用户名: 密码: 验证码:
氟虫腈胁迫下小菜蛾生理生化及基因表达变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小菜蛾(Plutella xylostella L.)是一种世界性的十字花科蔬菜主要害虫,它对化学杀虫剂和生物杀虫剂都能很快地产生抗性。目前杀虫剂的使用仍然是控制小菜蛾的重要手段。由于杀虫剂的过度使用,小菜蛾已对多种药剂产生了不同程度的抗性。近年来对杀虫剂的研究已经涉及生理、生化以及分子多个方面,但小菜蛾对杀虫剂的胁迫响应尚缺系统的研究。为了能使杀虫剂持久地发挥作用,保证靶标位点的敏感性,系统研究杀虫剂作用的有关机制是很有必要的。
     氟虫腈(Fipronil)是首个用于有害生物防治的苯基吡唑类杀虫剂,其作用靶标是Y-氨基丁酸受体(GABA),起到阻断由GABA控制的神经膜氯离子通道的作用,对包括小菜蛾在内的多种农业害虫有防治作用。
     本研究以小菜蛾为材料,采用LC5o剂量的氟虫腈进行处理,从解毒酶系、蛋白质和基因等方面研究了小菜蛾响应杀虫剂氟虫腈胁迫的生理生化及分子机制,初步揭示了可能参与到小菜蛾响应氟虫腈胁迫的蛋白,克隆了与机体免疫反应和能量代谢相关的4个基因,并明确了这4个编码基因的表达动态,为进一步研究小菜蛾对氟虫腈的响应机制奠定了基础。
     1.小菜蛾对氟虫腈的生理生化响应
     在小菜蛾幼虫对氟虫腈的短期响应中,体内的多功能氧化酶(MFO)、酯酶(EST)和谷胱甘肤-S-转移酶(GSTs)的活性均显著高于对照组,在24h内,随着处理时间的延长,各解毒酶的活性也逐渐提高。在3种解毒酶中,MFO对外界的刺激更加敏感,受诱导程度最高,在响应初期活性就快速升高。
     2.小菜蛾对氟虫腈响应蛋白的分析鉴定
     利用双向电泳和质谱技术的差别蛋白质组学技术,研究氟虫腈处理后,小菜蛾在Oh、8h、16h和24h时蛋白质组差异,观察到20个蛋白发生了差异表达,其中9个蛋白点为下调表达,11个蛋白点为上调表达,其中5个蛋白点仅在处理组表达。在鉴定成功的17蛋白点,包括了免疫反应和各种代谢途径参与蛋白,还有细胞骨架蛋白、分子伴侣等。这些蛋白参与了昆虫体内的多个生理过程,反映了小菜蛾对杀虫剂的响应会在细胞骨架、代谢水平等多方面发生综合的改变,说明昆虫在应对杀虫剂的响应是一个网络系统。
     3.小菜蛾响应氟虫腈相关蛋白的基因克隆与分析
     本研究克隆得到小菜蛾在响应氟虫腈过程中与免疫相关的硫氧还蛋白过氧化物酶(thioredoxin peroxidase,TPx)和凝集素(C-type lectin)、与能量代谢相关的ATP合酶亚基d(ATP synthase unit d)、以及腺苷酸转移酶(adenine nucleotide translocase, ANT)这4个基因的cDNA全长序列,利用生物信息学方法分析了这4个基因的结构和所编码蛋白质的结构特征及其与其他昆虫的同源性,构建了所编码蛋白质的3D结构模型。
     采用实时荧光定量PCR在mRNA水平上分析了这4个基因的表达特性。结果表明这4个基因在敏感品系小菜蛾的生长发育过程都能检测到,并且有表达量上的差异;在对氟虫腈胁迫的短期响应中,4个基因的表达量也会由于杀虫剂的胁迫而发生相应的变化。
The diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), is an economically important pest of cruciferous crops throughout the world. This insect pest is difficult to control as it can rapidly develop its tolerance to many synthetic insecticides and bioinsecticides. When DBM is exposed to insecticides, it can lead to various behavioral and metabolic responses to insecticides. The responses may invovle multiple physiological changes, which cannot be assigned to only a single gene or protein.
     In recent years, studies on insceticides have developed at different levels of physiological, biochemical and molecular mechanisms, but information on the biochemical and molecular mechanism of P. xylostella in response to fipronil, a phenylpyrazole insecticide, which blocks the inhibitory GABA-gated chloride channel and is used to protect crops, is still limited.
     To better understand the DBM's response mechanisms, we observed the various levels of biochemical, proteomic and molecular response in P. xylostella that was exposed to fipronil stress. The proteins that may be involved in the response to fipronil were investigated using differential proteomics. The full-length cDNAs encoding thioredoxin peroxidase, C-type lectin, adenine nucleotide translocase and ATP synthase subunit d were all cloned from P.xylostella and their gene expressions were analyzed at the mRNA level. The major results are summarized in the following sections.
     1. The biochemical response of DBM to fipronil-induced stress
     The short-term biochemical response of P.xylostella to fipronil was studied by examining the activities of detoxifying enzymes. We founded significantly higher activities of the detoxifying enzymes, mixed-function oxidase (MFO), esterase (EST) and glutathione-S-transferases (GSTs), in the DBM larvae that were treated with an LC50 dose of fipronil, compared to the larvae in fipronil-free controls. The activities of these detoxifying enzymes gradually increased over 24h, with MFO being more sensitive to external stimuli and showing higher induced activity than either EST or GSTs.
     2. The proteomic response of DBM to fipronil-induced stress
     The proteomic response of the DBM to fipronil was examined using two-dimensional electrophoresis (2-DE) and mass spectrometry at 8,16 and 24 h following fipronil treatment. Twenty proteins showed differential expression, including nine down-regulated spots, eleven up-regulated spots, of which five spots expressed only in the treatment group. Seventeen protein spots were successfully identified and include proteins that participate in the immune response and in other metabolic pathways, cytoskeletal proteins, and molecular chaperones. Differences in the expression of these proteins suggest that P. xylostella could create general changes in the cytoskeleton, metabolic level, and many other characteristics in response to the inesticide stress.
     3. Cloning and expression analysis of genes involved in the DBM response to fipronil
     The full-length cDNA encoding thioredoxin peroxidase, C-type lectin, adenine nucleotide translocase and ATP synthase subunit d were cloned from P.xylostella by reverse transcriptase PCR (RT-PCR) and rapid amplification of cDNA ends (RACE). These four gene sequences and their encoding proteins were then analyzed, and a phylogenetic tree were contructed based on the amino acid sequences to reveal the relationship between DBM and other insects. In addition,3D protein structure models were developed using SWISS-MODEL.
     The mRNA levels of these four genes were measured using real-time PCR. These genes could be detected during the growth and development of DBM and were differentially expressed. However, the expression levels of these genes were also variable in the larvae treated with an LC50 value of fipronil.
引文
Ali, N.S., Ali, S.S., Shakoori, A.R. Effects of Sublethal Doses of Talstar on Biochemical Components of Malathion-Resistant and -Susceptible Adults of Rhyzopertha dominica [J]. Pakistan Journal of Zoology,2011,43(5):879-887.
    Amenya D.A., Chou W., Li J., et al. Proteomics reveals novel components of the Anopheles gambiae eggshell [J]. Journal of Insect Physiology,2010,56(10):1414-1419.
    Ankersmit G. DDT-resistance in Plutella maculipennis (Curt.) (Lep.) in Java [J]. Bulletin of Entomological Research,1953,44(3):421-425.
    Anstead J.A., Williamson M.S., Eleftherianos I., et al. High-throughput detection of knockdown resistance in Myzus persicae using allelic discriminating quantitative PCR [J]. Insect Biochemistry and Molecular Biology,2004,34(8):871-877.
    Ao J.Q., Ling E.J., Yu X.Q. Drosophila C-type lectins enhance cellular encapsulation [J]. Molecular Immunology,2007,44(10):2541-2548.
    Attique M.N.R, Khaliq A., Sayyed A.H. Could resistance to insecticides in Plutella xylostella (Lep., Plutellidae) be overcome by insecticide mixtures [J]? Journal of Applied Entomology, 2006,130(2):122-127.
    Baek J.H., Kim J.I., Lee D.W., et al. Identification and characterization of acel-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella [J]. Pesticide Biochemistry and Physiology,2005,81(3):164-175.
    Baggerman G., Clynen E., Huybrechts J., et al. Peptide profiling of a single Locusta migratoria corpus cardiacum by nano-LC tandem mass spectrometry [J]. Peptides,2003,4(10): 1475-1485.
    Baginsky S., Kleffmann T., von Zychlinski A., et al. Analysis of shotgun proteomics and RNA profiling data from Arabidopsis thaliana chloroplasts [J]. Journal of Proteome Research, 2005,4(2):637-640.
    Bass C., Nikou D., Vontas J., et al. Development of high-throughput real-time PCR assays for the identification of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae [J]. Pesticide Biochemistry and Physiology,2010,96(2):80-85.
    Bauer M.K.A, Schubert A., Rocks O., et al. Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis [J]. The Journal of Cell Biology,1999,147(7):1493-1501.
    Bautista M.A.M., Miyata T., Miura K., et al. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin [J]. Insect Biochemistry and Molecular Biology,2009,39(1):38-46.
    Bautista M.A.M., Tanaka T., Miyata T. Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella (L.) and the possibility of involvement in permethrin resistance [J]. Pesticide Biochemistry and Physiology,2007,87(1):85-93.
    Baxter S.W., Chen, M., Dawson, A., et al. Mis-spliced transcripts of nicotinic acetylcholine receptor a6 are associated with field evolved spinosad resistance in Plutella xylostella (L.) [J]. PLoS Genetics,2010,6(1):e1000802.
    Biron, D.G., Marche, L., Ponton, F., et al. Behavioural manipulation in a grasshopper harbouring hairworm:a proteomics approach [J]. Proceedings of the Royal Society B:Biological Sciences,2005,272(1577):2117-2126.
    Biron, D.G., Ponton, F., Marche, L., et al.'Suicide'of crickets harbouring hairworms:a proteomics investigation [J]. Insect Molecular Biology,2006,15(6):731-742.
    Bloomquist, J.R. Ion channels as targets for insecticides [J]. Annual Review of Entomology,1996, 41(1):163-190.
    Booth, L.H., Wratten, S.D., Kehrli, P. Effects of reduced rates of two insecticides on enzyme activity and mortality of an aphid and its lacewing predator [J]. Journal of Economic Entomology,2007,100(1):11-19.
    Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976, 72(1-2):248-254.
    Buyukguzel, K. Malathion-induced oxidative stress in a parasitoid wasp:Effect on adult emergence, longevity, fecundity, and oxidative and antioxidative response of Pimpla turionellae (Hymenoptera:Ichneumonidae) [J]. Journal of Economic Entomology,2006, 99(4):1225-1234.
    Cameron, P., Shelton, A., Walker, G., et al. Comparative insecticide resistance of New Zealand and North American populations of diamondback moth, Plutella xylostella (Lepidoptera: Piuteiiidae) [J]. New Zealand Journal of Crop and Horticultural Science,1997,25(2): 117-122.
    Candas, M., Loseva, O., Oppert, B., et al. Insect resistance to Bacillus thuringiensis:Alterations in the indianmeal moth larval gut proteome [J]. Molecular & Cellular Proteomics,2003,2(1): 19-28.
    Cao, G., Han, Z. Tebufenozide resistance selected in Plutella xylostella and its cross-resistance and fitness cost [J]. Pest management science,2006,62(8):746-751.
    Chai, L.Q., Tian, Y.Y., Yang, D.T., et al.. Molecular cloning and characterization of a C-type lectin from the cotton bollworm, Helicoverpa armigera [J]. Developmental & Comparative Immunology,2008,32(1):71-83.
    Chamberlin, M. Control of oxidative phosphorylation during insect metamorphosis [J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2004,287(2): R314.
    Chan, Q. W.T., Howes, C.G., Foster, L.J. Quantitative comparison of caste differences in honeybee hemolymph [J]. Molecular & Cellular Proteomics,2006,5(12):2252-2262.
    Chen, H., Gonzales-Vigil, E., Wilkerson, C.G., et al. Stability of Plant Defense Proteins in the Gut of Insect Herbivores [J]. Plant Physiology,2007,143(4):1954-1967.
    Chen, L., Ma, W., Wang, X., et al. Analysis of pupal head proteome and its alteration in diapausing pupae of Helicoverpa armigera [J]. Journal of Insect Physiology,2010,56(3):247-252.
    Chen, M.-S., Zhao, H.-X., Zhu, Y.C., et al. Analysis of transcripts and proteins expressed in the salivary glands of Hessian fly (Mayetiola destructor) larvae [J]. Journal of Insect Physiology, 2008,54(1):1-16.
    Cilia, M., Fish, T., Yang, X., et al. A comparison of protein extraction methods suitable for gel-based proteomic studies of aphid proteins [J]. Journal of Biomolecular Techniques,2009, 20:201-215.
    Colinet, H., Hoffmann, A. Gene and protein expression of Drosophila Starvin during cold stress and recovery from chill coma [J]. Insect Biochemistry and Molecular Biology,2010,40(5): 425-428.
    Colinet, H., Nguyen, T., Cloutier, C., et al. Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure [J]. Insect Biochemistry and Molecular Biology,2007, 37(11):1177-1188.
    Collins, R.M., Afzal, M., Ward, D.A., et al. Differential Proteomic Analysis of Arabidopsis thaliana genotypes exhibiting resistance or susceptibility to the insect herbivore, Plutella xylostella [J]. PLoS ONE,2010,5(4):e10103.
    Colliot, F., Kukorowski, K., Hawkins, D., et al1. Fipronil:a new soil and foliar broad spectrum insecticide [A]. Proceedings, Brighton Crop Protection Conference:Pests and Diseases [D]. British Crop Protection Council, Farnham 1992. pp.29-34.
    Cui, F., Lin, Z., Wang, H., et al. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects [J]. Insect Biochemistry and Molecular Biology, 2011,4(1):1-8.
    Davies, S.J., Chapman, T. Identification of genes expressed in the accessory glands of male Mediterranean Fruit Flies (Ceratitis capitata) [J]. Insect Biochemistry and Molecular Biology, 2006,36(11):846-856.
    Diaz-Mendoza, M., Ortego, F., Garcia de Lacoba, M., et al. Diversity of trypsins in the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera:Noctuidae), revealed by nucleic acid sequences and enzyme purification [J]. Insect Biochemistry and Molecular Biology,2005,35(9):1005-1020.
    Ding, M., Gao, Q., Mo, J., et al. Construction and validation of an insecticide resistance-associated DNA microarray. Journal of Pesticide Science,2007,32(1):32-41.
    Du, L., Li, B., Gao, L., et al. Molecular characterization of the cDNA encoding prophenoloxidase-2 (PPO2) and its expression in diamondback moth Plutella xylostella [J]. Pesticide Biochemistry and Physiology,2010,98(2):158-167.
    Dukre, A., Moharil, M., Ghodki, B., et al. Role of glutathione-s-transferase in imparting resistance to pyrethroids in Plutella xylostella (L.) [J]. International Journal of Integrative Biology,2009, 6(1):17-21.
    Durham, E.W., Siegfried, B.D., Scharf, M.E. In vivo and in vitro metabolism of fipronil by larvae of the European corn borer Ostrinia nubilalis [J]. Pest Management Science,2002,58(8): 799-804.
    Enayati, A., Ranson, H., Hemingway, J. Insect glutathione transferases and insecticide resistance [J]. Insect Molecular Biology,2005,14(1):3-8.
    Eum, J.H., Seo, Y.R., Yoe, S.M., et al. Analysis of the immune-inducible genes of Plutella xylostella using expressed sequence tags and cDNA microarray [J]. Developmental & Comparative Immunology,2007,31 (11):1107-1120.
    Eziah, V.Y., Rose, H.A., Clift, A.D., et al. Susceptibility of four field populations of the diamondback moth Plutella xylostella L. (Lepidoptera:Yponomeutidae) to six insecticides in the Sydney region, New South Wales, Australia [J]. Australian Journal of Entomology,2008, 47(4):355-360.
    Fang, X.K., Huang, D.F., Wang, Z.X., et al. Identification of the proteins related to cytochrome P450 induced by fenvalerate in a Trichoplusia ni cell line [J]. Cell Biology and Toxicology, 2007,23(6):445-457.
    ffrench-Constant, R.H., Daborn, P.J., Goff, G.L. The genetics and genomics of insecticide resistance [J]. Trends in Genetics,2004,20(3):163-170.
    Fitches, E., Wiles, D., Douglas, A.E., et al. The insecticidal activity of recombinant garlic lectins towards aphids [J]. Insect Biochemistry and Molecular Biology,2008,38(10):905-915.
    Francis, F., Gerkens, P., Harmel, N., et al. Proteomics in Myzus persicae:Effect of aphid host plant switch [J]. Insect Biochemistry and Molecular Biology,2006,36(3):219-227.
    Francis, F., Guillonneau, F., Leprince, P., et al. Tritrophic interactions among Macrosiphum euphorbiae aphids, their host plants and endosymbionts:Investigation by a proteomic approach [J]. Journal of Insect Physiology,2010,56(6):575-585.
    Franck, E., Madsen, O., van Rheede, T., et al. Evolutionary diversity of vertebrate small heat shock proteins [J]. Journal of molecular evolution,2004,59(6):792-805.
    Fu, Q., Liu, P.C., Wang, J.X., et al. Proteomic identification of differentially expressed and phosphorylated proteins in epidermis involved in larval-pupal metamorphosis of Helicoverpa armigera [J]. BMC Genomics,2009,10:600.
    Fu, Y., Zhu, Y, Ni, J., et al. A reversible S-adenosyl-L-homocysteine hydrolase inhibitor ameliorates experimental autoimmune encephalomyelitis by inhibiting T cell activation [J]. Journal of Pharmacology and Experimental Therapeutics,2006,319(2):799-808.
    Fujisawa, K., Murakami, R., Horiguchi, T., et al. Adenylate kinase isozyme 2 is essential for growth and development of Drosophila melanogaster [J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2009,153(1):29-38.
    Fujiwara, H., Ishikawa, H. Molecular mechanism of introduction of the hidden break into the 28S rRNA of insects:implication based on structural studies [J]. Nucleic Acids Research,1986, 14(16):6393-6401.
    Gant, D.B., Chalmers, A.E., Wolff, M.A.,et al. Fipronili action at the GABA receptor [J]. Reviews in Toxicology,1998,2(14):147-156.
    Guedes, S.M., Vitorino, R., Tomer, K., et al. Drosophila melanogaster larval hemolymph protein mapping [J]. Biochemical and Biophysical Research Communications,2003,312(3): 545-554.
    Gujar, H., Sohal, B.S. Susceptibility status of diamondback moth, Plutella xylostella (L) to some insecticides and role of general esterases and acetylcholinesterases in imparting resistance [J]. Pesticide Research Journal,2010,22(1):50-54.
    Hainzl, D., Casida, J.E. Fipronil insecticide:Novel photochemical desulfinylation with retention of neurotoxicity [J]. Proceedings of the National Academy of Sciences,1996,93(23): 12764-12767.
    Halestrap, A.P., Catherine, B. The adenine nucleotide translocase:a central component of the mitochondrial permeability transition pore and key player in cell death [J]. Current Medicinal Chemistry,2003,10(16):1507-1525.
    Hardstone, M., Komagata, O., Kasai, S., et al. Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus [J]. Insect Molecular Biology,2010,19(6):717-726.
    Hayes, J.D., Flanagan, J.U., Jowsey, I.R. Glutathione transferases [J]. Pharmacology and Toxicology,2005,45(1):51-88.
    Hemingway, J., Hawkes, N.J., McCarroll, L., et al. The molecular basis of insecticide resistance in mosquitoes [J]. Insect Biochemistry and Molecular Biology,2004,34(7):653-665.
    Hosie, A.M., Baylis, H.A., Buckingham, S.D., et al. Actions of the insecticide fipronil, on dieldrin-sensitive and-resistant GABA receptors of Drosophila melanogaster [J]. British Journal of Pharmacology,1995,115(6):909-912.
    Hu, J.F., Liang, P., Shi, X., et al. Effects of insecticides on the fluidity of mitochondrial membranes of the diamondback moth, Plutella xylostella, resistant and susceptible to avermectin [J]. Journal of Insect Science,2008,8(3):1-9.
    Hu, Z., Lee, K.S., Choo, Y.M., et al. Molecular cloning and characterization of 1-Cys and 2-Cys peroxiredoxins from the bumblebee Bombus ignitus [J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology.2010,155(3):272-280.
    Huang, L., Wang, C, Kang, L. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa [J]. Journal of Insect Physiology,2009,55(3):279-285.
    Huang, Z., Shi, P., Dai, J., et al. Protein metabolism in Spodoptera litura (F.) is influenced by the botanical insecticide azadirachtin [J]. Pesticide Biochemistry and Physiology,2004,80(2): 85-93.
    Idris, A.B., Husaan, A.K., Siti Hajar, M.T. Responses of three strains of diamondback moth, Plutella xylostella (L) on Bacillus thuringiensis var. aizawai and fipronil [J]. Journal of Asia-Pacific Entomology,2004,7(1):113-117.
    Iqbal, M., Verkerk, R.H.J., Furlong, M.J., et al. Evidence for Resistance to Bacillus thuringiensis (Bt) subsp. kurstaki HD-1, Bt subsp. aizawai and abamectin in field populations of Plutella xylostella from Malaysia [J]. Pesticide science,1996,48(1):89-97.
    Jimenez, A., Santos, M., Revuelta, J. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii [J]. BMC Biotechnology,2008,8(1): 67.
    Jin, T., Zeng, L., Lu, Y., et al. Identification of resistance-responsive proteins in larvae of Bactrocera dorsalis (Hendel), for pyrethroid toxicity by a proteomic approach [J]. Pesticide Biochemistry and Physiology,2010,96(1):1-7.
    Joia, B., Udeaan, A., Chawla, R. Toxicity of cartap hydrochloride and other insecticides to multi-resistant strains of the diamondback moth, Plutella xylostella (L.), in the Punjab [J]. International Pest Control,1996,38(5):158-159.
    Jones, C.M., Gorman, K., Denholm, I., et al. High-throughput allelic discrimination of B and Q biotypes of the whitefly, Bemisia tabaci, using TaqMan allele-selective PCR [J]. Pest Management Science,2008,64(1):12-15.
    Jurat-Fuentes, J.L., Adang, M.J. A proteomic approach to study Cry1 Ac binding proteins and their alterations in resistant Heliothis virescens larvae [J]. Journal of Invertebrate Pathology,2007, 95(3):187-191.
    Kalume, D., Okulate, M., Zhong, J., et al. A proteomic analysis of salivary glands of female Anopheles gambiae mosquito [J]. Proteomics,2005,5(14):3765-3777.
    Kane, N.S., Hirschberg, B., Qian, S., et al. Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin [J]. Proceedings of the National Academy of Sciences,2000,97(25):13949.
    Kao, C.H., Cheng, E.Y. Insecticide resistance in Plutella xylostella L. XI. resistance to newly introduced insecticides in Taiwan (1990-2001). Journal of Agricultural Research of China. 2001,50(4):80-89.
    Kao, C.H., Hung, C.F.U., Sun, C.N. Parathion and methyl parathion resistance in diamondback moth (Lepidoptera:Plutellidae) larvae [J]. Journal of Economic Entomology,1989,82(5): 1299-1304.
    Kao, C.H., Sun, C.N. In vitro degradation of some organophosphorus insecticides by susceptible and resistant diamondback moth [J]. Pesticide Biochemistry and Physiology,1991,41(2): 132-141.
    Karr, T.L. Fruit flies and the sperm proteome [J]. Human Molecular Genetics,2007,16(R2): R124-133.
    Khaliq, A., Attique, M.N.R., Sayyed, A.H. Evidence for resistance to pyrethroids and organophosphates in Plutella xylostella (Lepidoptera:Plutellidae) from Pakistan [J]. Bulletin of Entomological Research,2007,97(2):191-200.
    Kilic, N.K., Stensballe, A., Otzen, D.E., et al. Proteomic changes in response to chromium (VI) toxicity in Pseudomonas aeruginosa [J]. Bioresource Technology,2009,101:2134-2140.
    Konishi, H., Noda, H., Tamura, Y., et al. Proteomic analysis of the salivary glands of the rice brown planthopper, Nilaparvata lugens (Stal) (Homoptera:Delphacidae) [J]. Applied Entomology and Zoology,2009,44(4):525-534.
    Krishnamoorthy, M., Jurat-Fuentes, J.L., McNall, R.J., et al. Identification of novel CrylAc binding proteins in midgut membranes from Heliothis virescens using proteomic analyses [J]. Insect Biochemistry and Molecular Biology,2007,37(3):189-201.
    Kristensen, M., Jespersen, J.B., Knorr, M. Cross-resistance potential of fipronil in Musca domestica [J]. Pest Management Science,2004,60(9):894-900.
    Kuwahara, M., Keinmeesuke, P., Shirai, Y. Seasonal trend in population density and adult body size of the diamondback moth, Plutella xylostella (L.)(Lepidoptera:Yponomeutidae), in central Thailand [J]. Applied Entomology and Zoology,1995,30(4):551-555.
    Kwak, I.S., Lee, W. Two-dimensional gel electrophoresis analysis of proteins following tebufenozide treatment of Chironomus riparius [J]. Bulletin of Environmental Contamination and Toxicology,2005,74(6):1159-1165.
    Le Goff, G., Hamon, A., Berge, J., et al. Resistance to fipronil in Drosophila simulans:influence of two point mutations in the RDL GABA receptor subunit [J]. Journal of Neurochemistry,2005, 92(6):1295-1305.
    Lee, D.-W., Choi, J.Y., Kim, W.T., et al. Mutations of acetylcholinesterasel contribute to prothiofos-resistance in Plutella xylostella (L.) [J]. Biochemical and Biophysical Research Communications,2007,353(3):591-597.
    Lee, K.S., Kim, S.R., Park, N.S., et al. Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection [J]. Insect Biochemistry and Molecular Biology,2005,35(1):73-84.
    Lee, S., Basio, N., Kim, D., et al. Proteomic analysis of parasitization by Cotesia plutellae against diamondback moth, Plutella xylostella [J]. Journal of Asia-Pacific Entomology,2005,8(1): 53-60.
    Lefevre, T., Thomas, F., Schwartz, A., et al. Malaria Plasmodium agent induces alteration in the head proteome of their Anopheles mosquito host [J]. Proteomics,2007,7(11):1908-1915.
    Leon, I., Neves-Ferreira, A., Valente, R., et al. Improved protein identification efficiency by mass spectrometry using N-terminal chemical derivatization of peptides from Angiostrongylus costaricensis, a nematode with unknown genome [J]. Journal of Mass Spectrometry,2007, 42(10):1363-1374.
    Levy, F., Bulet, P., Charlet, M., et al. Proteomic analysis of the systemic immune response of Drosophila [J]. Molecular & Cellular Proteomics,2004,3(2):156-166.
    Li, A., Popova-Butler, A., Dean, D., et al. Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause [J]. Journal of Insect Physiology, 2007,53(4):385-391.
    Li, A.G., Yang, Y.H., Wu, S.W., et al. Investigation of resistance mechanisms to fipronil in diamondback moth (Lepidoptera:Plutellidae) [J]. Journal of Economic Entomology,2006, 99(3):914-919.
    Li, J., Fang, Y., Zhang, L., et al. Honeybee (Apis mellifera ligustica) drone embryo proteomes [J]. Journal of Insect Physiology,2011,57(3):372-384.
    Li, X., Huang, Q., Yuan, J., et al. Fipronil resistance mechanisms in the rice stem borer, Chilo suppressalis Walker [J]. Pesticide Biochemistry and Physiology,2007,89(3):169-174.
    Li, X.C., Schuler, M.A., Berenbaum, M.R.. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics [J]. Annual Review of Entomology,2007,52:231-253.
    Liang, P., Gao, X.W., Zheng, B.Z. Genetic basis of resistance and studies on cross-resistance in a population of diamondback moth, Plutella xylostella (Lepidoptera:Plutellidae) [J]. Pest Management Science,2003,59(11):1232-1236.
    Liu, F., Ling, E.J., Wu, S. Gene expression profiling during early response to injury and microbial challenges in the silkworm, Bombyx mori [J]. Archives of Insect Biochemistry and Physiology,2009,72(1):16-33.
    Liu, K., Zheng, B., Hong, H., et al. Characterization of cultured insect cells selected by Bacillus thuringiensis crystal toxin [J]. In Vitro Cellular & Developmental Biology-Animal,2004, 40(10):312-317.
    Liu, M.Y., Tzeng, Y.J., Sun, C.N. Diamondback moth resistance to several synthetic pyrethroids [J]. Journal of Economic Entomology,1981,4(4):393-396.
    Liu, M.Y., Tzeng, Y.J., Sun, C.N. Insecticide Resistance in the Diamondback Moth [J]. Journal of Economic Entomology,1982,75(1):153-155.
    Livak, K.J., Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J]. Methods,2001,25(4):402-408.
    Lourenco, A.P., Zufelato, M.S., Bitondi, M.M.G., et al. Molecular characterization of a cDNA encoding prophenoloxidase and its expression in Apis mellifera [J]. Insect Biochemistry and Molecular Biology,2005,35(6):541-552.
    Lu, Y.X., Xu, W.H. Proteomic and phosphoproteomic analysis at diapause initiation in the cotton bollworm, Helicoverpa armigera [J]. Journal of Proteome Research,2010,9(10):5053-5064.
    Madanagopal, N., Kim, Y. Biochemical characterization of C-type lectin in the diamondback moth, Plutella xylostella (Yponomeutidae:Lepidoptera) [J]. Journal of Asia-Pacific Entomology, 2007,10(3):229-237.
    Masuta, C., Tanaka, H., Uehara, K., et al. Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in S-adenosylmethionine-dependent transmethylation reactions [J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92(13):6117-6121.
    McNall, R., Adang, M. Identification of novel Bacillus thuringiensis Cry1 Ac binding proteins in Manduca sexta midgut through proteomic analysis [J]. Insect Biochemistry and Molecular Biology,2003,33(10):999-1010.
    Misra, J.R., Homer, M.A., Lam, G., et al. Transcriptional regulation of xenobiotic detoxification in Drosophila [J]. Genes & Development,2011,25(17):1796-1806.
    Mohan, M., Gujar, GT.. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes [J]. Crop Protection, 2003,22(3):495-504.
    Murad, A.M., Noronha, E.F., Miller, R.N.G., et al. Proteomic analysis of Metarhizium anisopliae secretion in the presence of the insect pest Callosobruchus maculatus [J]. Microbiology,2008, 154(12):3766-3774.
    Narahashi, T., Zhao, X., Ikeda, T., et al. Glutamate-activated chloride channels:Unique fipronil targets present in insects but not in mammals [J]. Pesticide Biochemistry and Physiology, 2010,97(2):149-152.
    Nehare, S., Ghodki, B.S., Lande, GK.,et al. Inheritance of resistance and cross resistance pattern in indoxacarb-resistant diamondback moth Plutella xylostella L [J]. Entomological Research, 2010,40(1):18-25.
    Nguyen, T., Michaud, D., Cloutier, C. A proteomic analysis of the aphid Macrosiphum euphorbiae under heat and radiation stress [J]. Insect Biochemistry and Molecular Biology,2009,39(1): 20-30.
    Nguyen, T.T.A., Boudreault, S., Michaud, D., et al. Proteomes of the aphid Macrosiphum euphorbiae in its resistance and susceptibility responses to differently compatible parasitoids [J]. Insect Biochemistry and Molecular Biology,2008,38(7):730-739.
    Ninsin, K.D., Mo, J., Miyata, T. Decreased susceptibilities of four field populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera:Yponomeutidae), to acetamiprid [J]. Applied Entomology and Zoology,2000,35(4):591-595.
    Pandey, A., Mann, M. Proteomics to study genes and genomes. Nature,2000,405(6788):837-846.
    Park, B.S., Lee, B.H., Kim, T.W., et al. Proteomic evaluation of adults of Rhyzopertha dominica resistant to phosphine [J]. Environmental Toxicology and Pharmacology,2008,25(1): 121-126.
    Pauchet, Y., Muck, A., Svato, A., Heckel, D. Chromatographic and electrophoretic resolution of proteins and protein complexes from the larval midgut microvilli of Manduca sexta [J]. Insect Biochemistry and Molecular Biology,2009,39(7):467-474.
    Perng, F., Yao, M., Hung, C., et al. Teflubenzuron resistance in diamondback moth (Lepidoptera: Plutellidae) [J]. Journal of Economic Entomology,1988,81(5):1277-1282.
    Qi, S.W., Li, Q.X., Robert, K.. Proteomics in Pesticide Toxicology, Hayes' Handbook of Pesticide Toxicology (Third Edition) [M]. Academic Press, New York,2010.603-626.
    Qian, L., Cao, G., Song, J., et al. Biochemical mechanisms conferring cross-resistance between tebufenozide and abamectin in Plutella xylostella [J]. Pesticide Biochemistry and Physiology, 2008,91(3):175-179.
    Rajeevan, M.S., Ranamukhaarachchi, D.G., Vernon, S.D., et al. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies [J]. Methods, 2001,25(4):443-451.
    Randolt, K., Gimple, O., Geissend rfer, J., et al. Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults [J]. Archives of Insect Biochemstry and Physiology,2008,69:155-167.
    Regupathy, A. Insecticide resistance in diamondback moth (DBM), Plutella xylostella (L.):status and prospects for its management in India [A]. Sivapragasam A., Loke W. H., Hussan A. K., Lim G. S. (Eds). The Management of Diamondback moth and other Crucifer Pests: Proceeding of the Third International Workshop [D]. Kulalumpur, Malaysia,1996. pp. 233-242.
    Riaz, M.A., Poupardin, R., Reynaud, S., et al. Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics [J]. Aquatic Toxicology,2009,93(1):61-69.
    Rumpf, S., Hetzel, F., Frampton, C. Lacewings (Neuroptera:Hemerobiidae and Chrysopidae) and integrated pest management:enzyme activity as biomarker of sublethal insecticide exposure [J]. Journal of Economic Entomology,1997,90(1):102-108.
    Santamaria, M., Lanave, C., Saccone, C. The evolution of the adenine nucleotide translocase family [J]. Gene,2004,333:51-59.
    Sarfraz, M., Keddie, B. Conserving the efficacy of insecticides against Plutella xylostella (L.)(Lep., Plutellidae) [J]. Journal of Applied Entomology,2005,129(3):149-157.
    Sayyed, A., Wright, D. Fipronil resistance in the diamondback moth (Lepidoptera:Plutellidae): inheritance and number of genes involved [J]. Journal of Economic Entomology,2004,97(6): 2043-2050.
    Sayyed, A.H., Wright, D.J. Genetics and evidence for an esterase-associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera:Plutellidae) [J]. Pest Management Science,2006,62(11):1045-1051.
    Scharf, M.E., Siegfried, B.D., Meinke, L.J., et al. Fipronil metabolism, oxidative sulfone formation and toxicity among organophosphate-and carbamate-resistant and susceptible western corn rootworm populations. Pest Management Science,2000,56(9):757-766.
    Scharlaken, B., De Graaf, D., Memmi, S., et al. Differential protein expression in the honey bee head after a bacterial challenge [J]. Archives of Insect Biochemistry and Physiology,2007, 65(4):223-237.
    Schippers, M.P., Dukas, R., Smith, R.W., et al. Lifetime performance in foraging honeybees: behaviour and physiology [J]. Journal of Experimental Biology,2006,209(19):3828-3836.
    Schuler, T.H., Martinez-Torres, D., Thompson, A.J.,et al. Toxicological, electrophysiological, and molecular characterisation of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.) [J]. Pesticide Biochemistry and Physiology,1998, 59(3):169-182.
    Sharma, R., Komatsu, S., Noda, H. Proteomic analysis of brown planthopper:application to the study of carbamate toxicity [J]. Insect Biochemistry and Molecular Biology,2004,34(5): 425-432.
    Sharma, S., Rohilla, M.S., Reddy, P.V.J., et al. In vitro induction of 60-kDa and 70-kDa heat shock proteins by endosulphan and monocrotophos in sheep blowfly Lucilia cuprina [J]. Archives of Environmental Contamination and Toxicology,2008,55(1):57-69.
    Sharon, N., Lis, H. Lectins as cell recognition molecules [J]. Science,1989,246(4927):227-234.
    Shelby, K.S., Popham, H.J.R. Analysis of ESTs generated from immune-stimulated hemocytes of larval Heliothis virescens. Journal of Invertebrate Pathology,2009,101(2):86-95.
    Shelton, A., Wyman, J., Cushing, N., et al. Insecticide resistance of diamondback moth (Lepidoptera:Plutellidae) in North America [J]. Journal of Economic Entomology,1993, 86(1):11-19.
    Shi, L., Paskewitz, S. Proteomics and insect immunity [J]. Information Systems Journal 2006,3: 4-17.
    Shi, Z.H., Guo, S.J., Lin, W.C., et al. Evaluation of selective toxicity of five pesticides against Plutella xylostelia (Lep:Plutellidae) and their side-effects against Cotesia plutellae (Hym: Braconidae) and Oomyzus sokolowskii (Hym:Eulophidae) [J]. Pest Management Science, 2004,60(12):1213-1219.
    Smith, L.L. Key challenges for toxicologists in the 21st century [J]. Trends in Pharmacological Sciences,2001,22(6):281-285.
    Song, K.H., Jung, M.K., Eum, J.H., et al. Proteomic analysis of parasitized Plutella xylostella larvae plasma [J]. Journal of Insect Physiology,2008,54(8):1271-1280.
    Song, K.H., Jung, S.J., Seo, Y.R., et al. Identification of up-regulated proteins in the hemolymph of immunized Bombyx mori larvae [J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics,2006,1(2):260-266.
    Sonoda, S., Igaki, C. Characterization of acephate resistance in the diamondback moth Plutella xylostella [J]. Pesticide Biochemistry and Physiology,2010,98(1):121-127.
    Sonoda, S., Igaki, C., Tsumuki, H. Alternatively spliced sodium channel transcripts expressed in field strains of the diamondback moth [J]. Insect Biochemistry and Molecular Biology,2008, 38(9):883-890.
    Sonoda, S., Tsumuki, H. Induction of heat shock protein genes by chlorfenapyr in cultured cells of the cabbage armyworm, Mamestra brassicae [J]. Pesticide Biochemistry and Physiology, 2007,89(3):185-189.
    Sonoda, S., Tsumuki, H. Studies on glutathione S-transferase gene involved in chlorfluazuron resistance of the diamondback moth, Plutella xylostella L.(Lepidoptera:Yponomeutidae) [J]. Pesticide Biochemistry and Physiology,2005,82(1):94-101.
    Sonoda, S., Tsumuki, H. Gene expression of hsp70 of the diamondback moth, Plutella xylostella (Lepidoptera:Yponomeutidae), in response to heat shock and insecticides [J]. Applied Entomology and Zoology,2008,43(2):241-247.
    Sun, C.N., Tsai, Y.C., Chiang, F.M. Resistance in the Diamondback Moth to Pyrethroids and Benzoylphenylureas, In:Molecular Mechanisms of Insecticide Resistance [M]. ACS Symposium Series, American Chemical Society,1992. pp.149-167.
    Sun, C.N., Wu, T., Chen, J., et al. Insecticide resistance in diamondback moth [A]. Talekar, N.S., Griggs, T.D. (Eds.). Diamondback moth Management:Proceeding of the Fisrst International Workshop [D].Taiwan.1985. pp.359-371.
    Sun, J., Liu, X., Li, Q. Molecular cloning, expression and antioxidant activity of a peroxiredoxin 2 homologue from Lampetra japonica [J]. Fish & Shellfish Immunology,2010,28(5-6): 795-801.
    Syed, A. Insecticide resistance in diamondback moth in Malaysia [A]. Talekar, N.S. (Ed.). Diamondback Moth and Other Crucifer Pests:Proceedings of the Second International Workshop [D]. Tainan, Taiwan.1992. pp.10-14.
    Tabashnik, B.E., Cushing, N.L., Finson, N., et al. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutellidae) [J]. Journal of Economic Entomology,1990,83(5):1671-1676.
    Takeda, T., Nakamatsu, Y., Tanaka, T. Parasitization by Cotesia plutellae enhances detoxifying enzyme activity in Plutella xylostella [J]. Pesticide Biochemistry and Physiology,2006,86(1): 15-22.
    Talekar, N., Shelton, A. Biology, ecology, and management of the diamondback moth [J]. Annual Review of Entomology,1993,38(1):275-301.
    Thom, R., Dixon, D., Edwards, R., et al. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana:characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolisml [J]. Journal of Molecular Biology,2001,308(5): 949-962.
    Tian, Y.Y., Liu, Y., Zhao, X..F., et al. Characterization of a C-type lectin from the cotton bollworm, Helicoverpa armigera [J]. Developmental & Comparative Immunology,2009,33(6): 772-779.
    Tiewsiri, K., Wang, P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1 Ac in cabbage looper [J]. Proceedings of the National Academy of Sciences,2011,108(34):14037-14042.
    Untalan, P., Guerrero, F., Haines, L.,et al. Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus [J]. Insect Biochemistry and Molecular Biology,2005,35(2):141-151.
    Veraksa, A. When peptides fly:Advances in Drosophila proteomics [J]. Journal of Proteomics, 2010,73(11):2158-2170.
    Vierstraete, E., Cerstiaens, A., Baggerman, G., et al. Proteomics in Drosophila melanogaster:first 2D database of larval hemolymph proteins [J]. Biochemical and biophysical research communications,2003,304(4):831-838.
    Vierstraete, E., Verleyen, P., Baggerman, G., et al. A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph [J]. Proceedings of the National Academy of Sciences,2004,101(2):470.
    Wang, C., Cao, Y., Wang, Z., et al. Differentially-expressed glycoproteins in Locusta migratoria hemolymph infected with Metarhizium anisopliae [J]. Journal of Invertebrate Pathology, 2007,96(3):230-236.
    Wang, Y, Zhang, P., Fujii, H.,et al. Proteomic studies of lipopolysaccharide-induced polypeptides in the silkworm, Bombyx mori [J]. Bioscience, biotechnology, and biochemistry,2004,68(8): 1821-1823.
    Wang, Y., Zou, Z., Jiang, H.B. An expansion of the dual clip-domain serine proteinase family in Manduca sexta:gene organization, expression, and evolution of prophenoloxidase-activating proteinase-2, hemolymph proteinase 12, and other related proteinases [J]. Genomics,2006, 87(3):399-409.
    Wilkins, R.M., Ahmed, S., Mantle, D. Comparative effect of fenitrothion treatment on intracellular protease activities in insecticide-resistant and susceptible strains of Musca domestica L [J]. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology,1999,124(3):337-343.
    Winnebeck, E.C., Millarlb, C.D., Warman, G.R. Why does insect RNA look degraded [J]? Journal of Insect Science,2010,10:159.
    Wolschin, F., Amdam, G. Comparative proteomics reveal characteristics of life-history transitions in a social insect [J]. Proteome Science,2007,5(1):10.
    Wolschin, F., Gadau, J.. Deciphering Proteomic Signatures of Early Diapause in Nasonia [J]. PLoS ONE,2009,4(7):e6394.
    Wu, H., Zhang, R., Liu, J., et al. Effects of malathion and chlorpyrifos on acetylcholinesterase and antioxidant defense system in Oxya chinensis (Thunberg) (Orthoptera:Acrididae) [J]. Chemosphere,2011,83(4):599-604.
    Wu, Q.L., Fu, Y.F., Zhou, W.L., et al. Inhibition of S-adenosyl-L-homocysteine hydrolase induces immunosuppression [J]. Journal of Pharmacology and Experimental Therapeutics,2005, 313(2):705.
    Yan, L.J., Sohal, R.S. Mitochondrial adenine nucleotide translocase is modified oxidatively during aging [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(22):12896-12901.
    Younis, H.M., Abo-El-Saad, M.M., Abdel-Razik, R.K., et al. Resolving the DDT target protein in insects as a subunit of the ATP synthase [J]. Biotechnology and applied biochemistry,2002, 35(1):9-17.
    Yu, F., Kang, M., Meng, F., et al. Molecular cloning and characterization of a thioredoxin peroxidase gene from Apis cerana cerana [J]. Insect Molecular Biology,2011,20(3): 367-378
    Yu, Q.Y., Fang, S.M., Zuo, W.D., et al. Effect of Organophosphate Phoxim Exposure on Certain Oxidative Stress Biomarkers in the Silkworm [J]. Journal of Economic Entomology,2011, 104(1):101-106.
    Yu, S., Nguyen, S. Detection and biochemical characterization of insecticide resistance in the diamondback moth [J]. Pesticide Biochemistry and Physiology,1992,44(1):74-81.
    Yu, X., Kanost, M. Binding of hemolin to bacterial lipopolysaccharide and lipoteichoic acid [J]. European Journal of Biochemistry,2002,269(7):1827-1834.
    Yu, X., Kanost, M. Immulectin-2, a lipopolysaccharide-specific lectin from an insect, Manduca sexta, is induced in response to gram-negative bacteria [J]. Journal of Biological Chemistry, 2000,275(48):37373-37381.
    Yu, X.Q., Gan, H. Immulectin, an inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase [J]. Insect Biochemistry and Molecular Biology,1999,29(7):585-597.
    Yuan, C., Ding, X., Xia, L., et al. Proteomic analysis of BBMV in Helicoverpa armigera midgut with and without CrylAc toxin treatment [J]. Biocontrol Science and Technology,2011, 21(2):139-151.
    Yuan, G., Gao, W., Yang, Y., et al. Molecular cloning, genomic structure, and genetic mapping of two Rdl-orthologous genes of GABA receptors in the diamondback moth, Plutella xylostella [J]. Archives of Insect Biochemistry and Physiology,2010,74(2):81-90.
    Zelensky, A.N., Gready, J.E. The C-type lectin-like domain superfamily [J]. FEBS Journal,2005, 272(24):6179-6217.
    Zhang, J., Goyer, C., Pelletier, Y. Environmental stresses induce the expression of putative glycine-rich insect cuticular protein genes in adult Leptinotarsa decemlineata (Say) [J]. Insect Molecular Biology,2008,17(3):209-216.
    Zhang, P., Yamamoto, K., Aso, Y., et al. Proteomic study of lipopolysaccharide-induced immune response in hemolymph of the silkworm, Bombyx mori [J]. Entomotech,2007,31:39-41.
    Zhao, J., Collins, H., Li, Y., et al. Monitoring of diamondback moth (Lepidoptera:Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate [J]. Journal of Economic Entomology,2006,99(1):176-181.
    Zhao, J.Z., Li, Y.X., Collins, H., et al. Monitoring and characterization of diamondback moth (Lepidoptera:Plutellidae) resistance to spinosad [J]. Journal of Economic Entomology,2002, 95(2):430-436.
    Zhao, L., Pridgeon, J.W., Becnel, J.J., et al. Cytochrome c gene and protein expression: Developmental regulation, environmental response, and pesticide sensitivity in Aedes aegypti [J]. Journal of Medical Entomology,2008,45(3):401-408.
    Zhao, X., Salgado, V.L. The role of GABA and glutamate receptors in susceptibility and resistance to chloride channel blocker insecticides [J]. Pesticide Biochemistry and Physiology,2010, 97(2):153-160.
    Zhao, X., Yeh, J., Salgado, V., et al. Sulfone metabolite of fipronil blocks y-aminobutyric acid-and glutamate-activated chloride channels in mammalian and insect neurons [J]. Journal of Pharmacology and Experimental Therapeutics,2005,314(1):363.
    Zhao, X., Yeh, J.Z., Salgado, V.L., et al. Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons [J]. Journal of Pharmacology and Experimental Therapeutics,2004,310(1):192-201.
    Zhou, X.M., Wu, Q.J., Zhang, Y.J., et al. Effects of abamectin selection on the genetic differentiation within Plutella xylostella (Lepidoptera:Plutellidae) based on amplified fragment length polymorphism [J]. Insect Science,2010,17(4):353-360.
    Zhou, Z., Yang, H., Zhong, B. From genome to proteome:great progress in the domesticated silkworm (Bombyx mori L.) [J]. Acta Biochimica et Biophysica Sinica,2008,40(7):601-611.
    程滨,张娜娜,许勤,等.溴氰菊酯抗感品系小菜蛾成虫差异表达蛋白的鉴定[J].南京师大学报(自然科学版),2010,33(2):87-90.
    程家安,唐振华.昆虫分子科学[M].北京:科学出版社,2001.
    程罗根,于光,李忠英.小菜蛾nAChR靶标敏感性与沙蚕毒素类药物的抗性关系[J].中国农业科学,2008,41(4):1048-1052.
    戴佳琳,黄江,廖兴江,等.猪带绦虫腺苷酸激酶的克隆及其重组蛋白免疫反应性的评价[J].中国预防兽医学报,2010,32(7):534-536.
    何恒果.桔全爪螨对甲氰菊酯和阿维菌素的抗性及其酯酶基因的克隆与表达研究[D].重庆:西南大学,2010.
    侯世星,张少辰,黄维棣,等.小菜蛾对毒死蜱敏感性的日节律变化及其机理初探[J].农药学学报,2010,12(2):229-232.
    黄诚华,姚洪渭,叶恭银,等.氟虫腈亚致死剂量处理对二化螟和大螟幼虫体内解毒酶系活力的影响[J].中国水稻科学,2006,20(4):447-450.
    黄剑,吕敏,王群利,等.抗阿维菌素小菜蛾的细胞色素P450酶系研究[J].农药学学报,2005,7(4):316-322.
    黄水金,秦厚国,江金林.取食不同食料对斜纹夜蛾后代抗药性的影响[J].植物保护,2007,33(4):60-64.
    黄志伟,黄勇平,杜家纬.蛋白质组学方法在昆虫学研究中的应用[J].昆虫知识,2007,44(1):37-41.
    蒋红波,王进军.昆虫免疫防御系统的限制因素[J].现代生物医学进展,2006,6(2):86-90.
    蒋芸芸.鳞翅目昆虫内外凝集素的研究概况[J].华东昆虫学报,2006,15(1):25-29.
    赖秋安,孙久荣.腺苷酸激酶与细胞凋亡[J].生物化学与生物物理进展,2001,28(4):444-446.
    李保同,汤丽梅,赵凤霞,等.南昌地区小菜蛾抗药性监测及其应用研究[J].江西农业大学学报,1999,21(1):29-32.
    李超.小菜蛾对氟虫腈的抗性遗传方式、交互抗性及抗性机理[D].南京:南京农业大学,2007.
    李海平,冯涛,陶岭梅,等.九种常用杀虫剂对二化螟线粒体ATPase活力的抑制作用[J].昆虫学报,2006,49(2):254-259.
    梁沛,夏冰,石泰,等.阿维菌素和高效氯氰菊酯亚致死剂量对小菜蛾谷胱甘肽S-转移酶的影响[J].中国农业大学学报,2003,8(3):65-68.
    刘亚光,许修宏,赵滨.几种杀虫剂对哈尔滨地区小菜蛾和蚜虫的毒力测定[J].黑龙江农业 科学,2000,(2):14-16.
    卢雯静,刘银坤,孙强玲,等.健康人肝组织麦胚凝集素亲和型糖蛋白表达谱分析[J].复旦学报:医学版,2007,34(001):29-36.
    吕敏,刘惠霞,吴文君.谷胱甘肽S-转移酶与昆虫抗药性的关系[J].昆虫知识,2003,3(40):204-207,228.
    乔传令,王靖,黄菁.不同种群小菜蛾对4种杀虫药剂的抗性及抗性基因频率[J].农药学学报,2000,2(3):25-29.
    邱星辉.杀虫剂抗性:遗传学,基因组学及应用启示[J].昆虫学报,2005,48(6):960-967.
    苏丽娟,董晓慧,尹新明.赤拟谷盗HSP70基因克隆和竞争定量PCR检测[J].昆虫学报,2011,54(2):218-223.
    唐振华,周成理.解毒酯酶在小菜蛾幼虫抗药性中的作用[J].昆虫学报,1993,36(1):8-13.
    汪方炜,鲁兴萌,颜海燕.家蚕体液性防御因子——凝集素[J].中国蚕业,2001,22(4):55-56.
    王光峰,张友军,柏连阳,等.多杀菌素对甜菜夜蛾多酚氧化酶和羧酸酯酶的影响[J].农药学学报,2003,5(2):40-46.
    王海鸿,雷仲仁.用荧光定量RT-PCR方法分析B型和ZHJ-1型烟粉虱热休克基因hsp70和hsp90的表达[J].中国农业科学,2008,41(11):3636-3644.
    王建军,韩召军,王荫长.南京郊区小菜蛾抗性测定和几种杀虫剂触杀毒力的比较[J].南京农业大学学报,2000,23(4):21-24.
    王林玲,柞蚕微孢子虫核糖体基因及家蚕、柞蚕微孢子虫蛋白质组以及侵染家蚕后中肠的比较蛋白质组学研究[D].镇江:江苏大学,2007.
    王彦华,吴长兴,赵学平,等.害虫对氟虫腈的抗药性研究进展[J].昆虫知识,2009,46(6):846-854.
    王英.大劣按蚊抗约氏疟原虫感染相关蛋白的研究[D].重庆:第三军医大学,2006.
    魏波,郝赤,李会仙.杀虫剂亚致死剂量对棉铃虫靶标酶的影响[J].现代农药,2006,5(3):35-38.
    翁宏飚,牛宝龙,何丽华,等.马尾松毛虫腺苷酸转移酶基因的克隆与分析[J].中国农业科学,2008,41(9):2889-2894.
    吴刚,尤民生,赵士熙.抗性小菜蛾乙酰胆碱酯酶对有机磷及氨基甲酸酯不敏感性研究[J].武夷科学,1999,15:100-103.
    吴青君,张文吉.解毒酶系在小菜蛾对阿维菌素抗性中的作用[J].农药学学报,2001,3(3):23-28.
    吴青君,张友军,徐宝云等.保护酶系在小菜蛾对阿维菌素抗性中的作用[J].应用昆虫学报,2011,48(2):291-295.
    吴青君,朱国仁,赵建周,等.小菜蛾对定虫隆的抗性生化机制初探[J].昆虫学报,1998,41(1):42-47.
    席景会.低温胁迫下拟南芥差异蛋白质组学研究[D].长春:吉林大学,2007.
    许小龙,韩丽娟,顾中言.江苏主要菜区小菜蛾的抗药性[J].江苏农业科学,2000(2):50-52.
    颜新培,林高堂,钟伯雄,等.家蚕胚胎血淋巴保幼激素结合蛋白肽质量指纹图谱分析[A].中国蚕学会第四届青年学术研讨会会议论文集[D],2004.pp.212-219.
    尤民生,魏辉.小菜蛾的研究[M].北京:中国农业出版社.2007.
    余德亿,汤葆莎,占志雄,等.福建省小菜蛾田间抗药性测定[J].福建农业科技,2000(1):.14-16.
    张清平,彭国雄,王中康,等.实时荧光定量PCR检测感病蝗虫体内绿僵菌rDNA基因[J].中国生物工程杂志,2005,25(11):71-75.
    张晓飞,陈之浩.小菜蛾对杀虫双抗性遗传的RDA分析[J].南京师大学报:自然科学版,2003,26(1):78-82.
    赵瑞君,李国锦,尹镭,等.溴氰菊酯在家蝇体内诱导蛋白的二维电泳分析[J].山西农业科学,1996,24(2):54-57.
    赵宇.小菜蛾对多杀菌素的抗性机理[D].南京:南京农业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700