用户名: 密码: 验证码:
细胞粘附分子METCAM/MUC18表达对乳腺癌与卵巢癌细胞的体内外作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性最常见的恶性肿瘤,严重威胁着许多患者的生命。在美国,乳腺癌已成为继肺癌之后的第二大癌症死亡原因。尽管目前对乳腺癌的治疗已经取得了较大进步,但对于癌细胞已经扩散转移的患者,其生存率依然低下。因而,如何进一步提高患者的总体生存率至关重要。此外,卵巢癌亦是女性常见的恶性肿瘤之一,其发病率近年来在美国有逐年上升趋势。研究发现卵巢癌患者的预后相对较差,主要原因是多数患者被诊断发现时,癌细胞已经扩散转移或癌症已经处于晚期,因而必要寻找可靠卵巢癌细胞的预后因子或生物标记。
     研究发现肿瘤生成或癌细胞转移是一个复杂的过程,涉及多方面生物学特征的改变。例如,细胞粘附分子METCAM/MUC18的异常表达常与肿瘤的发生或癌细胞的转移密切相关。已研究表明细胞粘附分子METCAM/MUC18的表达与乳腺癌的发生和/或转移具有密切的关系,但具体作用仍然不清楚。在肿瘤生成过程中是促进还是抑制肿瘤的生长目前依然没有定论,因而有必要对其进行深入地研究。此外,已研究还发现细胞粘附分子可介导卵巢癌细胞的粘附与迁移运动,但细胞粘附分子METCAM/MUC18是如何影响卵巢癌的生成及其对癌细胞迁移运动与侵袭能力的影响并不清楚,因而同样有必要进行研究。
     细胞粘附分子METCAM/MUC18是一个跨膜的糖蛋白分子,属于免疫球蛋白样基因超家族,在细胞间、细胞与基质间具有重要的作用。研究发现细胞粘附分子METCAM/MUC18具有广泛的生理功能,对于维持正常的血管新生及其正常的胚胎发育至关重要。但研究还发现METCAM/MUC18的表达与色素瘤细胞的转移及前列腺癌、多种上皮瘤的生成和/或转移密切相关。然而,由于目前对细胞粘附分子METCAM/MUC18对乳腺癌与卵巢癌的作用尚不清楚,因而本文选择自身不表达与低表达METCAM/MUC18的乳腺癌细胞MCF-7与SKBR3及其选择几乎自身不表达该细胞分子的卵巢癌细胞SKOV3为研究对象,从而研究METCAM/MUC18的表达对这三种癌细胞的体内外作用。
     将人METCAM/MUC18 cDAN基因通过质粒分别转染乳腺癌细胞MCF-7,SKBR3与卵巢癌细胞SKOV3,再通过G418筛选获得稳定表达该蛋白分子的克隆细胞,并对部分克隆细胞进行体外迁移运动、侵袭能力、集落形成能力及其体内致瘤性研究。其研究结果表明,通过质粒转染乳腺癌细胞与卵巢癌细胞,我们获得了稳定表达高、中与低水平METCAM/MUC18的MCF-7,SKBR3克隆细胞与SKOV3克隆细胞。研究结果发现细胞粘附分子METCAM/MUC18的表达上调可促进MCF-7与SKBR3克隆细胞的体外迁移运动,与只转染空质粒载体的对照组相比较具有显著性差异。加入抗METCAM/MUC81的抗体可降低MCF-7与SKBR3克隆细胞的体外迁移能力。此外,METCAM/MUC18的表达上调可促进MCF-7与SKBR3克隆细胞的体外侵袭能力,与对照组相比较具有显著性差异,METCAM/MUC81的抗体可降低MCF-7与SKBR3克隆细胞的体外侵袭能力。此外,我们还研究了内源性表达METCAM/MUC18的另两种乳腺癌细胞MDA-MB-231与MDA-MB-468的体外迁移运动与侵袭能力,结果发现MDA-MB-231比MDA-MB-468具有更好的体外迁移运动能力与侵袭能力;METCAM/MUC18抗体均可降低这两种细胞的体外迁移运动能力与侵袭能力。
     此外,我们还发现细胞粘附分子METCAM/MUC18的表达上调同样可促进MCF-7与SKBR3克隆细胞的体外集落形成能力。这些研究结果表明乳腺癌细胞MCF-7与SKBR3的体外迁移运动、侵袭与集落形成能力的增强与METCAM/MUC18的表达有关。动物实验结果表明,转染METCAM/MUC18 cDNA基因的MCF-7可促进该克隆细胞在SCID小鼠体内的肿瘤形成或促进肿瘤在小鼠体内更早呈现。免疫组织化学染色结果表明细胞粘附分子METCAM/MUC18可在肿瘤组织特异性高表达。SKBR3克隆细胞的动物实验进一步证明了METCAM/MUC18的高表达可促进肿瘤在裸小鼠体内的形成和促进肿瘤的生长,最终的肿瘤平均重量和体积与对照组相比较具有显著性差异。接种高表达METCAM/MUC18的SKBR3克隆细胞的肿瘤组织切片染色结果可见METCAM/MUC18的特异性高表达;而对照组接种低表达METCAM/MUC18的SKBR3克隆细胞的肿瘤组织切片染色结果只见METCAM/MUC18的轻微表达且特异性极低。此外,SKBR3的三维培养结果表明高表达METCAM/MUC18的SKBR3克隆细胞比对照组具有更好的无序生长(体外致瘤性)。这些研究结果表明METCAM/MUC18的表达与乳腺癌细胞的迁移运动、侵袭、集落形成及体内致瘤性密切相关。
     此外,我们研究还发现METCAM/MUC18的高表达并不促进卵巢癌细胞SKOV3的体外迁移运动,而是抑制该细胞的体外迁移运动;对该细胞的体外侵袭能力与集落形成能力的影响不明显。但是,METCAM/MUC18的表达上调不仅可抑制卵巢癌细胞SKOV3在裸小鼠体内的肿瘤或腹水生成,还可以抑制SKOV3在裸小鼠背部皮下与腹部皮下的肿瘤生成。其肿瘤切片的免疫组化染色结果表明转染METCAM/MUC18基因的SKOV3克隆细胞接种裸小鼠产生的肿瘤切片显示METCAM/MUC18特异性高表达;而对照组接种不表达METCAM/MUC18的SKOV3克隆细胞,其肿瘤切片染色结果则几乎未见METCAM/MUC18表达。这些研究结果表明细胞粘附分子METCAM/MUC18的高表达与抑制肿瘤的作用密切相关。
     由此可见,METCAM/MUC18可能是一个功能复杂的细胞粘附分子,在不同肿瘤中的表达可能具有不同的作用,是促进肿瘤生长还是抑制肿瘤生长要取决于具体的癌细胞特性与特定的微环境。
Breast cancer is the most common gynecologic malignancy, which is threating many lives of patients of breast cancer. In the United States, breast cancer is the second leading cause of cancer-related death among women after lung cancer. Despite lots of advances that have been achieved in the treatment of breast cancer in recent years, the survival rate of the patients developed metastatic disease is still low. So, how to increase the survival rate of patients is very important. Besides, ovarian cancer is one of common malignant tumors, and the incidence of ovarian cancer is gradually increasing in the United State in recent years. One main reason why the prognosis of ovarian cancer remains poor is newly diagnosed patients with advanced state or metastasis. It is necessary to find specific prognosis or biomarker of ovarian cancer.
     Tumorigenesis or metastasis is a complex process involving change of several biological characteristics. For example, aberrant expression of cell adhesion molecule, METCAM/MUC18 can often lead to tumorigenesis or metastasis. Although the relation between METCAM/MUC18 expression and tumorigenesis or metastasis of breast cancer was reported, the details of exact function of METCAM/MUC18 on breast cancer are not clear. Promotion or suppression of METCAM/MUC18 on breast cancer is currently controversial. Besides, cell adhesion molecules can mediate the motility and invasiveness of ovarian cancer cells, but the effects of METCAM/MUC18 expression on motility, invasion, and colony are unknown. To resolved these questions, we investigated the effects of METCAM/MUC18 expression on breast cancer cell and ovarian cancer cell in vivo and in vitro.
     METCAM/MUC18 is a transmembrane cell adhesion molecule (CAM), glycoprotein, belonging to Ig-like gene super-family. It plays many important functions on cell-cell, and cell-stroma. It was reported that METCAM/MUC18 involves lots of functions to maintain the integral angiogenesis and embryo development. But it was also reported that METCAM/MUC18 expression promoted the metastasis of melanoma and promoted the tumorigenesis and metastasis of prostate cancer. Promoting tumor angiogenesis and metastasis of several epithelial tumors have been reported. However, the role of this METCAM/MUC18 in the development of breast cancer remains controversial, and the function of this protein in the development of ovarian caner remains unclear. So in order to research the effects of METCAM/MUC18 expression on breast cancer and ovarian caner, we chose two breast cancer cell lines: MCF-7, which do not express any METCAM/MUC18, and SKBR3, which express low level of this protein, and one ovarian cancer cell line, which almost did not express any of it.
     We respectively transfected the human METCAM/MUC18 cDNA into breast cancer cell lines MCF-7 and SKBR3, and ovarian cancer cell SKOV3, and isolated G418-resistant clones/cells that expressed different levels of the protein. Some clones of MCF-7, SKBR3 and SKOV3 were used for testing the effects of METCAM/MUC18 on in vitro motility, invasiveness, anchorage-independent colony formation in soft agar, and in vivo tumor formation in athymic SCID mice or nude mice. Our results showed stable expression of METCAM/MUC18 in MCF-7, SKBR3 and SKOV3 clones/cells were obtained by transfection and isolation. Up-regulation of METCAM/MUC18 expression promoted in vitro motility of MCF-7 and SKBR3, and the results showed statistical difference ,comparing with vector control. The motility of the METCAM/MUC18-expressing clone was significantly reduced in the presence of anti-huMETCAM/MUC18 antibody, but not the vector clones. The up-regulation of METCAM/MUC18 promoted in vitro invasiveness of MCF-7 and SKBR3 clones/cells, and anti-huMETCAM/MUC18 antibody significantly reduced the invasion of MCF-7 and SKBR3 clones/cell expressed METCAM/MUC18. Besides, MDA-MB-231 had a significantly higher motility and invasiveness than MDA-MB-468. The motility and invasiveness of both cell lines were reduced in the presence of anti-METCAM/MUC18 antibody.
     Our results showed that up-regulation of METCAM/MUC18 promoted anchorage-independent colony formation of breast cancer MCF-7,SKBR3 clones/cells. These results demonstrated METCAM/MUC18 expression can affect the motility, invasion, and colony formation in vitro. Besides, our results also showed that enforced METCAM/MUC18 expression in MCF-7 clones/cells promoted the tumor progression of human breast cancer cells MCF-7 in SCID mice or earlier presence of tumor formation. Immunohistochemistry of tumor section showed specific expression of METCAM/MUC18 of MCF-7 clones/cells. Enforced up-regulation of METCAM/MUC18 expression in SKBR3 clones/cells increased tumor proliferation and the final tumor weight and tumor volume in the nude mice showed statistical difference. The tumor sections from the mice injected with SKBR3 clones/cells expressed high level of METCAM/MUC18 demonstrated specifically high expression of METCAM/MUC18, but the tumor sections from the mice injected with vector control showed very slightly expression of METCAM/MUC18. The 3D culture of SKBR3 showed up-regulation of METCAM/MUC18 expression promoted disorganized growth than the vector control. So the results demonstrated METCAM/MUC18 express can affect the motility, invasion, colony formation in vitro, and tumorigenesis in vivo.
     However, up-regulation of METCAM/MUC18 of ovarian cancer cell SKOV3 did not promoted motility of SKOV3 in vitro, and inhibited the motility of SKOV3 clones/cells, and did not affect in vitro invasiveness and anchorage-independent colony formation of SKOV3 clones/cells. But the results showed that enforced METCAM/MUC18 expression in SKOV3 clones/cells suppressed tumor formation and ascites in the nude mice. The tumor sections from the mice injected with SKOV3 clones/cells expressed high level of METCAM/MUC18 demonstrated specifically high expression of METCAM/MUC18, but the tumor sections from the mice injected with vector control showed no expression of METCAM/MUC18. These results demonstrate METCAM/MUC18 expression of SKOV3 clones/cells can affect tumorigenesis in the nude mice.
     Taken together, METCAM/MUC18 probably is a complicated cell adhesion molecule and has many functions, and it probably plays different roles in different cancer cells. Promotion or suppression of tumor formation depends on specific cancer cell and special micro-environment.
引文
[1] Roche H, Vahdat LT. Treatment of metastatic breast cancer: second line and beyond [J]. Ann Onco, 2010,doi:10.1093/annonc/mdq429.
    [2] Ferlay J, Autier P, Boniol M, et al. Estimates of the cancer incidence and mortality in Europe in 2006 [J]. Ann Onco,2007, 18(3):581-592.
    [3] Chuang CT, Carlson RW. Goals and objectives in the management of metastatic breast cancer [J]. Onco, 2003,8:514-520.
    [4] Shih IM, Hsu MY, Juan P, et al. The cell-cell adhesion receptor mel-cam acts as a tumor suppressor in breast carcinoma [J]. Am J Pathol, 1997, 151(3): 745-751.
    [5] Allal O, Rajiv LG, Zakaria YE, et al. Towards understanding the mode of action of the multifaceted cell adhesion receptor CD146 [J]. Bioch et Bioph Acta, 2009, 1795: 130-136.
    [6] Garcia S, Dales JP, Charafe J, et al. Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype [J]. Human Pathol, 2007,37:830-841.
    [7] Zabouo G, Imbert AM, Jocelyne J, et al. CD146 expression is associated with a poor prognosis in human breast tumors and with enhanced motility in breast cancer cell lines [J]. Breast Cancer Res, 2009, 11: R1 (doi:10.1186/bcr2215).
    [8] Jemal A, Siegel R, Ward E, et al. Cancer statistics [J]. CA Cancer J Clin, 2008,58:71-96.
    [9] Agarwal R, Kaye SB. Ovarian cancer:strategies for overcoming resistance to chemotherapy[J]. Nat Rev Cancer, 2003, 3:502-516.
    [10] Lessan K, Aguiar DJ, Oegema T, et al. CD44 andβintegrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells [J]. Am J Pathol,1999,154:1525-1537.
    [11] Jill KD, Kristen AA, Christine H, et al. Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis[J]. Cancer Res, 2009,69:1469-1476.
    [12] Xie S, Luca M, Huang S. et al. Expression of MCAM/MCU18 by human melanoma cells leads to increased tumor growth and metastasis[J]. Cancer Res,1997, 57:2295-303.
    [13] Schlagbauer WH, Jansen B, Muller M. et al. Influence of MUC18/MCAM/CD146 expression on human melanoma growth and metastasis in SCID mice [J]. Int J Cancer,1999, 81:951-955.
    [14] Wu GJ, Peng Q, Fu P P, et al. Ectopical expression of human MUC18 increases metastasis of human prostate cancer cells [J]. Gene , 2004, 327:201-213.
    [15] Wu GJ. Chapter 7: The role of MUC18 in prostate carcinoma in Immunohistochemistry and in situ hybridization of human carcinoma. Vol 2. Molecular pathology, lung carcinoma, breast carcinoma, and prostate carcinoma[P]. (Ed. By Hayat MA.) Els Sci/Acad Press 2004,347-358.
    [16] Lehmann, JM.; Reithmuller, G. and Johnson, P. MUC18, a marker of tumor progression in human melanoma [J]. Proc. Natl. Acad. Sci. USA, 1989, 86: 9891-9895.
    [17] Wu GJ. METCAM/MUC18 expression and cancer metastasis [J].Cur Genomics. 2005,6, 333-349.
    [18] Sers C, Kirsch K, Rothbacher U, et al. Genomic organization of the melanoma-associated glycoprotein MUC18: implications for the evolution of the immunoglobulin domains [J]. Proc Natl Acad Sci USA, 1993, 90: 8514-8518.
    [19] Alais S, Allioli N, Pujades C, et al. HEMCAM/CD146 downregulates cell surface expression of betal integrins [J] Cell Sci, 2001, 114: 1847-1859.
    [20] Okumura S, Muraoka O, Tsukamoto Y, et al. Involvement of gicerin in the extension of microvilli [J]. Exp. Cell Res , 2001, 271: 269-276.
    [21] Campbell IG, Foulkes WD, Senger G, et al. Molecular cloning of the B-CAM cell surface glycoprotein of epithelial cancers: a novel member of the immunoglobulin superfamily[J].Cancer Res, 1994, 54: 5761-5765.
    [22] Tanaka H, Matsui T, Agata A, et al. Molecular cloning and expression of a novel adhesion molecule [J]. SC1.Neuron , 1991, 7:535-545.
    [23] Pourquie O, Corbel C, LeCaer JP, et al. A surface glycoprotein of the immunoglobulin superfamily, is expressed in a variety of developing systems [J]. Proc Natl Acad Sci USA,1992,89: 5262-5265.
    [24] Bowne MA, Patel DD, Li X, et al. Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand [J]. J Exp Med, 1995, 181;2213-2220.
    [25] Taira E, Takaha N, Taniura H, et al. Molecular cloning and functional expression of gicerin, a novel cell adhesion molecule that binds to neuite outgrowth factor [J]. Neuron, 1994, 12:861-872.
    [26] Peduzzi JD, Irwin MH, Geisert EE. Distribution and characteristics of a 90kDa protein, KGCAM, in the rat CNS[J], Brain Res, 1994, 640:296-307.
    [27] Vaino O, Dunon DL, Aissi F, et al. An adhesion molecule expressed by c-kit hemopoietic progenitors [J]. J Cell Biol, 1996, 135: 1655-1668.
    [28] Schlagbauer WH, Jansen B, Muller, et al. Influence of MUC18/MCAM/CD146 expression on human melanoma growth and metastasis in SCID mice[J]. Int J Cancer, 1999,81:951-955.
    [29] Wu GJ, Fu PP, Wang SW, et al. Enforced expression of MCAM/MUC18 increase in vitro motility and invasiveness and in vivo metastasis of two mouse melanoma K1735 Sublines in a syngeneic mouse model [J]. Mol Cancer Res, 2008,6 (11):1666-1677.
    [30] Gang L, Kalabis J, Xu, XW et al. Reciprocal regulation of MelCAM and AKT in human melanoma[J]. Onco, 2003, 22, 6891-6899.
    [31] Fernanda IS, Anita T, Steven KL, et al. A subset of host B lymphocytes controls melanoma metastasis through a melanoma cell adhesion molecule/MUC18-dependent interaction:evidence from mice and humans [J]. Cancer Res, 2008,68(20):8419-8428.
    [32] Jeroen WJ, Kilsdonk VR, Wilting MB, et al. Attenuation of melanoma invasion by a secreted variant of activated leukocyte cell adhesion molecule [J]. Cancer Res, 2008, 68(10):3671-3679.
    [33] Kelly WH, Dorothea B. The role of N-Cadherin, MCAM andβ3 Integrin in melanoma progression , proliferation, migration and invasion [J]. Cancer biol &therapy, 2006,5:10, 1375-1382.
    [34] Wu GJ, Wu MH, Wang SW, et al. Isolation and characterization of the major form of human MUC18 cDNA gene and correlation of MUC18 over-expression in prostate cancer cell lines and tissues with malignant progression [J]. Gene,2001, 279;12-31.
    [35] Wu GJ, Fu PP, Chiang CF, et al. Increased expression of muc18 correlates with the metastatic progression of mouse prostate adenocarcinoma in the tramp model [J].The J Urol, 2005, 173:1778-1783.
    [36] Chiang CF, Eugene LS and Wu GJ. Oral treatment of the TRAMP mice with doxazosin suppresses prostate tumor growth and metastasis[J]. The Prostate, 2005,64:408-418.
    [37] Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells[J]. Nat Rev Cancer,2005; 5(3):223-231.
    [38] Li LC, Canrroll , Dahiya R, Epigenetic changes in prostate cancer: Implication for diagnosis and treatment [J]. J Natl Cancer Inst, 2005; 97:103-115.
    [39] Liu JW, Nagpal JK, Carmen J, et al. Hypermethylation of MCAM gene is associtated with advanced tumor stage in prostate cancer [J]. The Prostate, 2008, 68:418-426.
    [40] Goon PK, Lip GY, Boos CJ, et al. Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer [J]. Neoplasia, 2006, 8: 79-88.
    [41] Jemal A, Murray T, Ward E, et al. Cancer statistics 2005[J]. CA Cancer J Clin, 2005, 55:10-30.
    [42] Daniela A, Francesca D, Claudio D, et al. M-cam expression as marker of poor prognosis in epithelial ovarian cancer [J]. Int.J. Cancer ,2006,119:1920-1926.
    [43] Bellone, Stefania, Siegel, et al. Overexpression of epithelial cell adhesion molecule in primary, metastatic , and recurrent/chemotherapy-resistant epithelial ovarian cancer: implications for epithelial cell adhesion molecule-specific immunotherapy [J]. Intl J Gynecol Cancer,2009,19(5):860-866.
    [44] Gilbert S, Philip W, Stephan D, et al. Overexpression of epithelial cell adhesion molecule(Ep-CAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian caner[J]. Gynecol Oncol, 2006, 103(2):483-488.
    [45] Jill K. Slack D, Kristen A. et al. Vascular cell adhension moleculue-1 is a regulator of ovarian caner peritoneal metastasis [J].Cancer Res, 2009, 69(4):1469-1476.
    [46] Khashayar L, Dean J A, Theodore O, et al.CD44 andβ1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells[J]. Am J Pathol, 1999,154(5):1525-1537.
    [47] Veronika B, Hannes H, Anke B, et al. ADAM15 decreases integrinαvβ3/vitronectin-mediated ovarian cancer cell adhesion and motility in an RGD-dependent fashion [J]. The Int J Biochem &cell biol 2005, 37:590-603.
    [48] Shih IM, Elder DE,Speicher D, et al. Isolation and functional characterization of the A32 melanoma-associated antigen [J]. Cancer Res, 1994,54:2514-2520.
    [49] Sers C, Kirsch K, Rothbacher U, et al. Genomic organization of the melanoma-asscociated glycoprotein muc18: implications for the evolution of the immunoglobulin domains[J], Proc. Natl. Acad Sci ,1993,90: 8514-8518.
    [50] .Bardin N, George F, Mutin MC. et al. S-endo 1, a pan-endothelial monoclonal antibody recognizing a novel human endothelial antigen [J]. Tissue Antigens ,1996, 48: 531-539.
    [51] Filshie RJ, Zannettino A.C., Makrynikola V, et al. MUC18, a member of the immunoglobulin superfamily, is expressed on bone marrow fibroblasts and a subset of hematological malignancies [J]. Stromal cell biol, 1998, 12:414-421.
    [52] Rickl WF, Majdic O, Fishcer GF, et al. MIUC18/MCAM(CD146), an activation antigen of human T lymphocytes[J]. Immunol, 1997, 158: 2107-2115.
    [53] Lampugnani MG, Dejana E. Inter-endothelial junctions: structure, signalling and functional roles [J]. Curr. Opin. Cell Biol, 1997, 9: 674-682.
    [54] Kang Y, Wang F, Feng J, et al. Knockdown of CD146 reduces the migration and proliferation of human endothelial cells [J]. Cell Res, 2006, 16:313-318.
    [55] Liu Q, Zhang B, Zhao X, et al. Blockake of adhesion molecule CD146 causes pregnancy failure in mice[J]. J Cell Physiol,2008, 215:621-626.
    [56] Baksh D, Yao P, Tuan RS. Comparison of Proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow[J]. Stem Cells , 2007,25:1384-1392.
    [57] Sorrentino A, Ferracin M, Castelli,G, et al. Isolation and characterization of CD146+ multipotent mesenchymal stromal cells [J]. Exp Hematol,2008; 36:1035-1046.
    [58] Nicolas D, Thiery W, Nathalie J, et al.Mouse CD146/MCAM is a marker of natural killer cell maturation [J]. Euro J Immunol, 2008,38: 2855-2864.
    [59] Yan XY, Lin Y, Yang DL, et al. A novel anti-CD146 monoclonal antibody, AA98, inhibits angiognenesis and tumor growth [J]. Blood ,2003,102(1), 184-191.
    [60] Bu PC,Gao LZ, Zhuang J, et al. Anti-CD146 monoclonal antibody AA98 inhibits angiogenesis via suppression of nuclear factor-кB activation[J]. Mol Cancer Therap, 2006,5(11):2872-2878.
    [61] Shishodia S, Aggarwal BB. Nuclear factor-кB: a friend or a foe in cancer?[J]. Biochem Pharmacol, 2004,68:1071-1080.
    [62] Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis[J]. Nat cell Biol, 2002;2:737-744.
    [63] Bu PC, Zhuang J, Feng J, et al. Visualization of CD146 dimerization and its regulation in living cells [J]. Biochimica et Biophysica Acta, 2007,513-520.
    [64] Kang YY, Wang FC, Feng J, et al. Knockdown of CD146 reduces the migration and proliferation of human endothelial cells [J]. Cell Res 2006,16:313-318.
    [65] Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype [J]. J Clin Invest, 1997,99: 2152-2164.
    [66] Liu Q, Yan XY, Li Y, et al. Pre-eclampsia is associated with the failure of melanoma cell adhesion molecule (MCAM/CD146) expression by intermediate trophoblast[J]. Lab Invest,2004,84,221-228.
    [67] Liu Q, Zhang B, Zhao XG, et al. Blockade of adhesion molecule CD146 causes pregnancy failure in mice [J]. J Cellular Physiol,2008,215:621-626.
    [68] Ouhtit A, Rajiv LG, Zakaria Y E, et al. Towards understanding the mode of action of the multifaceted cell adhesion receptor CD146 [J]. Biochimica et Biophysica Acta, 2009, 1795: 130-136.
    [69] Mundy, GR. Metastasis to bone: causes, consequences and therapeutic opportunities [J]. Nat Rev Cancer, 2002 ,2(8) 584-593.
    [70] Gaorav PG, and Joan M. Cancer metastasis: building a frame work. Cell [J], 2006, 127(4): 679-695.
    [71] Cavallaro U and Gerhard C. Cell adhesion and signaling by cadherins and Ig-CAMs in cancer [J]. Nat Rev Cancer, 2004,4: 118-132.
    [72] Passaniti A, Isaacs JT, Haney JA, et al. Stimulation of human prostatic cancinoma tumor growth in athymic mice and control ofmigration in culture by extracellular matrix.[J] Int J cancer, 1992, 51:318-324.
    [73] Passaniti A, Isaacs JT, Haney JA, et al. Stimulation of human prostatic carcinoma tumor growth in athymic mice and control of migration in culture by extracellular matrix[J]. Int J cancer ,1992; 51:318-24.
    [74] Wu GJ, Wu MWH, Wang SW, et al. Isolation and characterization of the major form of human MUC18 cDNA gene and correlation of MUC18 over-expression in prostate cancer cells and tissue with malignant progression[J]. Gene , 2001, 279: 17-31.
    [75] Wu GJ, Fu PP,Wang SW, et al. Enforced expression of MCAM/MUC18 increasese in vitro motility and invasiveness and in vivo metastasis of two mouse melanoma K1735 sublines in a syngeneic mouse model [J]. Mol Cancer Res, 2008,6(11):1666-1677.
    [76] Charafe JE, Ginestier C, Monville F, et al. Gene expression profiling of breast cells indentifies potential new basal markers [J]. Onco, 2006, 25:2273-2284.
    [77] Neve RM, Chin K, Fridlyand J, et al: A collection of breast cancer cell lines for the study of functionally distinct cancer subtype [J]. Cancer cell, 2006, 10:515-527.
    [78] Leone A, Flatow U, King CR, et al. Reduced tumor incidence, metastatic potential and cytokine responsiveness of nm-23 transfected melanoma cells [J]. Cell, 1991, 65:25-35.
    [79] Mcdermott WG, Boissan M, Lacombe ML et al. Nm-23-H1 Homologs suppress tumor cell motility and anchorage independent growth [J]. Clin. Exp. Metastasis,2008, 25:131-138.
    [80] Hsu MY, Friedegund E.M, Mark N, et al. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors[J]. Am J Pathol, 2000 ,156(5): 1515-1525.
    [81] Maja G, Przemyslaw MP, Krystyna U, et al. Peroxisome proliferators-activated receptorα-activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt [J]. Clin Cancer Res, 2006,12(10):3028-3036.
    [82] Lee GY, Kenny PA, Lee EH, Bissel MJ: Three-dimensional culture models of normal and malignant breast epithelial cells [J]. Nature methods, 2007,4(4):359-365.
    [83] Dalit B, Hynda K,Justin L.Simmons, et al. Inhibition of metastatic out growth from single dormant tumor cells by targeting the cytoskeleton[J]. Cancer research. 2008,68:6241-6250.
    [84] Benton G, George J, Kleinman HK, et al.Advancing science and technology via 3D culture on basement membrane matrix [J]. J Cell Physiol, 2009, 221:18-25.
    [85] Antonino P, John TI, Joseph A.H, et al.. Stimulation of human prostatic carcinoma tumor growth in athymic mice and control of migration in culture by extracellular matrix [J]. Int J Cancer, 1992,51(2):318-324.
    [86] Wu Gj, Wu MWH, Liu, Y. Enforced expression of METCAM/MUC18 increases tumorigenesis of human prostate cancer LNCaP cells [J]. J Urol, 2011,185:1504.
    [87] Charafe JE, Ginestier C, Monville F, et al. Gene expression profiling of breast cell lines indentifies potential new basal markers [J]. Onco, 2006; 25:2273-2284.
    [88] Neve RM, Chin K, Fridlyand J, et al. A collection of breast cancer cell lines for the study of functionaly distinct cancer subtypes [J]. Cancer cell, 2006; 10:515-527.
    [89] Noel A, De PG, Purnell G, et al. Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts [J]. Br J Cancer,1993, 68: 909-915.
    [90] Jemal A, Siegel R, Ward E, et al. Cancer statistics [J];CA Cancer J clin. 2008; 58:71-96.
    [91] Piazza T, Cha E, Bongarzone I, et al. Interalization and recycling of ALCAM/CD146 detetecd by a fully human single-chain recombinant antibody [J]. J Cell Sci, 2005; 118:1515-1525.
    [92] Daniela A, Francesca D, Claudio D, et al. M-cam expression as marker of poor prognosis in epithelial ovarian cancer. Int.J. Cancer [J], 2006, 119:1920-1926.
    [93] Wu GJ, Fu PP, Wang SW, et al. Enforced expression of MCAM/MUC18 increased in vitro motility and invasiveness and in vivo metastasis of two mouse melanoma K1735 Sublines in a syngeneic mouse model [J]. Mol Cancer Res, 2008, 6 (11):1666-1677.
    [94] Peng ST, Su CK, Kuo CC, et al. CD44 crosslinking-mediated matrix metalloprotelnase- relocation in breast tumor cells leads to enhanced metastasis [J]. Int J Oncol, 2007, 31:1119-1126.
    [95] Huang J, Hu J, Bian X, et al. Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells [J]. Cancer Res., 2007, 67(12): 5906-5913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700