用户名: 密码: 验证码:
洋葱伯克氏菌在竹子和桑树根围的基因型多样性及其致病性以及壳聚糖抑制B.seminalis机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以毛竹、雷竹以及桑树根围的土壤为主要对象,于2007-2010年间分别对其根围土壤中洋葱伯克氏菌群(Burkholderia cepacia complex,简称Bcc)的分布及其多样性进行了调查。采用洋葱、苜蓿和生菜致病模型对获得的Bcc菌作了致病毒力研究,探测不同植物根围来源以及不同基因型菌株间的毒力程度,为评估Bcc菌对人体的潜在致病性提供依据。鉴于杏果腐的病原细菌Burkholderia seminalis对人体存在的潜在威胁及目前尚无有效的防治方法,因此探索了壳聚糖对B. seminalis的抑菌效果及机制,以期找到安全有效防治Bcc菌引起的植物病害和人体病害的方法。主要取得了如下研究结果:
     (1)采用2种选择性培养基(PCAT和TB-T)对毛竹、雷竹和桑树根围土壤中的Bcc菌进行了调查,共分离到1127株Bcc疑似菌。通过对这些细菌进行recA基因的特异性扩增,共确定了666株Bcc菌,其中287株来源于毛竹根围土壤,222株来源于雷竹根围土壤,157来源于桑树根围土壤。采用限制性内切酶HaeⅢ以及MnlⅠ对来源于毛竹、雷竹和桑树根围的666株Bcc菌的recA基因片段进行了限制性酶切分析(RFLP)。结果表明,三种植物根围土壤来源的Bcc中,共发现了11种不同的HaeⅢ-RFLP图谱(D, E, G, H, J, T, M, K1,L1,L2和L3),其中7种图谱与文献报道的一致,4种(K1,L1,L2和L3)为本研究新发现的图谱。表明在这些环境中,Bcc菌群存在明显的遗传多态性。
     (2)采用recA-HaeⅢ限制性酶切分析、基因型特异性引物扩增,recA基因的序列分析和MLST技术对666株来源于毛竹、雷竹和桑树根围土壤来源的Bcc菌进行了种群分析。在毛竹根围土壤中存在B. stabilis, B. anthina, B. pyrrocinia和B. arboris 4个种,其中以B. pyrrocinia的菌株数量最多,占毛竹来源Bcc菌总数的67.2%;雷竹根围土壤中存在B. cepacia, B. anthina, B. pyrrocinia和B.arboris 4个种和Bcc group H,其中以Bcc group H和B. anthina菌株占多数,分别占雷竹来源Bcc菌总数的48.2%和38.3%;桑树根围来源的Bcc菌中,存在B. cepacia、B. cenocepaciaⅢA、B. cenocepaciaⅢB、B. stabilis、B. anthina、B. pyrrocinia、B. arboris和B. diffusa8个种,此外也有部分Bcc group H菌株,其中以B. cepacia为优势种,占桑树来源总Bcc菌数的61.1%。这是国内外首次报道B. pyrrocinia, Bcc group H和B. cepacia分别为毛竹、雷竹和桑树根围土壤中的优势种。采用多位点序列分型(MLST)技术对18株Bcc菌的代表菌株进行了序列分型研究,发现了17种不同的序列型(ST型),并且均为本研究新提交,说明环境来源的Bcc菌具有丰富的遗传多样性。
     (3)对分离自毛竹、雷竹和桑树根围的Bcc菌进行了洋葱、苜蓿和生菜的致病性研究。对洋葱鳞茎的致病力以B. pyrrocinia最强,9株未鉴定菌株最弱。对苜蓿幼苗以B. arboris的毒力最强而B. anthina最弱。对生菜的致病力以Bccgroup H和B. pyrrocinia最强,B. anthina几乎无致病毒力。总体而言,来源于根围土壤环境中Bcc菌对生菜的致病毒力较低,尤其是B. anthina对三种测试植株都不致病,表明环境来源的菌株对人体的风险较小。
     (4)本研究就三种壳聚糖对杏果腐病原菌B. seminalis的抑制效果进行了研究。此外,壳聚糖对B. seminalis的抑菌机理则通过细胞膜的完整性、细胞外膜的通透性、透射电镜观察以及对生物膜的抑制作用等实验进行探索。结果发现,2 mg/mL的酸溶性壳聚糖能有效抑制B. seminalis的生长;壳聚糖通过破坏细胞外膜,溶解细胞壁,造成细胞渗透压失常以及在细胞外形成壳聚糖层等多种方式抑制B. seminalis的生长;壳聚糖对B. seminalis的生物膜也有一定的抑制效果。实验结果表明,壳聚糖在保护果蔬不受B. seminalis的污染方面有很大的应用潜力。
An survey of the distribution and diversity of Burkholderia cepacia complex (Bcc) around the rizhosphere soil of moso bamboo(Phyllostachys edulis), Phyllostachys praecox f. prevernalis (PPFP) and mulberry (Morus alba L.) were conducted during 2007-2010; Bcc isolates were identified and the predominant Bcc species were determined in the rizhosphere environment. The pathogenicity of Bcc was evaluated using different plant infection models, including onion, alfalfa and lettuce detached midrib in order to provide key information in risk analysis of Bcc. Apricot rot pathogen B. seminalis was also potentially pathogenic to human being, since no pesticide is available to inhibit the growth of Bcc particularly B. seminalis, the antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen B. seminalis were examined at present study. The main results were as follows:
     (1) Two selective medium PC AT and TB-T were used for isolation of Bcc from rizhosphere soil of moso bamboo, PPFP and mulberry. Among the 1127 isolates,666 isolates were identified as Bcc, and 287,222 and 157 isolates were obtained from rizhosphere soil of moso bamboo, PPFP and mulberry, respectively.
     The genetic variability of 666 strains from rizhosphere soil of moso bamboo, PPFP and mulberry were anlysised by restriction fragment length polymorphism assays (RFLP) with enzyme HaeⅢand MnlⅠ. The results showed 11 different HaeⅢ-RFLP patterns (D, E, G, H, J, T, M, K1, L1, L2, L3) among the 666 Bcc isolates, seven patterns were consistent with previous reports while four (K1, L1, L2 and L3) were newly found in our study, indicating considerable variability among the Bcc isolates.
     (2) The species identification of the 666 Bcc isolates from the rhizosphere soil of moso bamboo, PPFP and mulberry were performed by a combination of recA-HaeⅢRFLP assays, species-specific PCR tests, recA gene sequence analysis and multilocus sequence typing scheme (MLST). Four species including B. stabilis, B. anthina, B. pyrrocinia and B. arboris were recovered from the moso bamboo rizhosphere soil with predominace of B. pyrrocinia accounting for 67.2% of the total. Four species including B. cepacia, B. anthina, B. pyrrocinia and B. arboris as well as Bcc group H were recovered from the PPFP rizhosphere soil. The predominace species of Bcc isolates from PPFP were Bcc group H and B. anthina accounting for 48.2% and 38.3% of the total, respectively. Bcc group H and eight species including B. cepacia, B. cenocepaciaⅢA, B. cenocepaciaⅢB, B. stabilis, B. anthina, B. pyrrocinia, B. arboris and B. diffusa were found among the isolates from mulberry rizhosphere soil, and B. cepacia was predominant with 61.1% of the total. It was the first report about B. pyrrocinia, Bcc group H and B. cepacia as the predominant species of the rizhosphere soils of moso bamboo, PPFP and mulberry, respectively.
     The Multilocus Sequence Typing (MLST) scheme was performed within 18 Bcc representatives; all were successfully sequenced at all seven loci, resulting in a total of 17 STs. All the 17 STs were newly submitted indicating considerable strain diversity of Bcc in soil environment.
     (3) The pathogenicity to onion and virulence to alfalfa and lettuce of Bcc from rizhosphere of moso bamboo, PPFP and mulberry was examined. B. pyrrocinia showed highest pathogenicity to onion, B. arboris were most virulent to alfalfa while Bcc group H and B. cepacia were most virulent to lettuce. B. anthina were almost non-pathogenic or non-virulent to onion, alfalfa, and lettuce. In general, most isolates tested in our study showed none, weak or moderate virulence especially B. anthina which is almost non-pathogenic or non-virulent to all test plants, suggested that environmental strains may not be so dangerous to human beings.
     (4) The in vitro antibacterial activity and mechanism of action of three kinds of chitosan was examined in this study. Results showed that water-soluble chitosan displayed limited antibacterial activity while two kinds of acid-soluble chitosan solution at 2.0 mg/mL had strong antibacterial activity against B. seminalis. The antibacterial activity of acid-soluble chitosan may be due to the membrane disruption, cell lysis, abnormal osmotic pressure, and additional chitosan coating around the bacteria based on integrity of cell membranes test, out membrane permeability assays and transmission electron microscopy observation. In addition, biofilm biomass were markedly reduced after treating with two kinds of acid-soluble chitosan. Overall, the results clearly indicated that two kinds of acid-soluble chitosan had a potential to control the contamination of apricot fruits caused by B. seminalis.
引文
Aaron, S.D., Ferris, W., Henry, D.A., Speert, D.P., and MacDonald, N.E. (2000) Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia. American Journal of Respiratory and Critical Care Medicine 161: 1206-1212.
    Agodi, A., Mahenthiralingam, E., Barchitta, M., Giannino, V., Sciacca, A., and Stefani, S. (2001) Burkholderia cepacia complex infection in Italian patients with cystic fibrosis:Prevalence, epidemiology, and genomovar status. Journal of Clinical Microbiology 39:2891-2896.
    Alameda, M., and Mignucci, J.S. (1998) Burkholderia cepacia causal agent of bacterial blotch of oyster mushroom. Journal of Agriculture of the University of Puerto Rico 82:109-110.
    Algam, S.A.E., Xie, G., Li, B., Yu, S., Su, T., and Larsen, J. (2010) Effects of Paenibacillus strains and chitosan on plant growth promotion and control of ralstonia wilt in tomato. J Plant Pathol 92:593-600.
    Aubert, D.F., Flannagan, R.S., and Valvano, M.A. (2008) A novel sensor kinase-response regulator hybrid controls biofilm formation and type Ⅵ secretion system activity in Burkholderia cenocepacia. Infection and Immunity 76:1979-1991.
    Azadeh, B.F., Sariah, M., and Wong, M.Y. (2010) Characterization of Burkholderia cepacia genomovar I as a potential biocontrol agent of Ganoderma boninense in oil palm. African Journal of Biotechnology 9:3542-3548.
    Badawy, M.E.I. (2010) Structure and antimicrobial activity relationship of quaternary N-Alkyl chitosan derivatives against some plant pathogens. Journal of Applied Polymer Science 117: 960-969.
    Baldwin, A., Mahenthiralingam, E., Thickett, K.M., Honeybourne, D., Maiden, M.C.J., Govan, J.R. et al. (2005) Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. Journal of Clinical Microbiology 43: 4665-4673.
    Baldwin, A., Mahenthiralingam, E., Drevinek, P., Pope, C., Waine, D.J., Henry, D.A. et al. (2008) Elucidating global epidemiology of Burkholderia multivorans in cases of cystic fibrosis by multilocus sequence typing. Journal of Clinical Microbiology 46:290-295.
    Baldwin, A., Mahenthiralingam, E., Drevinek, P., Vandamme, P., Govan, J.R., Waine, D.J. et al. (2007) Environmental Burkholderia cepacia complex isolates in human infections. Emerging Infectious Diseases 13:458-461.
    Bernhardt, S.A., Spilker, T., Coffey, T., and LiPuma, J.J. (2003) Burkholderia cepacia complex in cystic fibrosis:Frequency of strain replacement during chronic infection. Clinical Infectious Diseases 37:780-785.
    Bernier, S.P., and Sokol, P.A. (2005) Use of suppression-subtractive hybridization to identify genes in the Burkholdefia cepacia complex that are unique to Burkholderia cenocepacia. Journal of Bacteriology 187:5278-5291.
    Bernier, S.P., Nguyen, D.T., and Sokol, P.A. (2008) A LysR-type transcriptional regulator in Burkholderia cenocepacia influences colony morphology and virulence. Infection and Immunity 76:38-47.
    Bernier, S.P., Silo-Suh, L., Woods, D.E., Ohman, D.E., and Sokol, P.A. (2003) Comparative analysis of plant and animal models for characterization of Burkholdetia cepacia virulence. Infection and Immunity 71:5306-5313.
    Bevivino, A., Dalmastri, C., Tabacchioni, S., Chiarini, L., Belli, M.L., Piana, S. et al. (2002) Burkholderia cepacia complex bacteria from clinical and environmental sources in Italy: Genomovar status and distribution of traits related to virulence and transmissibility. Journal of Clinical Microbiology 40:846-851.
    Biddick, R., Spilker, T., Martin, A., and LiPuma, J.J. (2003) Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis. Fems Microbiology Letters 228:57-62.
    Brisse, S., Cordevant, C., Vandamme, P., Bidet, P., Loukil, C., Chabanon, G. et al. (2004) Species distribution and ribotype diversity of Burkholderia cepacia complex isolates from french patients with cystic fibrosis. Journal of Clinical Microbiology 42:4824-4827.
    Burkholder, W.H. (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115-117.
    Burns, J.L., Jonas, M., Chi, E.Y., Clark, D.K., Berger, A., and Griffith, A. (1996) Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia. Infection and Immunity 64:4054-4059.
    Butler, S.L., Doherty, C.J., Hughes, J.E., Nelson, J.W., and Govan, J.R.W. (1995) Burkholderia cepacia and cystic-fibrosis- do natural environments present a potential hazard. Journal of Clinical Microbiology 33:1001-1004.
    Campana, S., Taccetti, G., Ravenni, N., Favari, F., Cariani, L., Sciacca, A. et al. (2005) Transmission of Burkholderia cepacia complex:Evidence for new epidemic clones infecting cystic fibrosis patients in Italy. Journal of Clinical Microbiology 43:5136-5142.
    Caraher, E., Reynolds, G., Murphy, P., McClean, S., and Callaghan, M. (2007) Comparison of antibiotic susceptibility of Burkholderia cepacia complex organisms when grown planktonically or as biofilm in vitro. European Journal of Clinical Microbiology& Infectious Diseases 26:213-216.
    Cardona, S.T., Wopperer, J., Eberl, L., and Valvano, M.A. (2005) Diverse pathogenicity of Burkholderia cepacia complex strains in the Caenorhabditis elegans host model. Fems Microbiology Letters 250:97-104.
    Carlson, R.P., Taffs, R., Davison, W.M., and Stewart, P.S. (2008) Anti-biofilm properties of chitosan-coated surfaces. Journal of Biomaterials Science-Polymer Edition 19:1035-1046.
    Chen, C.Z.S., and Cooper, S.L. (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359-3368.
    Chen, C. S., Liau, W. Y., and Tsai, G. J. (1998) Antibacterial effects of n-sulfonated and n-sulfobenzyl chitosan and application to oyster preservation. Journal of Food Protection 61: 1124-1128.
    Chen, J.S., Witzmann, K.A., Spilker, T., Fink, R.J., and LiPuma, J.J. (2001) Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis. Journal of Pediatrics 139:643-649.
    Chiarini, L., Bevivino, A., Dalmastri, C., Tabacchioni, S., and Visca, P. (2006) Burkholderia cepacia complex species:health hazards and biotechnological potential. Trends in Microbiology 14:277-286.
    Chu, K.K., Davidson, D.J., Halsey, T.K., Chung, J.W., and Speert, D.P. (2002) Differential persistence among genomovars of the Burkholderia cepacia complex in a murine model of pulmonary infection. Infection and Immunity 70:2715-2720.
    Chung, J.W., Altman, E., Beveridge, T.J., and Speert, D.P. (2003) Colonial morphology of Burkholderia cepacia complex genomovar III:Implications in exopolysaccharide production, pilus expression, and persistence in the mouse. Infection and Immunity 71:904-909.
    Chung, Y.C., and Chen, C.Y. (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technology 99:2806-2814.
    Cieri, M.V., Mayer-Hamblett, N., Griffith, A., and Burns, J.L. (2002) Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection. Infection and Immunity 70:1081-1086.
    Clode, F.E., Metherell, L.A., and Pitt, T.L. (1999) Nosocomial acquisition of Burkholderia gladioli in patients with cystic fibrosis. American Journal of Respiratory and Critical Care Medicine 160:374-374.
    Coenye, T., and LiPuma, J.J. (2002) Multilocus restriction typing:A novel tool for studying global epidemiology of Burkholderia cepacia complex infection in cystic fibrosis. Journal of Infectious Diseases 185:1454-1462.
    Coenye, T., and Vandamme, P. (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environmental Microbiology 5:719-729.
    Coenye, T., Vandamme, P., Govan, J.R.W., and Lipuma, J.J. (2001a) Taxonomy and identification of the Burkholderia cepacia complex. Journal of Clinical Microbiology 39:3427-3436.
    Coenye, T., Mahenthiralingam, E., Henry, D., LiPuma, J.J., Laevens, S., Gillis, M. et al. (2001b) Burkholderia ambifaria sp nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. International Journal of Systematic and Evolutionary Microbiology 51:1481-1490.
    Coma, V., Martial-Gros, A., Garreau, S., Copinet, A., Salin, F., and Deschamps, A. (2002) Edible antimicrobial films based on chitosan matrix. Journal of Food Science 67:1162-1169
    Coma, V., Deschamps, A., and Martial-Gros, A. (2003) Bioactive packaging materials from edible chitosan polymer—antimicrobial activity assessment on dairy-related contaminants. Journal of Food Science 68:2788-2792.
    Cox, A.D., and Wilkinson, S.G. (1991) Ionizing groups in lipopolysaccharides of Pseudomonas-cepacia in relation to antibiotic-resistance. Molecular Microbiology 5: 641-646.
    Cuero, R. G., Osuji, G., and Washington, A. (1991) N-carboxymethylchitosan inhibition of aflatoxin production:Role of zinc. Biotechnology Letters 13:441-444.
    Dalmastri, C., Baldwin, A., Tabacchioni, S., Bevivino, A., Mahenthiralingam, E., Chiarini, L., and Dowson, C. (2007) Investigating Burkholderia cepacia complex populations recovered from Italian maize rhizosphere by multilocus sequence typing. Environmental Microbiology 9: 1632-1639.
    Davidson, D.J., Dorin, J.R., McLachlan, G., Ranaldi, V., Lamb, D., Doherty, C. et al. (1995) Lung-disease in the cystic-fibrosis mouse exposed to bacterial pathogens. Nature Genetics 9: 351-357.
    De Costa, D.M., and Erabadupitiya, H. (2005) An integrated method to control postharvest diseases of banana using a member of the Burkholderia cepacia complex. Posthanest Biology and Technology 36:31-39.
    De Curtis, F., Lima, G., Vitullo, D., and De Cicco, V. (2010) Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Protection 29:663-670.
    Deng, Y.Y., Boon, C., Eberl, L., and Zhang, L.H. (2009) Differential Modulation of Burkholderia cenocepacia Virulence and Energy Metabolism by the Quorum-Sensing Signal BDSF and Its Synthase. Journal of Bacteriology 191:7270-7278.
    Desai, M., Buhler, T., Weller, P.H., and Brown, M.R.W. (1998) Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. Journal of Antimicrobial Chemotherapy 42:153-160.
    DiCello, F., Bevivino, A., Chiarini, L., Fani, R., Paffetti, D., Tabacchioni, S., and Dalmastri, C. (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Applied and Environmental Microbiology 63: 4485-4493.
    Didenko, L.V., Gerasimenko, D.V., Konstantinova, N.D., Silkina, T.A., Avdienko, I.D., Bannikova, G.E., and Varlamov, V.P. (2005) Ultrastructural study of chitosan effects on Klebsiella and Staphylococci. Bulletin of Experimental Biology and Medicine 140:356-360.
    Drevinek, P., Baldwin, A., Dowson C. G. and Mahenthiralingam, E. (2008) Diversity of the parB and repA genes of the Burkholderia cepacia complex and their utility for rapid identification of Burkholderia cenocepacia. BMC Microbiology 8:44.
    Dutta, P.K., Tripathi, S., Mehrotra, G.K., and Dutta, J. (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry 114:1173-1182.
    Fang, Y., Lou, M.M., Li, B., Xie, G.L., Wang, F., Zhang, L.X., and Luo, Y.C. (2010) Characterization of Burkholderia cepacia complex from cystic fibrosis patients in China and their chitosan susceptibility. World Journal of Microbiology & Biotechnology 26:443-450.
    Fang, Y, Li, B., Wang, F., Liu, B.P., Wu, Z.Y., Su, T. et al. (2009) Bacterial fruit rot of apricot caused by Burkholderia cepacia in China. Plant Pathology Journal 25:429-432.
    Fang, Y., Xie, G. L., Lou, M. M., Li, B., Muhammad, I. (2011) Diversity analysis of Burkholderia cepacia complex in the water bodies of West Lake, Hangzhou, China. The journal of microbiology 49:309-314.
    Feil, E.J., and Spratt, B.G. (2001) Recombination and the population structures of bacterial pathogens. Annual Review of Microbiology 55:561-590.
    Feil, E.J., and Enright, M.C. (2004) Analyses of clonality and the evolution of bacterial pathogens. Current Opinion in Microbiology 7:308-313.
    Fiore, A., Laevens, S., Bevivino, A., Dalmastri, C., Tabacchioni, S., Vandamme, P., and Chiarini, L. (2001) Burkholderia cepacia complex:distribution of genomovars among isolates from the maize rhizosphere in Italy. Environmental Microbiology 3:137-143.
    Fries, M.R., Forney, L.J., and Tiedje, J.M. (1997) Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Applied and Environmental Microbiology 63:1523-1530.
    Fujimoto, T., Tsuchiya, Y., Terao, M., Nakamura, K., and Yamamoto, M. (2006) Antibacterial effects of chitosan solutions((R)) against Legionella pneumophila, Escherichia coli, and Staphylococcus aureus. International Journal of Food Microbiology 112:96-101.
    Gill, W.M., and Cole, A.L.J. (1992) Cavity disease of agaricus-bitorquis caused by Pseudomonas-cepacia. Canadian Journal of Microbiology 38:394-397.
    Gilligan, P.H., Gage, P.A., Bradshaw, L.M., Schidlow, D.V., and Decicco, B.T. (1985) Isolation medium for the recovery of Pseudomonas-cepacia from respiratory secretions of patients with cystic-fibrosis. Journal of Clinical Microbiology 22:5-8.
    Gillis, M., Vanvan, T., Bardin, R., Goor, M., Hebbar, P., Willems, A. et al. (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia-vietnamiensis sp-nov for n-2-fixing isolates from rice in Vietnam. International Journal of Systematic Bacteriology 45:274-289.
    Gonzalez, C.F., and Vidaver, A.K. (1979) Bacteriocin, plasmid and pectolytic diversity in Pseudomonas-cepacia of clinical and plant origin. Journal of General Microbiology 110: 161-170.
    Gonzalez, C.F., Pettit, E.A., Valadez, V.A., and Provin, E.M. (1997) Mobilization, cloning, and sequence determination of a plasmid-encoded polygalacturonase from a phytopathogenic Burkholderia (Pseudomonas) cepacia. Molecular Plant-Microbe Interactions 10:840-851.
    Govan, J.R.W., Balendreau, J., and Vandamme, P. (2000) Burkholderia cepacia-Friend and foe. Asm News 66:124-125.
    Goy, R.C., de Britto, D., and Assis, O.B.G. (2009) A review of the antimicrobial activity of chitosan. Polimeros-Ciencia E Tecnologia 19:241-247.
    Gui, Y.J., Wang, S., Quan, L.Y, Zhou, C.P., Long, S.B., Zheng, H.J. et al. (2007) Genome size and sequence composition of moso bamboo:A comparative study. Science in China Series C-Life Sciences 50:700-705.
    Guibal, E. (2004) Interactions of metal ions with chitosan-based sorbents:a review. Seperation and Purification Technology 38:43-74
    Hagedorn, C., Gould, W.D., Bardinelli, T.R., and Gustavson, D.R. (1987) A selective medium for enumeration and recovery of Pseudomonas-cepacia biotypes from soil. Applied and Environmental Microbiology 53:2265-2268.
    Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. (2004) Bacterial biofilms:From the natural environment to infectious diseases. Nature Reviews Microbiology 2:95-108.
    Hallmann, J., Rodriguez-Kabana, R., and Kloepper, J.W. (1999) Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biology & Biochemistry 31:551-560.
    Han, J., Xia, D., Li, L., Sun, L., Yang, K., and Zhang, L. (2009) Diversity of culturable bacteria isolated from root domains of moso bamboo (Phyllostachys edulis). Microbial Ecology 58: 363-373.
    Helander, I.M., Nunniaho-Lassila, E.L., Ahvenainen, R., Rhoades, J., and Roller, S. (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International Journal of Food Microbiology 71:235-244.
    Henry, D.A., Mahenthiralingam, E., Vandamme, P., Coenye, T., and Speert, D.P. (2001) Phenotypic methods for determining genomovar status of the Burkholderia cepacia complex. Journal of Clinical Microbiology 39:1073-1078.
    Huber, B., Riedel, K., Kothe, M., Givskov, M., Molin, S., and Eberl, L. (2002) Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Molecular Microbiology 46:411-426.
    Hunt, T.A., Kooi, C., Sokol, P.A., and Valvano, M.A. (2004) Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infection and Immunity 72: 4010-4022.
    Hutchison, M.L., Poxton, I.R., and Govan, J.R.W. (1998) Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infection and Immunity 66:2033-2039.
    Jacobs, J.L., Fasi, A.C., Ramette, A., Smith, J.J., Hammerschmidt, R., and Sundin, G.W. (2008) Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil. Applied and Environmental Microbiology 74: 3121-3129.
    Je, J.Y., and Kim, S.K. (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. Journal of Agricultural and Food Chemistry 54:6629-6633.
    Jeon, Y.J., Park, P.J., and Kim, S.K. (2001) Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydrate Polymers 44:71-76.
    Ji, X.L., Lu, G.B., Gai, Y.P., Gao, H.J., Lu, B.Y., Kong, L.R., and Mu, Z.M. (2010) Colonization of Morus alba L. by the plant-growth-promoting and antagonistic bacterium Burkholderia cepacia strain Lu10-1. Bmc Microbiology 10.
    Jia, Z.S., Shen, D.F., and Xu, W.L. (2001) Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydrate Research 333:1-6.
    Johnston, R.B. (2001) Clinical aspects of chronic granulomatous disease. Current Opinion in Hematology 8:17-22.
    Keig, P.M., Ingham, E., and Kerr, K.G. (2001) Invasion of human type Ⅱ pneumocytes by Burkholderia cepacia. Microbial Pathogenesis 30:167-170.
    King, E.B., and Parke, J.L. (1996) Population density of the biocontrol agent Burkholderia cepacia AMMDR1 on four pea cultivars. Soil Biology & Biochemistry 28:307-312.
    Kothe, M., Antl, M., Huber, B., Stoecker, K., Ebrecht, D., Steinmetz, I., and Eberl, L. (2003) Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cellular Microbiology 5:343-351.
    Lamothe, J., Thyssen, S., and Valvano, M.A. (2004) Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles of Acanthamoeba polyphaga. Cellular Microbiology 6:1127-1138.
    Laws, T.R., Smith, S.A., Smith, M.P., Harding, S.V., Atkins, T.P., and Titball, R.W. (2005) The nematode Panagrellus redivivus is susceptible to killing by human pathogens at 37 degrees C. Fems Microbiology Letters 250:77-83.
    Lee, Y.A., and Chan, C.W. (2007) Molecular typing and presence of genetic markers among strains of banana finger-tip rot pathogen, Burkholderia cenocepacia, in Taiwan. Phytopathology 97:195-201.
    Lee, Y.A., Shiao, Y.Y., and Chao, C.P. (2003) First report of Burkholderia cepacia as a pathogen of banana finger-tip rot in Taiwan. Plant Disease 87:601-601.
    Lewenza, S., Conway, B., Greenberg, E.P., and Sokol, P.A. (1999) Quorum sensing in Burkholderia cepacia:Identification of the LuxRI homologs CepRI. Journal of Bacteriology 181:748-756.
    Li, B., Wang, X., Chen, R., Huangfu, W.G., and Xie, G.L. (2008) Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Carbohydrate Polymers 72:287-292.
    Li, B., Liu, B.P., Su, T., Fang, Y., Xie, G.L., Wang, G.F. et al. (2010a) Effect of chitosan solution on the inhibition of Pseudomonas fluorescens causing bacterial head rot of broccoli. Plant Pathology Journal 26:189-193.
    Li, B., Fang, Y.A., Zhang, G.Q., Yu, R.R., Lou, M.M., Xie, G.L. et al. (2010b) Molecular characterization of Burkholderia cepacia complex isolates causing bacterial fruit rot of apricot. Plant Pathology Journal 26:223-230.
    Li, B., Su, T., Chen, X.L., Liu, B.P., Zhu, B., Fang, Y. et al. (2010c) Effect of chitosan solution on the bacterial septicemia disease of Bombyx mori (Lepidoptera:Bombycidae) caused by Serratia marcescens. Applied Entomology and Zoology 45:145-152.
    Li, X.F., Feng, X.Q., Yang, S., Fu, G.Q., Wang, T.P., and Su, Z.X. (2010e) Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydrate Polymers 79:493-499.
    LiPuma, J.J., Spilker, T., Coenye, T., and Gonzalez, C.F. (2002) An epidemic Burkholderia cepacia complex strain identified in soil. Lancet 359:2002-2003.
    LiPuma, J.J., Spilker, T., Gill, L.H., Campbell, P.W., Liu, L.X., and Mahenthiralingam, E. (2001) Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine 164: 92-96.
    Liu, H., Du, Y.M., Wang, X.H., and Sun, L.P. (2004) Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology 95:147-155.
    Liu, N., Chen, X.G., Park, H.J., Liu, C.G., Liu, C.S., Meng, X.H., and Yu, L.J. (2006) Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers 64:60-65.
    Lou, M.M., Fang, Y.A., Zhang, G.Q., Xie, G.L., Zhu, B., and Ibrahim, M. (2011) Diversity of Burkholderia cepacia complex from the moso bamboo (Phyllostachys edulis) rhizhosphere soil. Current Microbiology 62:650-658.
    Lynch, K. H. and Dennis, J. J. (2008) Development of a species-specific fur gene-based method for identification of the Burkholderia cepacia complex. Journal of Clinical Microbiology 46: 447-455.
    Mahenthiralingam, E., Simpson, D.A., and Speert, D.P. (1997) Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. Journal of Clinical Microbiology 35:808-816.
    Mahenthiralingam, E., Urban, T.A., and Goldberg, J.B. (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nature Reviews Microbiology 3:144-156.
    Mahenthiralingam, E., Baldwin, A., and Dowson, C.G. (2008) Burkholderia cepacia complex bacteria:opportunistic pathogens with important natural biology. Journal of Applied Microbiology 104:1539-1551.
    Mahenthiralingam, E., Campbell, M.E., Henry, D.A., and Speert, D.P. (1996) Epidemiology of Burkholderia cepacia infection in patients with cystic fibrosis:Analysis by randomly amplified polymorphic DNA fingerprinting. Journal of Clinical Microbiology 34:2914-2920.
    Mahenthiralingam, E., Bischof, J., Byrne, S.K., Radomski, C., Davies, J.E., Av-Gay, Y., and Vandamme, P. (2000) DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars Ⅰ and Ⅲ. Journal of Clinical Microbiology 38: 3165-3173.
    Mahenthiralingam, E., Baldwin, A., Drevinek, P., Vanlaere, E., Vandamme, P., LiPuma, J.J., and Dowson, C.G. (2006) Multilocus Sequence Typing Breathes Life into a Microbial Metagenome. Plos One 1.
    Mahenthiralingam, E., Vandamme, P., Campbell, M.E., Henry, D.A., Gravelle, A.M., Wong, L.T.K. et al. (2001) Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis:Virulent transmissible strains of genomovar Ⅲ can replace Burkholderia multivorans. Clinical Infectious Diseases 33:1469-1475.
    Maiden, M.C.J. (2006) Multilocus sequence typing of bacteria. Annual Review of Microbiology 60: 561-588.
    Manno, G., Dalmastri, C., Tabacchioni, S., Vandamme, P., Lorini, R., Minicucci, L. et al. (2004) Epidemiology and clinical course of Burkholderia cepacia complex infections, particularly those caused by different Burkholderia cenocepacia strains, among patients attending an Italian cystic fibrosis center. Journal of Clinical Microbiology 42:1491-1497.
    Marier, J.F., Lavigne, J., and Ducharme, M.P. (2002) Pharmacokinetics and efficacies of liposomal and conventional formulations of tobramycin after intratracheal administration in rats with pulmonary Burkholdefia cepacia infection. Antimicrobial Agents and Chemotherapy 46: 3776-3781.
    Marolda, C.L., Hauroder, B., John, M.A., Michel, R., and Valvano, M.A. (1999) Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology-Uk 145:1509-1517.
    Martinez, L.R., Mihu, M.R., Han, G., Frases, S., Cordero, R.J.B., Casadevall, A. et al. (2010) The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials 31:669-679.
    Masson, M., Holappa, J., Hjalmarsdottir, M., Runarsson, O. V., Nevalainen, T., and Jarvinen, T. (2008) Antimicrobial activity of piperazine derivatives of chitosan. Carbohydrate Polymers 74:566-571.
    Mendes, R., Pizzirani-Kleiner, A.A., Araujo, W.L., and Raaijmakers, J.M. (2007) Diversity of cultivated endophytic bacteria from sugarcane:Genetic and biochemical characterization of Burkholderia cepacia complex isolates. Applied and Environmental Microbiology 73: 7259-7267.
    Miche, L., Faure, D., Blot, M., Cabanne-Giuli, E., and Balandreau, J. (2001) Detection and activity of insertion sequences in environmental strains of Burkholderia. Environmental Microbiology 3:766-773.
    Mil-Homens, D., Rocha, E.P.C., and Fialho, A.M. (2010) Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage. Microbiology-Sgm 156:1084-1096.
    Miller, S.C.M., LiPuma, J.J., and Parke, J.L. (2002) Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Applied and Environmental Microbiology 68:3750-3758.
    Moore, R.A., and Hancock, R.E.W. (1986) Involvement of outer-membrane of Pseudomonas-cepacia in aminoglycoside and polymyxin resistance. Antimicrobial Agents and Chemotherapy 30:923-926.
    Nacamulli, C., Bevivino, A., Dalmastri, C., Tabacchioni, S., and Chiarini, L. (1997) Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MCI 7. Fems Microbiology Ecology 23:183-193.
    Nijhuis, E.H., Maat, M.J., Zeegers, I.W.E., Waalwijk, C., and Vanveen, J.A. (1993) Selection of bacteria suitable for introduction into the rhizosphere of grass. Soil Biology & Biochemistry 25:885-895.
    No, H., and Meyers, S. (1995) Preparation and characterization of chitin and chitosan|aa review. Journal of Aquatic Food Product Technology 4:27-52.
    No, H.K., Park, N.Y., Lee, S.H., and Meyers, S.P. (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65-72.
    Nzula, S., Vandamme, P., and Govan, J.R.W. (2002) Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. Journal of Antimicrobial Chemotherapy 50:265-269.
    O'Sullivan, L.A., Weightman, A.J., Jones, T.H., Marchbank, A.M., Tiedje, J.M., and Mahenthiralingam, E. (2007) Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium Burkholderia vietnamiensis. Environmental Microbiology 9:1017-1034.
    Omar, I., O'Neill, T.M., and Rossall, S. (2006) Biological control of fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathology 55:92-99.
    Omori, K., Ohira, T., Uchida, Y., Ayilavarapu, S., Batista, E.L., Yagi, M. et al. (2008) Priming of neutrophil oxidative burst in diabetes requires preassembly of the NADPH oxidase. Journal of Leukocyte Biology 84:292-301.
    Park, P.J., Je, J.Y., Byun, H.G., Moon, S.H., and Kim, S.K. (2004) Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights. J Microbiol Biotechnol 14:317-323.
    Parke, J.L., and Gurian-Sherman, D. (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annual Review of Phytopathology 39:225-258.
    Payne, G.W., Vandamme, P., Morgan, S.H., LiPuma, J.J., Coenye, T., Weightman, A.J. et al. (2005) Development of a recA gene-based identification approach for the the entire Burkholderia genus. Applied and Environmental Microbiology 71:3917-3927.
    Peeters, E., Nelis, H.J., and Coenye, T. (2008) Evaluation of the efficacy of disinfection procedures against Burkholderia cenocepacia biofilms. Journal of Hospital Infection 70: 361-368.
    Peix, A., Mateos, P.R., Rodriguez-Barrueco, C., Martinez-Molina, E., and Velazquez, E. (2001) Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biology & Biochemistry 33:1927-1935.
    Pirone, L., Chiarini, L., Dalmastri, C., Bevivino, A., and Tabacchioni, S. (2005) Detection of cultured and uncultured Burkholderia cepacia complex bacteria naturally occurring in the maize rhizosphere. Environmental Microbiology 7:1734-1742.
    Pirone, L., Bragonzi, A., Farcomeni, A., Paroni, M., Auriche, C., Conese, M. et al. (2008) Burkholderia cenocepacia strains isolated from cystic fibrosis patients are apparently more invasive and more virulent than rhizosphere strains. Environmental Microbiology 10: 2773-2784.
    Pitt, T.L., Kaufmann, M.E., Patel, P.S., Benge, L.C.A., Gaskin, S., and Livermore, D.M. (1996) Type characterisation and antibiotic susceptibility of Burkholderia(Pseudomonas) cepacia isolates from patients with cystic fibrosis in the United Kingdom and the Republic of Ireland. Journal of Medical Microbiology 44:203-210.
    Plesa, ML, Kholti, A., Vermis, K., Vandamme, P., Panagea, S., Winstanley, C., and Cornelis P. (2004) Conservation of the opcL gene encoding the peptidoglycan-associated outer-membrane lipoprotein among representatives of the Burkholderia cepacia complex. Journal of Medical Microbiology 53:389-398
    Qin, C.Q., Li, H.R., Xiao, Q., Liu, Y., Zhu, J.C., and Du, Y.M. (2006) Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers 63:367-374.
    Raafat, D., von Bargen, K., Haas, A., and Sahl, H.G. (2008) Insights into the mode of action of chitosan as an antibacterial compound. Applied and Environmental Microbiology 74: 7455.7455.
    Rabea, E.I., Badawy, M.E.I., Steurbaut, W., and Stevens, C.V. (2009) In vitro assessment of N-(benzyl)chitosan derivatives against some plant pathogenic bacteria and fungi. European Polymer Journal 45:237-245.
    Rabea, E.I., Badawy, M.E.T., Stevens, C.V., Smagghe, G., and Steurbaut, W. (2003) Chitosan as antimicrobial agent:Applications and mode of action. Biomacromolecules 4:1457-1465.
    Rahman, M.A., Mahmud, T.M.M., Kadir, J., Rahman, R.A., and Begum, M.M. (2009) Enhancing the efficacy of Burkholderia cepacia B23 with calcium chloride and chitosan to control anthracnose of papaya during storage. Plant Pathology Journal 25:361-368.
    Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., and Ausubel, F.M. (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899-1902.
    Ramette, A., LiPuma, J.J., and Tiedje, J.M. (2005) Species abundance and diversity of Burkholderia cepacia complex in the environment. Applied and Environmental Microbiology 71:1193-1201.
    Reddi, K., Phagoo, S.B., Anderson, K.D., and Warburton, D. (2003) Burkholderia cepacia-induced IL-8 gene expression in an alveolar epithelial cell line:Signaling through CD14 and mitogen-activated protein kinase. Pediatric Research 54:297-305.
    Reik, R., Spilker, T., and LiPuma, J.J. (2005) Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. Journal of Clinical Microbiology 43:2926-2928.
    Riedel, K., Hentzer, M., Geisenberger, O., Huber, B., Steidle, A., Wu, H. et al. (2001) N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology-Sgm 147:3249-3262.
    Rose, H., Baldwin, A., Dowson, C.G., and Mahenthiralingam, E. (2009) Biocide susceptibility of the Burkholderia cepacia complex. Journal of Antimicrobial Chemotherapy 63:502-510.
    Saini, L.S., Galsworthy, S.B., John, M.A., and Valvano, M.A. (1999) Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. Microbiology-Sgm 145:3465-3475.
    Sajjan, U., Keshavjee, S., and Forstner, J. (2004) Responses of well-differentiated airway epithelial cell cultures from healthy donors and patients with cystic fibrosis to Burkholderia cenocepacia infection. Infection and Immunity 72:4188-4199.
    Sajjan, U., Thanassoulis, G., Cherapanov, V., Lu, A., Sjolin, C., Steer, B. et al. (2001) Enhanced susceptibility to pulmonary infection with Burkholderia cepacia in Cftr(-/-) mice. Infection and Immunity 69:5138-5150.
    Sajomsang, W., Tantayanon, S., Tangpasuthadol, V., and Daly, W.H. (2009) Quaternization of N-aryl chitosan derivatives:synthesis, characterization, and antibacterial activity. Carbohydrate Research 344:2502-2511.
    Saldias, M.S., Lamothe, J., Wu, R., and Valvano, M.A. (2008) Burkholderia cenocepacia requires the RpoN sigma factor for biofilm fonnation and intracellular trafficking within macrophages. Infection and Immunity 76:1059-1067.
    Schwab, U., Leigh, M., Ribeiro, C., Yankaskas, J., Burns, K., Gilligan, P. et al. (2002) Patterns of epithelial cell invasion by different species of the Burkholderia cepacia complex in well-differentiated human airway epithelia. Infection and Immunity 70:4547-4555.
    Seed, K.D., and Dennis, J.J. (2008) Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infection and Immunity 76:1267-1275.
    Seed, K.D., and Dennis, J.J. (2009) Experimental bacteriophage therapy increases survival of Galleria mellonella larvae infected with clinically relevant strains of the Burkholderia cepacia complex. Antimicrobial Agents and Chemotherapy 53:2205-2208.
    Segonds, C., Heulin, T., Marty, N., and Chabanon, G. (1999) Differentiation of Burkholderia species by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. Journal of Clinical Microbiology 37:2201-2208.
    Seo, S.T., and Tsuchiya, K. (2005) Genotypic characterization of Burkholderia cenocepacia strains by rep-PCR and PCR-RFLP of the fliC gene. Fems Microbiology Letters 245:19-24.
    Shaw, D., Poxton, I.R., and Govan, J.R.W. (1995) Biological-activity of Burkholderia (Pseudomonas) cepacia lipopolysaccharide. Fems Immunology and Medical Microbiology 11: 99-106.
    Shimomura, H., Matsuura, M., Saito, S., Hirai, Y., Isshiki, Y., and Kawahara, K. (2003) Unusual interaction of a lipopolysaccharide isolated from Burkholderia cepacia with polymyxin B. Infection and Immunity 71:5225-5230.
    Shrestha, A., Shi, Z.L., Gee, N.K., and Kishen, A. (2010) Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. Journal of Endodontics 36: 1030-1035.
    Simunek, J., Tishchenko, G., Hodrova, B., and Baptonova, H. (2006) Effect of chitosan on the growth of human colonic bacteria. Folia Microbiologica 51:306-308.
    Smith, J.M., Smith, N.H., Orourke, M., and Spratt, B.G. (1993) How clonal are bacteria. Proceedings of the National Academy of Sciences of the United States of America 90: 4384-4388.
    Sokol, P.A., Sajjan, U., Visser, M.B., Gingues, S., Forstner, J., and Kooi, C. (2003) The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology-Sgm 149:3649-3658.
    Sousa, S.A., Moreira, L.M., and Leitao, J.H. (2008) Functional analysis of the Burkholderia cenocepacia J2315 BceA(J) protein with phosphomannose isomerase and GDP-D-mannose pyrophosphorylase activities. Applied Microbiology and Biotechnology 80:1015-1022.
    Sousa, S.A., Ulrich, M., Bragonzi, A., Burke, M., Worlitzsch, D., Leitao, J.H. et al. (2007) Virulence of Burkholderia cepacia complex strains in gp91(phox-/-) mice. Cellular Microbiology 9:2817-2825.
    Speert, D.P., Henry, D., Vandamme, P., Corey, M., and Mahenthiralingam, E. (2002) Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerging Infectious Diseases 8:181-187.
    Spratt, B.G. (2004) Exploring the concept of clonality in bacteria. Methods Mol Biol 266: 323-352.
    Starke, J.R., Edwards, M.S., Langston, C., and Baker, C.J. (1987) A mouse model of chronic pulmonary infection with Pseudomonas-aeruginosa and Pseudomonas-cepacia. Pediatric Research 22:698-702.
    Steffan, R.J., Sperry, K.L., Walsh, M.T., Vainberg, S., and Condee, C.W. (1999) Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater. Environmental Science & Technology 33:2771-2781.
    Tabacchioni, S., Ferri, L., Manno, G., Mentasti, M., Cocchi, P., Campana, S. et al (2008) Use of gyrB gene to discriminate among species of the Burkholderia cepacia complex. FEMS Microbiology Letters 281:175-182.
    Tablan, O.C., Chorba, T.L., Schidlow, D.V., White, J.W., Hardy, K.A., Gilligan, P.H. et al. (1985) Pseudomonas cepacia colonization in patients with cystic-fibrosis-risk-factors and clinical outcome. Journal of Pediatrics 107:382-387.
    Takahashi, T., Imai, M., and Suzuki, I. (2007) Water permeability of chitosan membrane involved in deacetylation degree control. Biochemical Engineering Journal 36:43-48.
    Tomich, M., Griffith, A., Herfst, C.A., Burns, J.L., and Mohr, C.D. (2003) Attenuated virulence of a Burkholderia cepacia type Ⅲ secretion mutant in a murine model of infection. Infection and Immunity 71:1405-1415.
    Tomlin, K.L., Coll, O.P., and Ceri, H. (2001) Interspecies biofilms of Pseudomonas aeruginosa and Burkholderia cepacia. Canadian Journal of Microbiology 47:949-954.
    Uehlinger, S., Schwager, S., Bernier, S.P., Riedel, K., Nguyen, D.T., Sokol, P.A., and Eberl, L. (2009) Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hosts. Infection and Immunity 77:4102-4110.
    Urban, T.A., Goldberg, J.B., Forstner, J.F., and Sajjan, U.S. (2005) Cable pili and the 22-kilodalton adhesin are required for Burkholderia cenocepacia binding to and transmigration across the squamous epithelium. Infection and Immunity 73:5426-5437.
    Urban, T.A., Griffith, A., Torok, A.M., Smolkin, M.E., Burns, J.L., and Goldberg, J.B. (2004) Contribution of Burkholderia cenocepacia flagella to infectivity and inflammation. Infection and Immunity 72:5126-5134.
    Van, V.T., Berge, O., Ke, S.N., Balandreau, J., and Heulin, T. (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant and Soil 218:273-284.
    Vandamme, P., Holmes, B., Coenye, T., Goris, J., Mahenthiralingam, E., LiPuma, J.J., and Govan, J.R.W. (2003) Burkholderia cenocepacia sp nov-a new twist to an old story. Research in Microbiology 154:91-96.
    Vandamme, P., Mahenthiralingam, E., Holmes, B., Coenye, T., Hoste, B., De Vos, P. et al. (2000) Identification and population structure of Burkholderia stabilis sp nov (formerly Burkholderia cepacia genomovar IV). Journal of Clinical Microbiology 38:1042-1047.
    Vandamme, P., Henry, D., Coenye, T., Nzula, S., Vancanneyt, M., LiPuma, J.J. et al. (2002) Burkholderia anthina sp nov and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. Fems Immunology and Medical Microbiology 33:143-149.
    Vandamme, P., Holmes, B., Vancanneyt, M., Coenye, T., Hoste, B., Coopman, R. et al. (1997) Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. International Journal of Systematic Bacteriology 47:1188-1200.
    Vanlaere, E., Hansraj, F., Vandamme, P.A.R., and Govan, J.R.W. (2006) Growth in Stewart's medium is a simple, rapid and inexpensive screening tool for the identification of Burkholderia cepacia complex. Journal of Cystic Fibrosis 5:137-139.
    Vanlaere, E., LiPuma, J.J., Baldwin, A., Henry, D., De Brandt, E., Mahenthiralingam, E. et al. (2008) Burkholderia latens sp nov., Burkholderia diffusa sp nov, Burkholderia arboris sp nov., Burkholderia seminalis sp nov and Burkholderia metallica sp nov., novel species within the Burkholderia cepacia complex. International Journal of Systematic and Evolutionary Microbiology 58:1580-1590.
    Vanlaere, E., Baldwin, A., Gevers, D., Henry, D., De Brandt, E., LiPuma, J.J. et al. (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp nov and Burkholderia lata sp nov. International Journal of Systematic and Evolutionary Microbiology 59:102-111.
    Vermis, K., Vandamme, P.A.R., and Nelis, H.J. (2003a) Burkholderia cepacia complex genomovars:utilization of carbon sources, susceptibility to antimicrobial agents and growth on selective media. Journal ofApplied Microbiology 95:1191-1199.
    Vermis, K., Vandekerckhove, C., Nelis, H.J., and Vandamme, P.A.R. (2002a) Evaluation of restriction fragment length polymorphism analysis of 16S rDNA as a tool for genomovar characterisation within the Burkholderia cepacia complex. Ferns Microbiology Letters 214: 1-5.
    Vermis, K., Brachkova, M., Vandamme, P., and Nelis, H. (2003b) Isolation of Burkholderia cepacia complex genomovars from waters. Systematic and Applied Microbiology 26: 595-600.
    Vermis, K., Coenye, T., Mahenthiralingam, E., Nelis, H.J., and Vandamme, P. (2002b) Evaluation of species-specific recA-based PCR tests for genomovar level identification within the Burkholderia cepacia complex. Journal of Medical Microbiology 51:937-940.
    Vermis, K., Coenye, T., LiPuma, J.J., Mahenthiralingam, E., Nelis, H.J., and Vandamme, P. (2004) Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp nov. International Journal of Systematic and Evolutionary Microbiology 54:689-691.
    Vernazza, C.L., Gibson, G.R., and Rastall, R.A. (2005) In vitro fermentation of chitosan derivatives by mixed cultures of human faecal bacteria. Carbohydrate Polymers 60:539-545.
    Waine, D.J., Henry, D.A., Baldwin, A., Speert, D.P., Honeybourne, D., Mahenthiralingam, E., and Dowson, C.G. (2007) Reliability of multilocus sequence typing of the Burkholderia cepacia complex in cystic fibrosis. Journal of Cystic Fibrosis 6:215-219.
    Welch, D.F., Muszynski, M.J., Pai, C.H., Marcon, M.J., Hribar, M.M., Gilligan, P.H. et al. (1987) Selective and differential medium for recovery of Pseudomonas-cepacia from the respiratory tracts of patients with cystic-fibrosis. Journal of Clinical Microbiology 25:1730-1734.
    Wigley, P., and Burton, N.F. (1999) Genotypic and phenotypic relationships in Burkholderia cepacia isolated from cystic fibrosis patients and the environment. Journal of Applied Microbiology 86:460-468.
    Yabuuchi, E., Kosako, Y, Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y. et al. (1992) Proposal of Burkholderia gen-nov and transfer of 7 species of the genus Pseudomonas homology group-Ⅱ to the new genus, with the type species Burkholderia-cepacia (Palleroni and Holmes 1981) comb-nov. Microbiology and Immunology 36:1251-1275.
    Yamamoto, S. and Harayama, S. (1998) Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. International Journal of Systematic Bacteriology 48:813-819.
    Yohalem, D.S., and Lorbeer, J.W. (1994) Intraspecific metabolic diversity among strains of Burkholderia-cepacia isolated from decayed onions, soils, and the clinical environment. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 65: 111-131.
    Zhang, L.X., and Xie, G.L. (2007) Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize. Fems Microbiology Letters 266:231-235.
    Zhou, J.Y., Chen, Y.H., Tabibi, S., Alba, L., Garber, E., and Saiman, L. (2007) Antimicrobial susceptibility and synergy studies of Burkholderia cepacia complex isolated from patients with cystic fibrosis. Antimicrobial Agents and Chemotherapy 51:1085-1088.
    董法宝,高绘菊,王彦文,冀宪领,于奇,牟志美.(2009)桑树内生拮抗细菌Lu10-1对家蚕白僵病的防治效果及抑菌作用,蚕业科学,35(4):803-810.
    方媛.(2010)西湖水及其它环境中洋葱伯克氏菌的多样性及其致病性研究,浙江大学博十学位论文.
    郭道森,赵博光,李荣贵.(2006)松材线虫对其携带的一株细菌繁殖和致病性的影响,应用与环境生物学报,12(4):523-527.
    洪秀华.(2002)临床微生物学和微生物检验实验指导.北京:人民卫生出版社.
    黄晓东,季尚宁,Glick B, Greenberg B(2002)植物促生菌及其促生机理(续),现代化农业,7:13-15.
    黄朝晖,袁凤京,王华生.(2005)洋葱综合征患者终末消毒方法,中华医院感染学杂志,15(4):380.
    贾彬,刘文山,杨江科,汪小锋,叶才伟,闫云君.(2010)土壤中产脂肪酶洋葱伯克霍尔德菌的分离与鉴定,生物技术通报,4:182-188.
    刘涛,刘止学,张长乾,李德舜.(2002)苯酚高效降解菌L68菌株的分离及分类鉴定,山东大学学报(理学版),37(4):369-372.
    刘佳妍,金莉莉,王秋雨.(2006)细菌基因组重复序列PCR技术及其应用,微生物学杂志,26(3):90-93.
    罗远婵.(2006)农田中洋葱伯克氏菌基因型及其与医院同类致病菌的比较研究,浙江大学博士学位论文.
    吕琳,宋诗铎,王玉宝,孙二琳.(2007)应用recA-RFLP调查洋葱伯克霍尔德菌医院血流感染暴发,中国感染控制杂志,(4):219-223.
    秦华明,尹华,张娜,梁世中.(2007a)Burkholderia cepacia X4降解油脂特性研究,微生物学通报,34(3):500-503.
    秦华明,尹华,张娜,梁世中.(2007b)生物强化技术处理含油脂废水的研究,废物处理和综合利用,33(3):33-35.
    孙福在,赵廷吕.(2003)冰核细菌生物学特性及其诱发植物霜冻机理与防霜应用,生态学报,23(2):336-344.
    汪小锋,贾彬,刘涛,杨江科,闫云君.(2009)洋葱伯克霍尔德茵脂肪酶:一种应用前景广阔的生物催化剂,生物加工过程,7(5):1-7.
    谢关林,金扬秀,徐传雨,任小平,佘雪芳,Mew T W.(2003)我国水稻纹枯病拈抗细菌种类研究.中国生物防治,19(4):166-170.
    薛勇,张长铠,刘涛.(2003)洋葱伯克霍尔德氏菌产邻苯二酚2,3-双加氧酶的研究,生命科学研究,2003,7(2):156-160.
    张军民,罗燕萍,赵莉萍,白丽彦,姚艺辉.(2002)临床分离洋葱伯克氏菌鉴定方法的探讨,中华检验医学杂志,25(6):333-335.
    张立新.(2008)洋葱伯克氏菌在重要禾本科作物根围的多样性及其致病性研究,浙江大学博十学位论文.
    张琳,温燕梅,黄淑娟.(2010)壳聚糖脱乙酰度的测定方法比较,广东化工,37(7):96-97.
    张耀东,杨文超,贾翔,李海华.(1996)郑州地区植物上冰核活性细菌的分离和鉴定,郑州粮食学院学报,17(3):34-38.
    赵博光,郭道森.(2004)松材线虫携带的一株细菌分离及其致病性,北京林业大学学报,26(1):57-61.
    郑维,权春善,范圣第.(2004)产生多种抗真菌活性物质菌种的筛选分离和鉴定,大连民族学院学报,6(5):37-42.
    周金葵,王大威,廖明清,刘永建.(2007)一株石油烃降解菌的筛选及性能评价,大庆石油地质与开发,26(6):119-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700