-current chromatography (HSCCC). Acta Chromatographica, 2008, 20(2): 269~276
    [160]张惟杰.糖复合物生化研究技术.杭州:浙江大学出版社,1994,第1版
    [161]高贵珍,焦庆才,丁一磊,等.天青A分光光度法测定硫酸软骨素含量的研究.光谱学与光谱分析,2003,23(3):600~602
    [162] Bariliak IR, Lebskaia TK. Biomedical research on a concentrate of carotenoids made from the North Atlantic sea cucumber, Cucumaria frondosn. Voprosy Pitaniia, 1999, 68(3): 12~17
    [163]刘晓军,吴梧桐.脑苷脂的制备及其抗溃疡活性研究.药物生物技术,1995,2(3):19~23
    [164] Alegría Carrasco-Pancorbo, Natalia Navas-Iglesias, Luis Cuadros-Rodríguez. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: Modern lipid analysis. Trends in Analytical Chemistry, 2009, 28(3): 263~278
    [165] Natalia Navas-Iglesias, Alegría Carrasco-Pancorbo, Luis Cuadros-Rodríguez. From lipids analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part II: Analytical lipidomics. Trends in Analytical Chemistry, 2009, 28(4): 393~403
    [166] Christopher A. Haynesa, Jeremy C. Allegoodc, Hyejung Parka, et al. Sphingolipidomics: Methods for the comprehensive analysis of sphingolipids. Journal of Chromatography B, 2009, 877(26): 2696~2708
    [167]Xianlin Han, Hua Cheng. Characterization and direct quantitation of cerebroside molecular species from lipid extracts by shotgun lipidomics. Journal of Lipid Research, 2005, 46: 163~175
    [168] Daniel J. Strydom. Chromatographic separation of 1-phenyl-3-methyl-5-pyrazolone- derivatized neutral, acidic and basic aldoses. Journal of Chromatography A, 1994, 678(1): 17~23
    [169] D. Fu, R.A. O’Neill, Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography. Analytical Biochemistry, 1995, 227(2): 377~384
    [170]杨兴斌,赵燕,王海芳,等.柱前衍生化高效液相色谱法分析当归多糖的单糖组成.分析化学,2005,33(9):1287~1290
    [171]林雪,贾敬芬,黄琳娟,等. RP-HPLC用于芦荟多糖的单糖组成研究.食品科学,2006,27(4):192~195
    [172] Takakuwa N, Tanji M, Oda Y, et al. Distribution of 9-methyl sphingoid base in mushrooms and its effects on the fluidity of phospholipid liposomes. Journal of Oleo Science, 2002, 51(11): 741~747
    [173] Ohashi Y, Tanaka T, Akashi S, et al. Squid nerve sphingomyelin containing an unusual sphingoid base. Journal of Lipid Research, 2000, 41: 1118~1124
    [174] Yunoki K, Ishikawa H, Fukui Y, et al. Chemical properties of epidermal lipids, especially sphingolipids, of the Antarctic minke whale. Lipids, 2008, 43 (2): 151~159
    [175] Inagaki M, Isobe R, Kawano Y, et al. Isolation and structure of three new ceramides from the starfish Acanthaster planci. European Journal of Organic Chemistry, 1998, (1): 129~131
    [176] Mizrahi M, Lalazar G, Ben Ya'acov A, et al. Beta-glycoglycosphingolipid-induced augmentation of the anti-HBV immune response is associated with altered CD8 and NKT lymphocyte distribution: a novel adjuvant for HBV vaccination. Vaccine, 2008, 26 (21): 2589~2595
    [177] Chen JH, Cui GY, Liu JY, et al. Pinelloside, an antimicrobial cerebroside from Pinellia ternata. Phytochemistry, 2003, 64 (4): 903~906
    [178] Karantonis HC, Antonopoulou S, Demopoulos CA. Antithrombotic lipid minor constituents from vegetable oils. Comparison between olive oils and others. Journal of agricultural and food chemistry, 2002, 50 (5): 1150~1160
    [179]孙天玮,徐婷,董蕾,等.神经酰胺生物学功能和药理功能研究进展.湖北民族学院学报·医学版,2008,25(1):59~62
    [180] Uchida Y, Murata S, Schmuth M, et al . Glucosylceramide synthesis and synthase expression protect against ceramide-induced stress. Journal of lipid research, 2002, 43 (8): 1293~1302
    [181] Ruvolo PP. Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacological Research, 2003, 47 (5): 383~392
    [182] Kagedal K, Zhao M, Svensson I, et al. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Journal of Biochemistry, 2001, 359 (Pt 2): 335~343
    [183] Huang Y, Chen A, Li X, et al. Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine, 2008, 26 (15): 1807~1816
    [184]张蓓,薛长湖,冯婷玉,等.海参脑苷脂对脂肪肝大鼠脂肪代谢的调节作用.浙江大学学报·医学版,2010,39(5):493~498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700