用户名: 密码: 验证码:
Claudin一1抗体应用于抑制丙型肝炎感染的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     丙型肝炎是一种常见的由丙型肝炎病毒引起的肝脏疾病,常导致肝硬化和肝细胞癌。全世界约有1.7亿人感染丙型肝炎病毒,丙型肝炎已成为一个对公共健康有重大影响的疾病。目前尚无针对丙型肝炎的保护性疫苗,目前的标准治疗方法-长效干扰素联合利巴韦林疗效有限,费用昂贵,副作用大。在今后20年内,由丙型肝炎引起的肝硬化和肝癌患者数量将会继续增加。因此,目前迫切需要针对丙型肝炎更为有效的预防措施和治疗方法。
     丙型肝炎病毒是一种单链包膜RNA病毒,属于黄病毒科嗜肝病毒属,由5’非编码区(包括内部核糖进入位点),开放读码框(编码结构蛋白和非结构蛋白)和3’编码区构成。构成病毒颗粒的结构蛋白包括核心蛋白和包膜糖蛋白E1和E2。非结构蛋白包括P7离子通道,NS2-3蛋白酶,NS3丝氨酸蛋白酶和RNA解旋酶,NS4A多肽,NS4B和NS5A蛋白以及NS5B-RNA依赖性RNA聚合酶。
     病毒入侵是病毒-宿主细胞相互作用产生感染的第一步。HCV病毒入侵是多因素参与的复杂过程,包括宿主细胞因素:SR-BI, CD81, CLDN1和OCLN等,为抗病毒治疗提供了多个新的靶点。在这些HCV受体中,紧密连接蛋白-CLDN1是一个非常有前景的抗病毒靶点,它对HCV入侵至关重要,且目前未发现CLDN1非依赖性HCV入侵。而且,CLDN1在病毒细胞间传播中发挥重要作用。
     病毒可以以两种方式在宿主细胞间传播:将病毒释放至细胞外或直接将病毒由感染细胞传递给非感染细胞。通常,病毒在细胞间的直接传递更为迅速有效,因为这一过程省去了病毒粘附等病毒生命周期中的限速步骤。最近的研究成功建立了HCV细胞培养模型,使病毒能在细胞培养中传播,该模型为研究病毒传播创造了条件。HCV感染肝癌细胞常呈现为相邻细胞间的灶状感染,提示病毒在相邻细胞间传播。新近研究表明,HCV在体外以两种方式传播-细胞外病毒感染或病毒在细胞间的直接传播,后者可以逃避中和抗体的攻击。这种HCV细胞间的直接传播依赖CLDN1的表达,但存在CD81非依赖型细胞间传播。
     方法
     在体外建立HCVpp及HCVcc模型。通过基因免疫制备anti-CLDN1多克隆及单克隆抗体。应用anti-CLDN1单克隆抗体在HCV细胞培养中预防HCV感染。在HCV传播试验中应用anti-CLDN1多克隆抗体及HCV患者血清抑制HCV传播。
     结果
     我们成功制备了CLDN1多克隆及单克隆抗体。抗-CLDN1抗体与人源性CLDN1外环在细胞高亲和性结合并对肝癌细胞(Huh7.5.1)及肝原代细胞无细胞毒性。在体外,该抗体剂量依赖性抑制HCV主要基因型。我们还发现抗-CLDN1抗体有效抑制HCV通过细胞外病毒以及通过细胞间进行传播。
     结论
     在体外模型中,抗-CLDN1抗体可以抑制HCV入侵和病毒的传播。针对HCV受体的抗体,尤其是抗-CLDN1抗体,可望成为新的抗病毒治疗方法应用于预防HCV感染以及限制病毒在慢性HCV感染者中的传播。
BACKGROUND & OBJECTIVE
     Hepatitis C virus (HCV) is a major cause of liver disease, including liver cirrhosis andhepatocellular carcinoma. With an estimated 170 million infected individuals, HCV has amajor impact on public health. A vaccine protecting against HCV infection is not available,and current standard therapy, which is pegylated interferon- combined with ribavirin, ischaracterized by limited efficacy, high costs, and substantial side effects. As a consequence,the number of patients presenting with the long-term sequelae of chronic hepatitis C,including hepatocellular carcinoma (HCC), is expected to increase further over the next 20years. So, more effective therapies and prophylactic measurements are urgently needed forHCV.
     HCV is an enveloped single-stranded RNA virus of positive polarity that is a memberof the genus Hepacivirus within the family Flaviviridae. It is composed of a 5'-non-codingregion (NCR), which includes an internal ribosome entry site (IRES), an open readingframe that encodes structural and non-structural proteins, and a 3'-NCR. The structuralproteins, which form the viral particle, include the core protein and the envelopeglycoproteins E1 and E2. The non-structural proteins include the p7 ion channel, the NS2-3protease, the NS3 serine protease and RNA helicase, the NS4A polypeptide, the NS4B andNS5A proteins and the NS5B RNA-dependent RNA polymerase (RdRp).
     Viral entry is the first step of virus-host cell interactions leading to productive infection. HCV entry is believed to be a highly orchestrated process involving several hostcell factors including SR-BI, CD81, CLDN1 and OCLN, thereby offering multiple noveltargets for antiviral therapy. Among the host entry factors, tight junction protein CLDN1 isa promising antiviral target since it is essential for HCV entry and to date there is noevidence for CLDN1-independent HCV entry. Furthermore, CLDN1 has been suggested toplay an important role in HCV cell-cell transmission.
     Viruses can disseminate within a host by two mechanisms: release of cell-free virionsor direct passage between infected and uninfected cells. In general, direct cell-cell transferis considered more rapid and efficient than cell-free spread because it obviates rate-limitingearly steps in the virus life cycle, such as virion attachment. Recent developments haveallowed HCV to be propagated in cell culture [cell culture-grown hepatitis C virus(HCVcc)], allowing studies on viral transmission. HCV infection of hepatoma cells resultsin focal areas of infection that are potentiated by cell-cell contact, and this suggestslocalized transmission between adjacent cells. Recently, it has been demonstrated that HCVcan be transmited in vitro by at least two routes, cell-free virus infection and direct transferbetween cells, with the latter offering a novel route for evading neutralizing Abs. And it wasindicated that HCV cell-cell transmission is dependent on CLDN1 expression andCD81-independent routes of cell-cell transmission exist.
     METHODS
     HCVcc was established as a model in vitro. Anti-CLDN1 antibody monoclonal andpolyclonal antibodies were produced by genetic immunization. Anti-CLDN1 mAb wasused to prevent HCV infection in HCV cell culture. Inhibition of HCV spread by thepolyclonal antibody against claudin-1 and anti-HCV sera from HCV patients was assessedby the established HCV spread assay.
     RESULTS
     We successfully produced anti-CLDN1 polyclonal and monoclonal antibodies. Anti-CLDN1 mAb bound to the extracellular loops of human CLDN1 expressed on the cellsurface with high affinity and showed no toxicity to hepatoma cells (Huh7.5.1) and primaryhepatocytes. In vitro, it inhibited HCV infection in a dose dependent manner and waseffective to HCV infection of several genotypes. Our data showed that anti-CLDN1antibody was promising to inhibit HCV spread and disemination.
     CONCLUSION
     Antibody against CLDN1 can efficiently inhibit HCV entry and viral spread in vitro. Itis indicated that Abs against HCV receptors, especially anti-CLDN1 Abs, may constitute anovel antiviral approach to prevent HCV infection and might restrain virus spread inchronically infected patients.
引文
1. Barth H, Liang T J, Baumert T F. Hepatitis C virus entry: molecular biology andclinical implications [J]. Hepatology, 2006, 44 (3): 527-535.
    2. , . [J]. , 2007, 12 (5): 333-335
    3. Pileri P, Uematsu Y, Campagnoli S, et al. Binding of hepatitis C virus to CD81 [J].Science 1998, 282 (5390): 938-941.
    4. Scarselli E, Ansuini H, Cerino R, et al. The human scavenger receptor class B type I isa novel candidate receptor for the hepatitis C virus [J]. Embo J ,2002, 21 (19):5017-5025.
    5. Evans M J, von Hahn T, Tscherne D M, et al. Claudin-1 is a hepatitis C virusco-receptor required for a late step in entry [J]. Nature 2007, 446 (7137): 801-805.
    6. Ploss A, Evans M J, Gaysinskaya V A, et al. Human occludin is a hepatitis C virusentry factor required for infection of mouse cells [J]. Nature 2009, 457 (7231):882-886.
    7. Fofana I, Krieger S E, Grunert F et al. Monoclonal anti-claudin 1 antibodies preventhepatitis C virus infection of primary human hepatocytes [J]. Gastroenterology 2010,139 (3): 953-964
    8. Lauer G M, Walker B D. Hepatitis C virus infection [J]. N Engl J Med ,2001, 345 (1):41-42.
    9. Hezode C, Forestier N, Dusheiko G, et al. Telaprevir and peginterferon with or withoutribavirin for chronic HCV infection [J]. N Engl J Med ,2009, 360 (18): 1839-1850.
    10. Timpe J M, McKeating J A. Hepatitis C virus entry: possible targets for therapy [J],Gut, 2008, 57 (12): 1728-1737.
    11. Furuse M, Fujita K, Hiiragi T, et al. Claudin-1 and -2: novel integral membraneproteins localizing at tight junctions with no sequence similarity to occludin [J]. J CellBiol, 1998, 141 (7): 1539-1550.
    12. Timpe J M, Stamataki Z, Jennings A, et al. Hepatitis C virus cell-cell transmission inhepatoma cells in the presence of neutralizing antibodies [J]. Hepatology, 2008, 47(1) :17-24.
    13. Law M, Maruyama T, Lewis J., et al. Broadly neutralizing antibodies protect againsthepatitis C viurs quasispecies challenge. Nat Med 2008; 14: 25-7
    14. Vanwolleghem T, Bukh J, Meuleman P, et al. Polyclonal immunoglobulins from achronic hepatitis C virus patient protect human liver-chimeric mice from infection witha homologous hepatitis C virus strain. Hepatology 2008;47:1846-55
    15. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, et al. Production ofinfectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med.2005;11:791–796
    16. Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC, et al.Complete replication of hepatitis C virus in cell culture. Science. 2005;309:623–626
    17. Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton DR, et al. Robust hepatitisC virus infection in vitro. Proc Natl Acad Sci USA. 2005;102:9294–9299
    18. Barth H, Robinet E, Liang TJ, Baumert TF. Mouse models for the study of HCVinfection and virus–host interactions. J Hepatol. 2008;49:134–142
    19. Boonstra A, van der Laan LJ, Vanwolleghem T, Janssen HL. Experimental models forhepatitis C viral infection. Hepatology. 2009;50:1646–1655
    20. Vieyres G, Thomas X, Descamps V, Duverlie G, Patel AH, Dubuisson J.Characterization of the envelope glycoproteins associated with infectious hepatitis Cvirus. J Virol. 2010;84:10159–10168
    21. Ciczora Y, Callens N, Penin F, Pecheur EI, Dubuisson J. Transmembrane domains ofhepatitis C virus envelope glycoproteins: residues involved in E1E2 heterodimerizationand involvement of these domains in virus entry. J Virol. 2007;81:2372–2381
    22. Goffard A, Callens N, Bartosch B, Wychowski C, Cosset FL, Montpellier C, et al. Roleof N-linked glycans in the functions of hepatitis C virus envelope glycoproteins. J Virol.2005;79:8400–8409
    23. Pestka JM, Zeisel MB, Blaser E, Schurmann P, Bartosch B, Cosset FL, et al. Rapidinduction of virus-neutralizing antibodies and viral clearance in a single-sourceoutbreak of hepatitis C. Proc Natl Acad Sci USA. 2007;104:6025–6030
    24. Dowd KA, Netski DM, Wang XH, Cox AL, Ray SC. Selection pressure fromneutralizing antibodies drives sequence evolution during acute infection with hepatitisC virus. Gastroenterology. 2009;136:2377–2386
    25. Meuleman P, Hesselgesser J, Paulson M, Vanwolleghem T, Desombere I, Reiser H, etal. Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo. Hepatology.2008;48:1761–1768
    26. Baranova IN, Vishnyakova TG, Bocharov AV, Kurlander R, Chen Z, Kimelman ML,et al. Serum amyloid A binding to CLA-1 (CD36 and LIMPII analogous-1) mediatesserum amyloid A protein-induced activation of ERK1/2 and p38 mitogen-activatedprotein kinases. J Biol Chem. 2005;280:8031–8040
    27. Cai L, de Beer MC, de Beer FC, van der Westhuyzen DR. Serum amyloid A is a ligandfor scavenger receptor class B type I and inhibits high density lipoprotein binding andselective lipid uptake. J Biol Chem. 2005;280:2954–2961
    28. Lavie M, Voisset C, Vu-Dac N, Zurawski V, Duverlie G, Wychowski C, et al. Serumamyloid A has antiviral activity against hepatitis C virus by inhibiting virus entry in acell culture system. Hepatology. 2006;44:1626–163
    29. Fafi-Kremer S, Fofana I, Soulier E et al. Viral entry and escape fromantibody-mediated neutralization influence hepatitis C virus reinfection in livertransplantation. J Exp Med. 2010 Aug 30;207(9):2019-3
    1. Brimacombe C.L., J. Grove, L.W. Meredith, K. Hu, A.J. Syder, M.V. Flores , J.M.Timpe , S.E. Krieger, T.F. Baumert, T.L. Tellinghuisen, F. Wong-Staal, P. Balfe, J.A.McKeating. Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission[J]. J Virol., 2011, 85(1):596-605
    2. Barth H, Liang TJ, Baumert TF. Hepatitis C virus entry: molecular biology and clinicalimplications [J]. Hepatology, 2006, 44(3): 527-35
    3. Johnson DC, Huber MT. Directed egress of animal viruses promotes cell-to-cell spread[J]. J Virol., 2002, 76(1):1-8
    4. Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC, et al.Complete replication of hepatitis C virus in cell culture [J]. Science, 2005, 309(5734):623-626
    5. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, et al. Production ofinfectious hepatitis C virus in tissue culture from a cloned viral genome [J]. Nat Med,2005, 11(8): 791-796
    6. Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton DR, et al. Robust hepatitisC virus infection in vitro [J]. Proc Natl Acad Sci U S A, 2005, 102(26): 9294-9299
    7. Timpe, J.M., Z. Stamataki, A. Jennings, K. Hu, M.J. Farquhar, H.J. Harris, A. Schwarz,I. Desombere, G.L. Roels, P. Balfe, and J.A. McKeating. Hepatitis C virus cell-celltransmission in hepatoma cells in the presence of neutralizing antibodies [J].Hepatology, 2008, 47(1): 17-24
    8. Witteveldt, J., M.J. Evans, J. Bitzegeio, G. Koutsoudakis, A.M. Owsianka, A.G. Angus,Z.Y. Keck, S.K. Foung, T. Pietschmann, C.M. Rice, and A.H. Patel. 2009. CD81 isdispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells [J]. J GenVirol., 2009, 90(1): 48-58
    9. Fofana, I., S.E. Krieger, F. Grunert, S. Glauben, F. Xiao, S. Fafi-Kremer, E. Soulier, C.Royer, C. Thumann, C.J. Mee, J.A. McKeating, T. Dragic, P. Pessaux, F. Stoll-Keller, C.Schuster, J. Thompson, and T.F. Baumert. Monoclonal anti-claudin 1 antibodiesprevent hepatitis C virus infection of primary human hepatocytes [J]. Gastroenterology,2010, 139(3):953-964
    10. Timpe, J.M., and J.A. McKeating. 2008. Hepatitis C virus entry: possible targets fortherapy[J]. Gut, 2008, 57(12):1728-1737.
    11. Lavillette D, Morice Y, Germanidis G, Donot P, Soulier A, Pagkalos E, et al. Humanserum facilitates hepatitis C virus infection, and neutralizing responses inverselycorrelate with viral replication kinetics at the acute phase of hepatitis C virus infection.J Virol. 2005;79:6023–6034
    12. Osburn WO, Fisher BE, Dowd KA, Urban G, Liu L, Ray SC, et al. Spontaneous controlof primary hepatitis C virus infection and immunity against persistent reinfection.Gastroenterology. 2010;138:315–324
    13. Liu L, Fisher BE, Dowd KA, Astemborski J, Cox AL, Ray SC. Acceleration ofhepatitis C virus envelope evolution in humans is consistent with progressive humoralimmune selection during the transition from acute to chronic infection. J Virol.2010;84:5067–5077
    14. Zeisel MB, Cosset FL, Baumert TF. Host neutralizing responses and pathogenesis ofhepatitis C virus infection. Hepatology. 2008;48:299–307
    15. Uebelhoer L, Han JH, Callendret B, Mateu G, Shoukry NH, Hanson HL, et al. Stablecytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viralfitness. PLoS Pathog. 2008
    16. Fafi-Kremer S, Fofana I, Soulier E, Carolla P, Meuleman P, Leroux-Roels G, et al. Viralentry and escape from antibody-mediated neutralization influence hepatitis C virusreinfection in liver transplantation. J Exp Med. 2010;207:2019–2031
    17. Dhillon S, Witteveldt J, Gatherer D, Owsianka AM, Zeisel MB, Zahid MN, et al.Mutations within a conserved region of the hepatitis C virus E2 glycoprotein thatinfluence virus–receptor interactions and sensitivity to neutralizing antibodies. J Virol.2010;84:5494–5507
    18. Syder AJ, Haekyung L, Zeisel MB, Grove J, Soulier E, MacDonald J, et al. Smallmolecule scavenger receptor BI antagonists are potent HCV entry inhibitors. J Hepatol.2011;54:48–55
    19. Fofana I, Krieger SE, Grunert F, Glauben S, Xiao F, Fafi-Kremer S, et al. Monoclonalanti-claudin 1 antibodies prevent hepatitis C virus infection of primary humanhepatocytes. Gastroenterology. 2010;39:953–964
    20. Vaillant A, Juteau JM, Lu H, Liu S, Lackman-Smith C, Ptak R, et al. Phosphorothioateoligonucleotides inhibit human immunodeficiency virus type 1 fusion by blockinggp41 core formation. Antimicrob Agents Chemother. 2006;50:1393–1401
    21. Matsumura T, Hu Z, Kato T, Dreux M, Zhang YY, Imamura M, et al. AmphipathicDNA polymers inhibit hepatitis C virus infection by blocking viral entry.Gastroenterology. 2009;137:673–681
    22. Poveda E, Briz V, Soriano V. Enfuvirtide, the first fusion inhibitor to treat HIVinfection. AIDS Rev. 2005;7:139–147
    23. Boriskin YS, Leneva IA, Pecheur EI, Polyak SJ. Arbidol: a broad-spectrum antiviralcompound that blocks viral fusion. Curr Med Chem. 2008;15:997–1005
    24. Boriskin YS, Pecheur EI, Polyak SJ. Arbidol: a broad-spectrum antiviral that inhibitsacute and chronic HCV infection. Virol J. 2006;3:56
    25. Polyak SJ, Morishima C, Shuhart MC, Wang CC, Liu Y, Lee DY. Inhibition of T-cellinflammatory cytokines, hepatocyte NF-κB signaling, and HCV infection bystandardized silymarin. Gastroenterology. 2007;132:1925–1936
    26. Wagoner J, Negash A, Kane OJ, Martinez LE, Nahmias Y, Bourne N, et al. Multipleeffects of silymarin on the hepatitis C virus lifecycle. Hepatology. 2010;51:1912–1921
    27. Zeisel MB, Turek M, Baumert TF. Tight junctions and viral entry. Future Virol.2010;5:263–271.
    28. Davis GL, Nelson DR, Terrault N, Pruett TL, Schiano TD, Fletcher CV, et al. Arandomized, open-label study to evaluate the safety and pharmacokinetics of humanhepatitis C immune globulin (Civacir) in liver transplant recipients. Liver transpl.2005;11:941–949.
    29. Borgia G. HepeX-C (XTL Biopharmaceuticals). Curr Opin Investig Drugs. 2004;5:892–897
    30. Schiano TD, Charlton M, Younossi Z, Galun E, Pruett T, Tur-Kaspa R, et al. Mono-clonal antibody HCV-AbXTL68 in patients undergoing liver transplantation for HCV:results of a phase 2 randomized study. Liver transpl. 2006;12: 1381–1389
    31. Eren R, Landstein D, Terkieltaub D, Nussbaum O, Zauberman A, Ben-Porath J, et al.Preclinical evaluation of two neutralizing human monoclonal antibodies againsthepatitis C virus (HCV): a potential treatment to prevent HCV reinfection in livertransplant patients. J Virol. 2006;80:2654–2664
    32. Keck ZY, Li TK, Xia J, Bartosch B, Cosset FL, Dubuisson J, et al. Analysis of a highlyflexible conformational immunogenic domain a in hepatitis C virus E2. J Virol.2005;79:13199–13208
    33. Owsianka A, Tarr AW, Juttla VS, Lavillette D, Bartosch B, Cosset FL, et al.Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis Cvirus E2 envelope glycoprotein. J Virol. 2005;79:11095–11104
    34. Grove J, Nielsen S, Zhong J, Bassendine MF, Drummer HE, Balfe P, et al. Identifica-tion of a residue in hepatitis C virus E2 glycoprotein that determines scavengerreceptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. JVirol. 2008;82:12020–12029
    1. Choo QL,Kuo G,Weiner AJ,et al. Isolation of a cDNA clone derived from ablood-borne non-A, non-B viral hepatitis genome. Science 1989;244:359–62.
    2. WHO. Global surveillance and control of hepatitis C. Report of a WHOConsultation organized in collaboration with the Viral Hepatitis Prevention Board,Antwerp, Belgium. J Viral Hepat 1999;6:35–47.
    3. Touzet S,Kraemer L,Colin C,et al. Epidemiology of hepatitis C virus infection inseven European Union countries: a critical analysis of the literature. HENCOREGroup. (Hepatitis C European Network for Co-operative Research. Eur JGastroenterol Hepatol 2000;12:667–78.
    4. Donahue JG, Munoz A, Ness PM, et al. The declining risk of post-transfusionhepatitis C virus infection. N Engl J Med 1992;327:369–73.
    5. Manns MP, Foster GR, Rockstroh JK, et al.The way forward in HCVtreatment—finding the right path. Nat Rev Drug Discov 2007;6:991–1000.
    6. 6.WHO. Hepatitis C Fact Sheet. No. 164. Revised October 2000. WHO website:http://www.who.int/mediacentre/factsheets/fs164/en/ (accessed 12 Sep 2008).
    7. Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection.Lancet Infect Dis 2005;5:558–67.
    8. Frank C, Mohamed MK, Strickland GT, et al. The role of parenteralantischistosomal therapy in the spread of hepatitis C virus in Egypt. Lancet2000;355:887–91.
    9. Saeed AA, al-Admawi AM, al-Rasheed A, et al. Hepatitis C virus infection inEgyptian volunteer blood donors in Riyadh. Lancet 1991;338:459–60.
    10. Darwish MA, Raouf TA, Rushdy P, et al. Risk factors associated with a highseroprevalence of hepatitis C virus infection in Egyptian blood donors. Am J TropMed Hyg 1993;49:440–7.
    11. Fried MW, Shiffman ML, Reddy KR, et al. Peginterferon alfa-2a plus ribavirin forchronic hepatitis C virus infection. N Engl J Med 2002;347:975–82.
    12. Manns MP, McHutchison JG, Gordon SC, et al. Peginterferon alfa-2b plus ribavirincompared with interferon alfa-2b plus ribavirin for initial treatment of chronichepatitis C: a randomised trial. Lancet 2001;358:958–65.
    13. Lindsay KL, Trepo C, Heintges T, et al. A randomized, double-blind trial comparingpegylated interferon alfa-2b to interferon alfa-2b as initial treatment for chronichepatitis C. Hepatology 2001;34:395–403.
    14. Centers for Disease Control and Prevention. Recommendations for prevention andcontrol of hepatitis C virus (HCV) infection and HCV-related chronic disease.MMWR Recomm Rep 1998;47:1–39.
    15. Hoofnagle JH. Course and outcome of hepatitis C. Hepatology 2002;36:S21–9.
    16. Villano SA, Vlahov D, Nelson KE, et al. Persistence of viremia and the importanceof long-term follow-up after acute hepatitis C infection. Hepatology1999;29:908–14.
    17. Goffard A, Dubuisson J. Glycosylation of hepatitis C virus envelope proteins.Biochimie 2003;85:295–301.
    18. Fournier C, Sureau C, Coste J, et al. In vitro infection of adult normal humanhepatocytes in primary culture by hepatitis C virus. J Gen Virol 1998;79:2367–74.
    19. Castet V, Fournier C, Soulier A, et al. Alpha interferon inhibits hepatitis C virusreplication in primary human hepatocytes infected in vitro. J Virol2002;76:8189–99.
    20. Kolykhalov AA, Agapov EV, Blight KJ, et al. Transmission of hepatitis C byintrahepatic inoculation with transcribed RNA. Science 1997;277:570–4.
    21. Lohmann V, Korner F, Koch J, et al. Replication of subgenomic hepatitis C virusRNAs in a hepatoma cell line. Science 1999;285:110–3.
    22. Blight KJ, Kolykhalov AA, Rice CM. Efficient initiation of HCV RNA replicationin cell culture. Science 2000;290:1972–4.
    23. Blight KJ, McKeating JA, Marcotrigiano J, et al. Efficient replication of hepatitis Cvirus genotype 1a RNAs in cell culture. J Virol 2003;77:3181–90.
    24. Blight KJ, McKeating JA, Rice CM. Highly permissive cell lines for subgenomicand genomic hepatitis C virus RNA replication. J Virol 2002;76:13001–14.
    25. Pietschmann T, Lohmann V, Kaul A, et al. Persistent and transient replication offull-length hepatitis C virus genomes in cell culture. J Virol 2002;76:4008–21.
    26. Bartenschlager R. Hepatitis C virus molecular clones: from cDNA to infectiousvirus particles in cell culture. Curr Opin Microbiol 2006;9:416–22.
    27. Bukh J, Pietschmann T, Lohmann V, et al. Mutations that permit efficient replicationof hepatitis C virus RNA in Huh-7 cells prevent productive replication inchimpanzees. Proc Natl Acad Sci USA 2002;99:14416–21.
    28. Flint M, Thomas JM, Maidens CM, et al. Functional analysis of cellsurface-expressed hepatitis C virus E2 glycoprotein. J Virol 1999;73:6782–90.
    29. Cocquerel L, Duvet S, Meunier JC, et al. The transmembrane domain of hepatitis Cvirus glycoprotein E1 is a signal for static retention in the endoplasmic reticulum. JVirol 1999;73:2641–9.
    30. Cocquerel L, Meunier JC, Pillez A, et al. A retention signal necessary and sufficientfor endoplasmic reticulum localization maps to the transmembrane domain ofhepatitis C virus glycoprotein E2. J Virol 1998;72:2183–91.
    31. Cocquerel L, Wychowski C, Minner F, et al. Charged residues in the transmembranedomains of hepatitis C virus glycoproteins play a major role in the processing,subcellular localization, and assembly of these envelope proteins. J Virol 2000;4:3623–33.
    32. Choukhi A, Pillez A, Drobecq H, et al. Characterization of aggregates of hepatitis Cvirus glycoproteins. J Gen Virol 1999;80:3099–107.
    33. Matsuura Y, Tani H, Suzuki K, et al. Characterization of pseudotype VSVpossessing HCV envelope proteins. Virology 2001;286:263–75.
    34. Lagging LM, Meyer K, Owens RJ, et al. Functional role of hepatitis C viruschimeric glycoproteins in the infectivity of pseudotyped virus. J Virol1998;72:3539–46.
    35. Flint M, Maidens C, Loomis-Price LD, et al. Characterization of hepatitis C virusE2 glycoprotein interaction with a putative cellular receptor, CD81. J Virol 1999;73:235–44.
    36. Yagnik AT, Lahm A, Meola A, et al. A model for the hepatitis C virus envelopeglycoprotein E2. Proteins 2000;40:355–66.
    37. Michalak JP, Wychowski C, Choukhi A, et al. Characterization of truncated formsof hepatitis C virus glycoproteins. J Gen Virol 1997;78:2299–306.
    38. Flint M, Dubuisson J, Maidens C, et al. Functional characterization of intracellularand secreted forms of a truncated hepatitis C virus E2 glycoprotein. J Virol 2000;74:02–9.
    39. Hsu M, Zhang J, Flint M, et al. Hepatitis C virus glycoproteins mediatepH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad SciUSA 2003;100: 271–6.
    40. Drummer HE, Maerz A, Poumbourios P. Cell surface expression of functionalhepatitis C virus E1 and E2 glycoproteins. FEBS Lett 2003;546:385–90.
    41. Bartosch B, Dubuisson J, Cosset FL. Infectious hepatitis C virus pseudo-particlescontaining functional E1–E2 envelope protein complexes. J Exp Med 2003;197:33–42.
    42. Op De Beeck A, Voisset C, Bartosch B, et al. Characterization of functionalhepatitis C virus envelope glycoproteins. J Virol 2004;78:2994–3002.
    43. Lavillette D, Pecheur EI, Donot P, et al. Characterization of fusion determinantspoints to the involvement of three discrete regions of both E1 and E2 glycoproteinsin the membrane fusion process of hepatitis C virus. J Virol 2007;81:8752–65.
    44. Lavie M, Goffard A, Dubuisson J. Assembly of a functional HCV glycoproteinheterodimer. Curr Issues Mol Biol 2007;9:71–86.
    45. Deleersnyder V, Pillez A, Wychowski C, et al. Formation of native hepatitis C virusglycoprotein complexes. J Virol 1997;71:697–704.
    46. Bartosch B, Ciczora Y, Montigny C, et al. E1 envelope glycoprotein from hepatitisC virus particles exists as a transmembrane domain-dependent trimer. 14thInternational Symposium on Hepatitis C Virus and Related Viruses 2007;O-54.
    47. Blanchard E, Belouzard S, Goueslain L, et al. Hepatitis C virus entry depends onclathrin-mediated endocytosis. J Virol 2006;80:6964–72.
    48. Tscherne DM, Jones CT, Evans MJ, et al. Time- and temperature-dependentactivation of hepatitis C virus for low-pH-triggered entry. J Virol 2006;80:1734–41.
    49. Meertens L, Bertaux C, Dragic T. Hepatitis C virus entry requires a criticalpostinternalization step and delivery to early endosomes via clathrin-coated vesicles.J Virol 2006;80:11571–8.
    50. Koutsoudakis G, Kaul A, Steinmann E, et al. Characterization of the early steps ofhepatitis C virus infection by using luciferase reporter viruses. J Virol 2006;80:5308–20.
    51. Zhong J, Gastaminza P, Cheng G, et al. Robust hepatitis C virus infection in vitro.Proc Natl Acad Sci USA 2005;102:9294–9.
    52. Lindenbach B, Evans M, Syder A, et al. Complete replication of hepatitis C virus incell culture. Science 2005;309:623–6.
    53. Wakita T, Pietschmann T, Kato T, et al. Production of infectious hepatitis C virus intissue culture from a cloned viral genome. Nat Med 2005;11:791–6.
    54. Lindenbach BD, Meuleman P, Ploss A, et al. Cell culture-grown hepatitis C virus isinfectious in vivo and can be recultured in vitro. Proc Natl Acad Sci USA2006;103:3805–9.
    55. Kielian M, Rey FA. Virus membrane-fusion proteins: more than one way to make ahairpin. Nat Rev Microbiol 2006;4:67–76.
    56. Lavillette D, Bartosch B, Nourrisson D, et al. Hepatitis C virus glycoproteinsmediate low pH-dependent membrane fusion with liposomes. J Biol Chem2006;281:3909–17.
    57. Evans M, von Hahn T, Tscherne D, et al. Claudin-1 is a hepatitis C virus co-receptorrequired for a late step in entry. Nature 2007;446:801–5.
    58. Kobayashi M, Bennett MC, Bercot T, et al. Functional analysis of hepatitis C virusenvelope proteins, using a cell–cell fusion assay. J Virol 2006;80:1817–25.
    59. Pileri P, Uematsu Y, Compagnoli S, et al. Binding of hepatitis C virus to CD81.Science 1998;282:938–41.
    60. Shoham T, Rajapaksa R, Kuo CC, et al. Building of the tetraspanin web: distinctstructural domains of CD81 function in different cellular compartments. Mol CellBiol 2006;26:1373–85.
    61. Owsianka A, Clayton RF, Loomis-Price LD, et al. Functional analysis of hepatitis Cvirus E2 glycoproteins and virus-like particles reveals structural dissimilaritiesbetween different forms of E2. J Gen Virol 2001;82:1877–83.
    62. Lavillette D, Tarr AW, Voisset C, et al. Characterization of host-range and cell entryproperties of the major genotypes and subtypes of hepatitis C virus. Hepatology2005;41:265–74.
    63. Zhang J, Randall G, Higginbottom A, et al. CD81 is required for hepatitis C virusglycoprotein-mediated viral infection. J Virol 2004;78:1448–55.
    64. Flint M, von Hahn T, Zhang J, et al. Diverse CD81 proteins support hepatitis Cvirus infection. J Virol 2006;80:11331–42.
    65. Koutsoudakis G, Herrmann E, Kallis S, et al. The level of CD81 cell surfaceexpression is a key determinant for productive entry of hepatitis C virus into hostcells. J Virol 2007;81:588–98.
    66. von Hahn T, Lindenbach B, Boullier A, et al. Oxidized low-density lipoproteininhibits hepatitis C virus cell entry in human hepatoma cells. Hepatology2006;43:932–42.
    67. McKeating JA, Zhang LQ, Logvinoff C, et al. Diverse hepatitis C virusglycoproteins mediate viral infection in a CD81-dependent manner. J Virol2004;78:8496–505.
    68. Molina S, Castet V, Pichard-Garcia L, et al. Serum-derived hepatitis C virusinfection of primary human hepatocytes is tetraspanin CD81 dependent. J Virol2008;82:569–74.
    69. Pearson AM. Scavenger receptors in innate immunity. Curr Opin Immunol 1996;8:20–8.
    70. Acton S, Rigotti A, Landschulz KT, et al. Identification of scavenger receptor SR-BIas a high density lipoprotein receptor. Science 1996;271:518–20.
    71. Acton SL, Scherer PE, Lodish HF, et al. Expression cloning of SR-BI, aCD36-related class B scavenger receptor. J Biol Chem 1994;269:21003–9.
    72. Rhainds D, Brissette L. The role of scavenger receptor class B type I (SR-BI) inlipid trafficking. Defining the rules for lipid traders. Int J Biochem Cell Biol2004;36:39–77.
    73. Scarselli E, Ansuini H, Cerino R, et al. The human scavenger receptor class B type Iis a novel candidate receptor for the hepatitis C virus. EMBO J 2002;21:5017–25.
    74. Dreux M, Pietschmann T, Granier C, et al. High density lipoprotein inhibits hepatitisC virus-neutralizing antibodies by stimulating cell entry via activation of thescavenger receptor BI. J Biol Chem 2006;281:18285–95.
    75. Voisset C, de Beeck AO, Horellou P, et al. High-density lipoproteins reduce theneutralizing effect of hepatitis C virus (HCV)-infected patient antibodies bypromoting HCV entry. J Gen Virol 2006;87:2577–81.
    76. Dreux M, Cosset FL. The scavenger receptor BI and its ligand, HDL: partners incrime against HCV neutralizing antibodies. J Viral Hepat 2007;14(Suppl 1):68–76.
    77. Catanese M, Graziani R, von Hahn T, et al. High-avidity monoclonal antibodiesagainst the human scavenger class B type I receptor efficiently block hepatitis Cvirus infection in the presence of high-density lipoprotein. J Virol 2007;81:8063–71.
    78. Lavie M, Voisset C, Vu-Dac N, et al. Serum amyloid A has antiviral activity againsthepatitis C virus by inhibiting virus entry in a cell culture system. Hepatology2006;44:1626–34.
    79. Cai Z, Cai L, Jiang J, et al. Human serum amyloid A protein inhibits hepatitis Cvirus entry into cells. J Virol 2007;81:6128–33.
    80. Dreux M, Boson B, Ricard-Blum S, et al. The exchangeable apolipoprotein APOC-Ipromotes membrane fusion of hepatitis C virus. J Biol Chem 2007;282:32357–69.
    81. Bartosch B, Vitelli A, Granier C, et al. Cell entry of hepatitis C virus requires a setof co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor.J Biol Chem 2003;278:41624–30.
    82. Grove J, Huby T, Stamataki Z, et al. Scavenger receptor BI and BII expressionlevels modulate hepatitis C virus infectivity. J Virol 2007;81:3162–9.
    83. Kapadia SB, Barth H, Baumert T, et al. Initiation of hepatitis C virus infection isdependent on cholesterol and cooperativity between CD81 and scavenger receptor Btype I. J Virol 2007;81:374–83.
    84. Zeisel MB, Fafi-Kremer S, Fofana I, et al. Neutralizing antibodies in hepatitis Cvirus infection. World J Gastroenterol 2007;13:4824–30.
    85. Andre P, Komurian-Pradel F, Deforges S, et al. Characterization of low- andvery-low-density hepatitis C virus RNA-containing particles. J Virol 2002;76:6919–28.
    86. Maillard P, Huby T, Andreo U, et al. The interaction of natural hepatitis C virus withhuman scavenger receptor SR-BI/Cla1 is mediated by ApoB-containing lipoproteins.FASEB J 2006;20:735–7.
    87. Nielsen S, Bassendine M, Burt A, et al. Association between hepatitis C virus andvery-low-density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients.J Virol 2006;80:2418–28.
    88. Thomssen R, Bonk S, Thiele A. Density heterogeneities of hepatitis C virus inhuman sera due to the binding of beta-lipoproteins and immunoglobulins. MedMicrobiol Immunol 1993;182:329–34.
    89. Andreo U, Maillard P, Kalinina O, et al. Lipoprotein lipase mediates hepatitis Cvirus (HCV) cell entry and inhibits HCV infection. Cell Microbiol 2007;9:2445–56.
    90. Thomssen R, Bonk S. Virolytic action of lipoprotein lipase on hepatitis C virus inhuman sera. Med Microbiol Immunol 2002;191:17–24.
    91. Anonymous. Statins demonstrated to have benefit in treatment of hepatitis C virus.Formulary 2007;42:455.
    92. Ikeda M, Abe K, Yamada M, et al. Different anti-HCV profiles of statins and theirpotential for combination therapy with interferon. Hepatology 2006;44:117–25.
    93. Ye J, Wang C, Sumpter R Jr, et al. Disruption of hepatitis C virus RNA replicationthrough inhibition of host protein geranylgeranylation. Proc Natl Acad Sci USA2003;100:15865–70.
    94. Meertens L, Bertaux C, Cukierman L, et al. Tight junction proteins claudin-1, -6 and-9 are entry cofactors for hepatitis C virus. J Virol 2008;82:3555–60.
    95. Zheng A, Yuan F, Li Y, et al. Claudin-6 and claudin-9 function as additionalcoreceptors for hepatitis C virus. J Virol 2007;81:12465–71.
    96. Krause G, Winkler L, Mueller SL, et al. Structure and function of claudins. BiochimBiophys Acta 2008;1778:631–45.
    97. Piontek J, Winkler L, Wolburg H, et al. Formation of tight junction: determinants ofhomophilic interaction between classic claudins. FASEB J 2008;22:146–58.
    98. Reynolds GM, Harris HJ, Jennings A, et al. Hepatitis C virus receptor expression innormal and diseased liver tissue. Hepatology 2008;47:418–27.
    99. Mee CJ, Grove J, Harris HJ, et al. Effect of cell polarization on hepatitis C virusentry. J Virol 2008;82:461–70.
    100. 100.Kovalenko OV, Yang XH, Hemler ME. A novel cysteine cross-linking methodreveals a direct association between claudin-1 and tetraspanin CD9. Mol CellProteomics 2007;6:1855–67.
    101. 101. Harris HJ, Farquhar MJ, Mee CJ, et al. CD81 and claudin 1 coreceptorassociation: role in hepatitis C virus entry. J Virol 2008;82:5007–20.
    102. Kitadokoro K, Bordo D, Galli G, et al. CD81 extracellular domain 3D structure:insight into the tetraspanin superfamily structural motifs. EMBO J 2001;20:12–8.
    103. Liu C, Coco D, Dong H, et al. Novel antiviral small molecules that block hepatitis Cvirus cellular entry through the CD81 receptor. 14th International Symposium onHepatitis C and Related Viruses 2007;O-59.
    104. Jamshad M, Rajesh S, Stamataki Z, et al. Structural characterization of recombinanthuman CD81 produced in Pichia pastoris. Protein Expr Purif 2008;57:206–16.
    105. Rocha-Perugini V, Montpellier C, Wychowski C, et al. The CD81 partnerEWI-2wint inhibits hepatitis C virus entry. PLoS ONE 2008;3:e1866.
    106. Jolly C, Kashefi K, Hollinshead M, et al. HIV-1 cell to cell transfer across anEnv-induced, actin-dependent synapse. J Exp Med 2004;199:283–93.
    107. Bangham CR. The immune control and cell-to-cell spread of human T-lymphotropicvirus type 1. J Gen Virol 2003;84:3177–89.
    108. Vassalli JD, Lombardi T, Wohlwend A, et al. Direct cell-to-cell transmission ofvesicular stomatitis virus. J Cell Sci 1986;85:125–31.
    109. Timpe JM, Stamataki Z, Jennings A, et al. Hepatitis C virus cell–cell transmission inhepatoma cells in the presence of neutralizing antibodies. Hepatology2008;47:17–24.
    110. Dubuisson J, Helle F, Cocquerel L. Early steps of the hepatitis C virus life cycle.Cell Microbiol 2008;10:821–7.
    111. Callens N, Ciczora Y, Bartosch B, et al. Basic residues in hypervariable region 1 ofhepatitis C virus envelope glycoprotein e2 contribute to virus entry. J Virol 2005;79:15331–41.
    112. Cervia JS, Smith MA. Enfuvirtide (T-20): a novel human immunodeficiency virustype 1 fusion inhibitor. Clin Infect Dis 2003;37:1102–6.
    113. Este JA, Telenti A. HIV entry inhibitors. Lancet 2007;370:81–8.
    114. Burton DR. Antibodies, viruses and vaccines. Nat Rev Immunol 2002;2:706–13.
    115. Pestka JM, Zeisel MB, Blaser E, et al. Rapid induction of virus-neutralizingantibodies and viral clearance in a single-source outbreak of hepatitis C. Proc NatlAcad Sci USA 2007;104:6025–30.
    116. Lavillette D, Morice Y, Germanidis G, et al. Human serum facilitates hepatitis Cvirus infection, and neutralizing responses inversely correlate with viral replicationkinetics at the acute phase of hepatitis C virus infection. J Virol 2005;79:6023–34.
    117. Youn J, Park S, Lavillette D, et al. Sustained E2 antibody response correlates withreduced peak viremia after hepatitis C virus infection in the chimpanzee.Hepatology 2005;42:1429–36.
    118. Logvinoff C, Major M, Oldach D, et al. Neutralizing antibody response during acuteand chronic hepatitis C virus infection. Proc Natl Acad Sci USA 2004;101:10149–54.
    119. Kaplan D, Sugimoto K, Newton K, et al. Discordant role of CD4 T-cell responserelative to neutralizing antibody and CD8 T-cell responses in acute hepatitis C.Gastroenterology 2007;132:654–66.
    120. Houghton M, Abrignani S. Prospects for a vaccine against the hepatitis C virus.Nature 2005;436:961–6.
    121. Choo QL, Kuo G, Ralston R, et al. Vaccination of chimpanzees against infection bythe hepatitis C virus. Proc Natl Acad Sci USA 1994;91:1294–8.
    122. Leroux-Roels G, Depla E, Hulstaert F, et al. A candidate vaccine based on thehepatitis C E1 protein: tolerability and immunogenicity in healthy volunteers.Vaccine 2004;22:3080–6.
    123. Teixeira R, Menezes EG, Schiano TD. Therapeutic management of recurrenthepatitis C after liver transplantation. Liver Int 2007;27:302–12.
    124. Vanwolleghem T, Bukh J, Meuleman P, et al. Polyclonal immunoglobulins from aceramic hepatitis C virus patient protect human liver-chimeric mice from infectionwith a homologous hepatitis C virus strain. Hepatology 2008;47:1846–55.
    125. Law M, Maruyama T, Lewis J, et al. Broadly neutralizing antibodies protect againsthepatitis C virus quasispecies challenge. Nat Med 2008;14:25–7.
    126. Schiano TD, Charlton M, Younossi Z, et al. Monoclonal antibody HCV-AbXTL68in patients undergoing liver transplantation for HCV: results of a phase 2randomized study. Liver Transpl 2006;12:1381–9.
    127. Davis GL, Nelson DR, Terrault N, et al. A randomized, open-label study to evaluatethe safety and pharmacokinetics of human hepatitis C immune globulin (Civacir) inliver transplant recipients. Liver Transpl 2005;11:941–9.
    128. Honaker MR, Shokouh-Amiri MH, Vera SR, et al. Evolving experience of hepatitisB virus prophylaxis in liver transplantation. Transpl Infect Dis 2002;4:137–43.
    129. Rana TM. Illuminating the silence: understanding the structure and function ofsmall RNAs. Nat Rev Mol Cell Biol, 2007, 8: 23-36.
    130. Haasnoot J., Westerhout E.M., Berkhout B. RNA interference against viruses: strikeand counterstrike. Nat Biotechnol., 2007, 25: 1435-1443.
    131. Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, H?bel S,Czubayko F Aigner A. RNA interference-mediated gene silencing of pleiotrophinthrough polyethylenimine-complexed small interfering RNAs in vivo exertsantitumoral effects in glioblastoma xenografts. Hum Gene Ther, 2006, 17: 751-766.
    132. Yokota T, Sakamoto N, Enomoto N, Tanabe Y, Miyagishi M, Maekawa S, Yi L,Kurosaki M, Taira K, Watanabe M, Mizusawa H. Inhibition of intracellular hepatitisC virus replication by synthetic and vector-derived small interfering RNAs. EMBORep., 2003, 4(6): 602-8.
    133. Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, H?bel S,Czubayko F Aigner A. RNA interference-mediated gene silencing of pleiotrophinthrough polyethylenimine-complexed small interfering RNAs in vivo exertsantitumoral effects in glioblastoma xenografts. Hum Gene Ther, 2006, 17: 751-766.
    134. Jessel N, Oulad-Abdelghani M, Meyer F, Lavalle P, Haikel Y, Schaaf P, Voegel JC.Multiple and time-scheduled in situ DNA delivery mediated by beta-cyclodextrinembedded in a polyelectrolyte multilayer. Proc Natl Acad Sci U S A, 2006, 103(23):8618-21.
    135. Jessel N, Atalar F, Lavalle P, Mutterer J, Decher G, Schaaf P, Voegel JC, Ogier J.Bioactive coatings based on a polyelectrolyte multilayer architecture functionalizedby embedded proteins. Adv Mater, 2008, 15: 692-695.
    136. Mao S, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U, Kissel T.Influence of polyethylene glycol chain length on the physicochemical and biologicalproperties of poly (ethylene imine)-graft-poly (ethylene glycol) blockcopolymer/siRNA polyplexes. Bioconjug Chem, 2006, 17: 1209-1218.
    137. Dimitrova M, Affolter C, Meyer F, Nguyen I, Richard DG, Schuster C,Bartenschlager R, Voegel JC, Ogier J, Baumert TF. 2008. Sustained delivery ofsiRNAs targeting viral infection by cell-degradable multilayered polyelectrolytefilms. Proc Natl Acad Sci U S A, 2008, 105(42): 16320-5.
    138. J. Schwiertz, W. Meyer-Zaika, L. Ruiz-Gonzalez, J. M. González-Calbet, M.Vallet-Regíand M. Epple. Calcium phosphate nanoparticles as templates fornanocapsules prepared by the layer-by-layer technique. J. Mater. Chem., 2008, 18:3831-3834.
    139. Klaus Kunath, Anke von Harpe, Dagmar Fischer and Thomas Kissel.Galactose-PEI–DNA complexes for targeted gene delivery: degree of substitutionaffects complex size and transfection efficiency. Journal of Controlled Release,2003, 88 (1): 159-172.
    140. Kim KS, Lei Y, Stolz DB, Liu D. Bifunctional compouds for targeted hepatic genedelivery. Gene Ther, 2008, 14: 704-708.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700