用户名: 密码: 验证码:
基于主题模型的高空间分辨率遥感影像分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传感器技术的飞速发展,获取的遥感影像的空间分辨率逐步提高,遥感影像的数量日益增多,如何对大量的高空间分辨率遥感影像进行特征提取和分类研究成为当前遥感影像研究的基本和核心问题。对于高空间分辨率遥感影像,面向对象的研究已经逐步替代基于像素的技术来提取更多的高空间分辨率影像细节信息。当前常用的分类方法是直接从影像对象中提取低层视觉特征进行分类。但是,这需要从根本上解决一个问题,即低层视觉特征与高层语义特征间的“语义鸿沟”。由于语义表达在图像理解与处理中的重要性,本论文沿着视觉词包模型,主题建模到遥感影像对象分类的路线开展相关研究,将遥感影像对象的低层视觉特征进行词包表示,并进一步映射为主题这一中层语义表示。
     本文分两步来实现遥感影像处理与分析中的影像对象表达和分类。第一,论文通过词包模型来组织影像对象中的局部特征,以此生成具有一定分辨能力的视觉单词,实现对象的词包表示。第二,论文通过主题模型分析不同影像对象中单词的分布(如:视觉单词的共生性和相关性),由此发现对象中隐含的主题(即中层语义),进一步以主题来描述对象,实现对象分类。论文的主要研究内容和创新点包括以下几点:
     1.提出了一种基于多尺度的视觉单词。本文在高空间遥感影像中引入词包模型来计算影像对象的局部特征块表示。为了减少视觉单词的歧义性,引入“虚拟”视觉单词的概念,并结合多尺度图像金字塔,构造多尺度的视觉单词。一方面,“虚拟”单词的应用避免了模型将图像块量化为不合适的视觉单词,而是强制映射为“虚拟”单词,避免图像块量化的歧义性。另一方面,针对视觉单词存在的多义性现象,本文根据不同尺度下图像内容的差异,利用基于多尺度图像金字塔的视觉单词,不仅扩展了单尺度视觉单词的表示能力,还论证了小尺度中提取的视觉单词能够隐含大尺度图像中邻近图像块之间的相互关系,从而减少了视觉单词出现多义性的可能性。实验表明,本文采用多尺度词包表示作为遥感影像的特征,其分类性能优于基于低层视觉特征和经典词包表示的分类性能。
     2.研究并提出了基于多尺度词包表示的层次主题模型,用无监督方法来组织遥感影像对象的层次关系。在经典的层次主题模型中引入视觉单词的尺度信息作为模型构造时的约束条件,将小尺度提取的视觉单词作为对象的概述信息,而大尺度提取的视觉单词作为对象的精细信息,模拟了图像理解过程中由抽象到具体的规律,更好地构造影像对象的层次结构。通过对两组不同遥感传感器采集的影像对象集构造层次聚类,实验表明:基于多尺度词包表示的层次主题模型不仅能提高聚类的效果,而且构造的层次结构与人的认知结果相一致。
     3.提出了基于主题模型的半监督学习算法。本文统一了监督与无监督主题模型的生成过程,并利用多条件学习的思想加权连接这两个模型,使得模型能从少量的标签样本和大量的无标签样本中估计参数,实现分类。该模型将遥感影像对象的主题构造与半监督学习的思想相结合,提高了遥感影像对象的分类性能,同时为主题模型的应用提供了一种新的思路。
The development of sensor technology makes us obtain more and more high spatial resolution remote sensing images. But one of the most important problems that face us is how to extract low-level features and classify huge amount of remote sensing images. Recently, object-based method has been widely used in remote image processing and analysis instead of pixel-based method. Then the low-level visual feature is directly used for object classification. However, one challenge is how to bridge the semantic gap between low-level visual features and high-level semantic features when using object-based method. In order to apply the semantic content for better classification performance, the dissertation follows the routine of“bag-of-word (BOW), topic model and object classification”, where we research the image objects from the low-level visual feature to BOW representation to middle-level semantic topics.
     Two main steps are used to achieve visual semantic representation and image classification. Firstly, the work organizes the local feature to obtain visual words and construct the BOW representation. Secondly, the work uses topic model to reveal underlying topics, which are used to classify images as middle-level semantic information. The concrete contributions are listed as follows:
     1. The multi-scale visual vocabulary is proposed. The bag-of-word method is introduced to high resolution remote sensing image. To reduce visual word ambiguity, the“virtual word”and multi-scale words are proposed. The“virtual word”is generated to expand visual vocabulary, where all uncertain image features would be mapped to virtual word. And the multi-scale visual words based on image scale pyramid are used not only to enrich representative ability of visual words, but also to associate image regions within a local region. Experimental results show that the classification performance with multi-scale BOW representation is better than the classification performance with low-level visual feature and traditional BOW representation.
     2. The hierarchical topic model based on multi-scale BOW representation is proposed to organize the object hierarchy. The scale information in multi-scale BOW is added into hierarchical Latent Dirichlet Allocation model as constraints in model initialization. Then, the proposed model assumes that visual words at coarse scale outline the image contents, and visual words at fine scale describe the detailed contents, which simulates the coarse-to-fine image understanding process. Comparison to the traditional topic models and SVM classifier, our model obtains the higher classification performance and even constructs the hierarchy consistent to the results by human recognition.
     3. The semi-supervised topic model is proposed to learn both the labeled and unlabeled training data. The proposed model unifies the supervised and unsupervised LDA models into the same generative process, and weights the contribution of these two topic models to create a semi-supervised LDA model. Thus, the semi-supervised model not only improves the classification performance with few labeled samples and many unlabeled samples, but also extends a new application.
引文
[1]李德仁.论21世纪遥感与GIS的发展[J].武汉大学学报,信息科学版, 2003, 28 (2): 127-131.
    [2]宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题[J].遥感学报, 2006, 10 (1): 1-5.
    [3]杜凤兰,田庆久,夏学齐.面向对象的地物分类法分析与评价[J].遥感技术与应用, 2004, 19 (1).
    [4]秦其明.遥感图像自动解译面临的问题与解决的途径[J].测绘科学, 2000, 25 (2): 21-24.
    [5]秦其明,陆荣建.分形与神经网络方法在卫星数字图像中的应用[J].北京大学学报(自然科学版), 2000, 36 (6): 858-864.
    [6] Huang, C., Davis, L. S., Townshend, J. R. G. An assessment of Support Vectot Machine for Land Cover Classification [J]. International Journal of Remote Sensing, 2002, 23 (4): 725-749.
    [7]骆剑承,梁怡,周成虎.基于尺度空间的分层聚类方法及其在遥感图像分类中的作用[J].测绘学报, 1999, 28 (4): 319-324.
    [8]董广军,范永弘,罗睿.基于粗糙集理论的遥感影像分类研究[J].计算机工程与应用, 2003, (13): 103-105.
    [9] Magnussen, S., Boudewyn, P., Wulder, M. Contextural Classification of Landsat TM Images to Forest Inventory Covertypes [J]. International Journal of Remote Sensing, 2004, 25 (12): 2421-2440.
    [10] Qi, Y., Wu, J. Effects of Changing Spatial Resolution on the Results of Landscape Pattern Analysis Using Spatial Autocorrelation Indices [J]. Landscape Ecology, 1996, (11): 39-50.
    [11] Aplin, P. Per-field classification of land use using the forthcoming very fine spatial resolution satellite sensors: problems and potential solutions [A]. In Advances in Remote Sensing and GIS Analysis[C], 1999; 219-239.
    [12] Benz, U. C., Hofmann, P., Willhauck, G., etc. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information [J]. ISPRS Journal of Photogrammetry and Remote Sensing, Jan, 2004, 58 (3-4): 239-258.
    [13] Blaschke, T., Lang, S., Hay, G. J. Object-Based Image Analysis [M]. Springer, 2008; 91-93.
    [14]曹宝,秦其民,马海建.面向对象方法在SPOT5遥感图像分类中的应用——以北京市海淀区为例[J].地理与地理信息科学, 2006, 22 (2): 46-54.
    [15] Franklin, S. E., Hall, R. J., Moskal, L. M., etc. Incorporating texture into classification of forest species composition from airborne multispectral images [J]. Int. J. Remote Sens., Jan 10, 2000, 21 (1): 61-79.
    [16] Reed, T. R., Dubuf, J. M. H. A review of recent texture segmentation and feature extraction techniques [J]. CVGIP: Image Understanding, 1993, 57 (3): 359-372.
    [17] Clausi, D. A., Deng, H. Design-based texture feature fusion using gabor filters and Co-occurrence probabilities [J]. IEEE Transactions on Image Processing, Jul, 2005, 14 (7): 925-936.
    [18] Bhagavathy, S., Manjunath, B. S. Modeling and detection of geospatial objects using texture motifs [J]. IEEE Transactions on Geoscience and Remote Sensing, Dec, 2006, 44 (12): 3706-3715.
    [19] Pesaresi, M., Benediktsson, J. A. A new approach for the morphological segmentation of high-resolution satellite imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, Feb, 2001,39 (2): 309-320.
    [20] Tuia, D., Pacifici, F., Kanevski, M., etc. Classification of Very High Spatial Resolution Imagery Using Mathematical Morphology and Support Vector Machines [J]. IEEE Transactions on Geoscience and Remote Sensing, Nov, 2009, 47 (11): 3866-3879.
    [21] Jain, A. K., Murty, M. N., Flynn, P. J. Data clustering: A review [J]. Acm Computing Surveys, Sep, 1999, 31 (3): 264-323.
    [22] Jain, A. K., Duin, R. P. W., Mao, J. C. Statistical pattern recognition: A review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan, 2000, 22 (1): 4-37.
    [23] Xu, R., Wunsch, D. Survey of clustering algorithms [J]. IEEE Transactions on Neural Networks, May, 2005, 16 (3): 645-678.
    [24] Chapelle, O., Scholkopf, B., Zien, A. Semi-supervised Learning [M]. Cambridge MA: MIT Press, 2006.
    [25] Olivier, C., Bernhard, S. Semi-Supervised Learning [M]. MIT Press, 2006.
    [26] Zhu, X. Semi-Supervised Learning Literature Survey [R]. University of Wisconsin Madison, USA, 2005.
    [27] McCallum, A., Pal, C., Druck, G., etc. Multi-Conditional Learning: Generative/Discriminative Training for Clustering and Classification [A]. In Proc. of AAAI[C], 2006.
    [28] Blei, D. M., Griffiths, T. L., Jordan, M. I. The Nested Chinese Restaurant Process and Bayesian Nonparametric Inference of Topic Hierarchies [J]. Journal of the Acm, Jan, 2010, 57 (2).
    [29] Blaschke, T., Hay, G. J. Object-oriented image analysis and scale-space: theory and methods for modeling and evaluating multi-scale landscape structures [A]. In International Archives of Photogrammetry and Remote Sensing[C], 2001; 22-29.
    [30] Blaschke, T., Strobl, J. What's wrong with Pixels? Some recent deveploments interfacing remote sensing and GIS [J]. Geo-BIT/GIS, 2001, 6 12-17.
    [31] Giada, S., De Groeve, T., Ehrlich, D., etc. Information extraction from very high resolution satellite imagery over Lukole refugee camp, Tanzania [J]. International Journal of Remote Sensing, Nov, 2003, 24 (22): 4251-4266.
    [32] Mathieu, R., Aryal, J., Chong, A. K. Object-based classification of ikonos imagery for mapping large-scale vegetation communities in urban areas [J]. Sensors, Nov, 2007, 7 (11): 2860-2880.
    [33] Weizman, L., Goldberger, J. Urban-Area Segmentation Using Visual Words [J]. IEEE Geoscience and Remote Sensing Letters, Jul, 2009, 6 (3): 388-392.
    [34] Xu, S., Fang, T., Li, D. R., etc. Object Classification of Aerial Images With Bag-of-Visual Words [J]. IEEE Geoscience and Remote Sensing Letters, Apr, 2010, 7 (2): 366-370.
    [35] Yang, Y., Newsam, S. Bag-Of-Visual-Words and Spatial Extensions for Land-Use Classification [A]. In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems[C], 2010.
    [36] Yi, W. B., Tang, H., Chen, Y. H. An Object-Oriented Semantic Clustering Algorithm for High-Resolution Remote Sensing Images Using the Aspect Model [J]. IEEE Geoscience and Remote Sensing Letters, May, 2011, 8 (3): 522-526.
    [37] Yang, W., Dai, D., Triggs, B., etc. Semantic Labeling of SAR Images with Hierarchical Markov Aspect Models [R]. hal-00433600, 2009.
    [38] Lienou, M., Maitre, H., Datcu, M. Semantic Annotation of Satellite Images Using Latent Dirichlet Allocation [J]. IEEE Geoscience and Remote Sensing Letters, Jan, 2010, 7 (1): 28-32.
    [39] Feng, J., Jiao, L. C., Zhang, X., etc. Bag-of-Visual-Words Based on Clonal Selection Algorithmfor SAR Image Classification [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8 (4): 691 - 695.
    [40] Blei, D. M., Ng, A. Y., Jordan, M. I. Latent Dirichlet allocation [J]. Journal of Machine Learning Research, May 15, 2003, 3 (4-5): 993-1022.
    [41] Hofmann, T. Probabilistic latent semantic analysis [A]. In Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence[C], 1999; 289-296.
    [42] Akcay, H. G., Aksoy, S. Automatic detection of geospatial objects using multiple hierarchical segmentations [J]. IEEE Transactions on Geoscience and Remote Sensing, Jul, 2008, 46 (7): 2097-2111.
    [43] Zhu, C. R., Zhou, H., Wang, R. S., etc. A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features [J]. IEEE Transactions on Geoscience and Remote Sensing, Sep, 2010, 48 (9): 3446-3456.
    [44]刘梦玲,何楚,苏鑫, etc.基于pLSA和Topo-MRF模型的SAR图像分类算法研究[J].武汉大学学报,信息科学版, 2011, 1.
    [45]陶超,谭毅华,彭碧发.一种基于概率潜在语义模型的高分辨率遥感影像分类方法[J].测绘学报, 2011, 40 (2): 156-162.
    [46]周晖,郭军,朱长仁, etc.引入PLSA模型的光学遥感图像舰船检测[J].遥感学报, 2011, 14 (4): 663-680.
    [47] Kampouraki, M., Wood, G. A., Brewer, T. R. Opportunities and limitations of object based image analysis for detecting urban impervious and vegetated surfaces using true-colour aerial photography. In Object-Based Image Analysis-Spatial Concepts for Knowledge-Driven Remote Sensing Applications, Blaschke, T.,Lang, S.,Hay, G. J., Eds. Springer-Verlag: Berlin, 2008.
    [48] Liu, D. S., Xia, F. Assessing object-based classification: advantages and limitations [J]. Remote Sensing Letters, 2010, 1 (4): 187-194.
    [49] Miller, G. Wordnet: A lexical database for english [J]. Communications of the ACM, 1995, 38 (11): 39-41.
    [50] Sebastiani, F. Machine learning in automated text categorization [J]. Acm Computing Surveys, Mar, 2002, 34 (1): 1-47.
    [51] Salton, G., McGill, M. J. Introduction to Modern Information Retrieval [M]. McGraw-Hill, New York, NY., 1983.
    [52] Leung, T., Malik, J. Representing and recognizing the visual appearance of materials using three-dimensional textons [J]. International Journal of Computer Vision, 2001, 43 (1): 29-44.
    [53] Sivic, J., Zisserman, A. Video Google: A text retrieval approach to object matching in videos [A]. In Proc. 9th IEEE Int'l Conf. Computer Vision[C], 2003; 1470-1477.
    [54] Cula, O., Dana, K. Compact representation of bidirectional textural functions [A]. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C], 2001; 1041-1047.
    [55] Csurka, G., Dance, C., Fan, L., etc. visual categorization with bags of keypoints [A]. In Proc. European Conf. Computer Vision Workshop Statistical Learning in Computer Vision[C], 2004.
    [56] Vogel, J., Schiele, B. A semantic typicality measure for natural scene categorization [A]. In Proc. 26th DAGM Sympo. Pattern Recognition[C], 2004; 195-203.
    [57] Sivic, J., Russell, B. C., Efros, A. A., etc. Discovering objects and their location in images [A]. In Tenth IEEE International Conference on Computer Vision, Vols 1 and 2, Proceedings[C], 2005; 370-377.
    [58] Fergus, R., Fei-Fei, L., Perona, P., etc. Learning object categories from google's image search [A].In Internation Conference on Computer Vision[C], 2005; 1816-1823.
    [59] Jurie, F., Triggs, B. Creating efficient codebooks for visual recognition [A]. In Proc. 10th IEEE Int'l Conf. Computer Vision[C], 2005; 604-610.
    [60] Maree, R., Geurts, P., Piater, J., etc. Random subwindows for robust image classification [A]. In Proc. IEEE Conf. Computer Vision and Pattern Recognition[C], 2005; 34-40.
    [61] Moosmann, F., Larlus, D., Jurie, F. Learning Saliency Maps for Object Categorization [A]. In Proc. European Conf. Computer Vision Workshop Representation and Use of Prior Knowlodge[C], 2006.
    [62] Moosmann, F., Larlus, D., Jurie, F. Fast discriminative visual codebooks using randomized clustering forests [A]. In In Advances in Neural Information Processing Systems(Nips)[C], 2006; 985-992.
    [63] Perronnin, F. Universal and adapted vocabularies for Generic Visual Categorization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Jul, 2008, 30 (7): 1243-1256.
    [64] Grauman, K., Darrell, T. Pyramid match kernels: Discriminative classification with sets of image features [A]. In Internation Conference on Computer Vision[C], 2005; 1458-1465.
    [65] Lazebnik, S., Schmid, C., Ponce, J. Beyond bags of features Spatial pyramid matching for recognizing natural scene categories [A]. In IEEE Computer Society Conference on In Computer Vision and Pattern Recognition[C], 2006; 2169-2178.
    [66] Jiang, Y. G., Ngo, C. W. Visual word proximity and linguistics for semantic video indexing and near-duplicate retrieval [J]. Computer Vision and Image Understanding 2009, 113 (3): 405-414.
    [67] van Gemert, J. C., Veenman, C. J., Smeulders, A. W. M., etc. Visual Word Ambiguity [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Jul, 2010, 32 (7): 1271-1283.
    [68] Deerwester, S., Dumais, S. T., Furnas, G. W., etc. Indexing by latent semantic analysis [J]. Journal of the American Society for Information Science, 1990, 41 (6): 391-407.
    [69] Teh, Y. W., Jordan, M. I., Beal, M. J., etc. Hierarchical Dirichlet processes [J]. Journal of the American Statistical Association, Dec, 2006, 101 (476): 1566-1581.
    [70] Griffiths, T. L., Steyvers, M., Blei, D. M., etc. Integrating topics and syntax [A]. In Advances in Neural Information Processing Systems[C], 2005; 537–544.
    [71] Blei, D., Lafferty, J. Correlated Topic Models [A]. In Proceedings of the 23rd International Conference on Machine Learning [C], 2006.
    [72] Blei, D. M., Lafferty, J. Dynamic topic models [A]. In Proceedings of the 23rd International Conference on Machine Learning[C], 2006.
    [73] Blei, D. M., McAuliffe, J. Supervised topic models [A]. In Neural Information Processing Systems[C], 2007.
    [74] Ramage, D., Hall, D., Nallapati, R., etc. Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora [A]. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing[C], 2009; 248-256.
    [75] Nallapati, R. M., Ditmore, S., Lafferty, J. D., etc. Multiscale topic tomography [A]. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining [C], 2007; 520-529.
    [76] Canny, J. GaP: a factor model for discrete data [A]. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval [C], 2004; 122-129.
    [77] Jordan, M. I., Ghahramani, Z., Jaakkola, T., etc. Learning in Graphical Models [M]. Cambridge: MIT Press, 1999.
    [78] Dempster, A., Laird, N., and Rubin, D. Maximum likelihood from incomplete data via the EMalgorithm [J]. J. Royal Statistical Soc., 1977, 39 (1): 1-38.
    [79] McLachlan, G. J., Krishnan, T. The EM Algorithm and its Extensions [M]. Wiley, 1997.
    [80] Robert, C., Casella, G. Monte Carlo Statistical Methods [M]. New York, NY: Springer-Verlag, 2004.
    [81] Bishop, C. M. Pattern Recognition and Machine Learning [M]. Springer, 2006.
    [82] Griffiths, T. L., Steyvers, M. Finding scientific topics [J]. Proceedings of the National Academy of Sciences of the United States of America, Apr 6, 2004, 101 5228-5235.
    [83] Barnard, K., Duygulu, P., Forsyth, D., etc. Modeling words and pictures [J]. Journal of Machine Learning Research special issure on maching learning methods for text and images, 2003, 3 1107-1135.
    [84] Fei-Fei, L., Fergus, R., Perona, P. A bayesian approach to unsupervised one-shot learning of object categories [A]. In International Conference on Computer VIsion[C], Nice, France, 2003; 1134-1141.
    [85] Fergus, R., Perona, P., Zisserman, A. Object class recognition by unsupervised scale-invariant learning [A]. In Proc. IEEE Conf. Computer Vision and Pattern Recognition[C], 2003; 264-271.
    [86] Farquhar, J., Szedmak, S., Meng, H., etc. Improving“bag-of-keypoints”image categorisation. In Technical report ed.; University of Southampton: 2005.
    [87] Fei-Fei, L., Perona, P. A Bayesian hierarchical model for learning natural scene categories [A]. In Proc. IEEE Conf. Computer Vision and Pattern Recognition[C], 2005; 524-531.
    [88] Fergus, R., Perona, P., Zisserman, A. Object class recognition by unsupervised scale-invariant learning [A]. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C], Madison, WIsconsin, 2005; 264-271.
    [89] Bosch, A., Zisserman, A., Munoz, X. Scene classification via pLSA [A]. In Proc. Ninth European Conf. Computer Vision[C], 2006; 517-530.
    [90] Nowak, E., Jurie, F., Triggs, B. Sampling strategies for bag-of-features image classification [A]. In Proc. Ninth European Conf. Computer Vision[C], 2006; 490-503.
    [91] Bosch, A. Image classification for large number of object categories [D]. University of Girona Department of Electronics, Informatics and Automation 2007.
    [92] Falliat, D. A visual bag of words method for interactive qualitative localization and mapping [A]. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Vols 1-10[C], 2007; 3921-3926.
    [93] Quelhas, P., Monay, F., Odobez, J. M., etc. A thousand words in a scene [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep, 2007, 29 (9): 1575-1589.
    [94] Vogel, J., Schiele, B. Semantic modeling of natural scenes for content-based image retrieval [J]. International Journal of Computer Vision, Apr, 2007, 72 (2): 133-157.
    [95] Agarwal, A., Triggs, B. Multilevel image coding with hyperfeatures [J]. International Journal of Computer Vision, Jun, 2008, 78 (1): 15-27.
    [96] Bart, E., Porteoous, I., Perona, P., etc. Unsupervised learning of visual taxonomies [A]. In Proc. IEEE Conf. Computer Vision and Pattern Recognition[C], 2008.
    [97] Bosch, A., Zisserman, A., Munoz, X. Scene classification using a hybrid generative/discriminative approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Apr, 2008, 30 (4): 712-727.
    [98] Bosch, A., Zisserman, A., Mu?oz, X. Image Classification Using ROIs and Multiple Kernel Learning [J]. submitted to International Journal of Computer Vison, 2008.
    [99] Lampert, C. H., Blaschko, M. B., Hofmann, T. Beyond sliding windows: Object localization by Efficient Subwindow Search [A]. In 2008 IEEE Conference on Computer Vision and PatternRecognition, Vols 1-12[C], 2008; 1897-1904.
    [100] Sivic, J., Russell, B. C., Zisserman, A., etc. Unsupervised discovery of visual object class hierarchies [A]. In Proc. IEEE Conf. Computer Vision and Pattern Recognition[C], 2008; 2182-2189.
    [101] Wang, C., Blei, D. M., Fei-Fei, L. Simultaneous Image Classification and Annotation [A]. In Proc. IEEE Conf. Computer Vision and Pattern Recognition[C], 2009.
    [102] Ommer, B., Buhmann, J. M. Learning the Compositional Nature of Visual Object Categories for Recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Mar, 2010, 32 (3): 501-516.
    [103] Duygulu, P., Barnard, K., Freitas, N., etc. Object recognition as maching translation: Learning a lexion for a fixed image vocabulary [A]. In European Conference on Computer vision[C], 2002; 97-112.
    [104] Fan, J., Gao, Y., Luo, H., etc. Statistical modeling and conceptualization of natural images [J]. Pattern Recognition, Jun, 2005, 38 (6): 865-885.
    [105] Mohsilovic, A., Gomes, J., Rogowitz, B. Isee: Perceptual features for image library navigation [A]. In SPIE: Human vision and electronic imaging[C], San Jose, Calfornia, 2002; 266-277.
    [106] Sudderth, E. B., Torralba, A., Freeman, W. T., etc. Learning hierarchical models of scenes, objects, and parts [A]. In International Conference on Computer Vision[C], 2005; 1331-1338.
    [107] Lu, Z. W., Peng, Y. X., Ip, H. H. S. Image categorization via robust pLSA [J]. Pattern Recognition Letters, Jan 1, 2010, 31 (1): 36-43.
    [108] Russell, B. C., Efros, A. A., Sivic, J., etc. Using Multiple Segmentations to Discover Objects and their Extent in Image Collections [A]. In Proc. IEEE Conf. Computer Vision and Pattern Recognition[C], 2006.
    [109] Cao, L., Fei-Fei, L. Spatially coherent latent topic model for concurrent object segmentation and classification [A]. In IEEE 11th International Conference on In Computer Vision[C], 2007.
    [110] Li, J., Allinson, N. M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, Jun, 2008, 71 (10-12): 1771-1787.
    [111] Lowe, D. G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, Nov, 2004, 60 (2): 91-110.
    [112] Kadir, T., Brady, M. Saliency, scale and image description [J]. International Journal of Computer Vision, Nov, 2001, 45 (2): 83-105.
    [113] Itti, L., Koch, C., Niebur, E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Trans. Pattern Anal. Machine Intell., Nov, 1998, 20 (11): 1254-1259.
    [114] Chen, Y., Crawford, M., Ghosh, J. Integrating support vector machines in a hierarchical output space decomposition framework [A]. In Proc. of the IEEE Int. Symp. on Geoscience and Remote Sensing[C], 2004; 949-952.
    [115] Jegou, H., Douze, M., Schmid, C. On the burstiness of visual elements [A]. In IEEE conference on Computer Vision and Pattern Recognition[C], 2009.
    [116] Qin, J. Z., Yung, N. H. C. Scene categorization via contextual visual words [J]. Pattern Recognition, May, 2010, 43 (5): 1874-1888.
    [117] Parikh, D., Chen, T. Unsupervised Learning of Hierarchical Semantics of Objects (hSOs) [A]. In Proceeding of International Conference on Computer Vision[C], 2007.
    [118] Chang, C., Lin, C. LIBSVM : a library for support vector machines [R]. 2001.
    [119] Kouskoulas, Y., Ulaby, F. T., Pierce, L. E. The Bayesian hierarchical classifier (BHC) and its application to short vegetation using multifrequency polarimetric SAR [J]. IEEE Transactions onGeoscience and Remote Sensing, Feb, 2004, 42 (2): 469-477.
    [120] Rajan, S., Ghosh, J., Crawford, M. M. Exploiting class hierarchies for knowledge transfer in hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, Nov, 2006, 44 (11): 3408-3417.
    [121] Shackelford, A. K., Davis, C. H. A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas [J]. IEEE Transactions on Geoscience and Remote Sensing, Sep, 2003, 41 (9): 1920-1932.
    [122] Anderson, J. R. A land use and land cover classification system for use with remote sensor data [M]. US Govt. Print. Off., 1976.
    [123]国土资源部.关于印发试行《土地分类》的通知[J].国土资源通讯, 2001, (10): 10-15.
    [124] Chou, Y.-Y. Hierarchical Multiple Classifier Learning System [D]. 1999.
    [125] Silla, C. N., Freitas, A. A. A survey of hierarchical classification across different application domains [J]. Data Mining and Knowledge Discovery, Jan, 2011, 22 (1-2): 31-72.
    [126] Kumar, S., Ghosh, J., Crawford, M. M. Hierarchical fusion of multiple classifiers for hyperspectral data analysis [J]. Pattern Analysis and Applications, Jun, 2002, 5 (2): 210-220.
    [127] Marcal, A. R. S., Castro, L. Hierarchical clustering of multispectral images using combined spectral and spatial criteria [J]. IEEE Geoscience and Remote Sensing Letters, Jan, 2005, 2 (1): 59-63.
    [128] Bakos, K. L., Gamba, P. Hierarchical Hybrid Decision Tree Fusion of Multiple Hyperspectral Data Processing Chains [J]. IEEE Transactions on Geoscience and Remote Sensing, Jan, 2011, 49 (1): 388-394.
    [129] Lozano-Garcia, D. F., Hoffer, R. M. Hierarchical classification of multitemporal/multispectral scanner data [A]. In Mengel, S. K.,Morrison, D. B., Eleventh International Symposium on Machine Processing of Remotely Sensed Data with special emphasis on Quantifying Global Process: Models, Sensor Systems and Analytical Methods[C], 1985; 162-169.
    [130] Xia, G. S., He, C., Sun, H. A rapid and automatic MRF-Based clustering method for SAR images [J]. IEEE Geoscience and Remote Sensing Letters, Oct, 2007, 4 (4): 596-600.
    [131] Mukhopadhyay, A., Maulik, U. Unsupervised Pixel Classification in Satellite Imagery Using Multiobjective Fuzzy Clustering Combined With SVM Classifier [J]. IEEE Transactions on Geoscience and Remote Sensing, Apr, 2009, 47 (4): 1132-1138.
    [132] Tuia, D., Camps-Valls, G. Semisupervised Remote Sensing Image Classification With Cluster Kernels [J]. IEEE Geoscience and Remote Sensing Letters, Apr, 2009, 6 (2): 224-228.
    [133] Duda, R. O., Hart, P. E., Stork, D. G. Pattern Classification [M]. New York: Wiley, 2001.
    [134] Johnson, R. A., Wichern, D. W. Applied Multivariate Statistical Analysis [M]. Upper Saddle River, NJ: Prentice-Hall, 1998.
    [135] Lazebnik, S., Schmid, C., Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories [A]. In Proc. IEEE Conf. Computer Vision and Pattern Recognition[C], 2007.
    [136] Nigam, K., McCallum, A. K., Thrun, S., etc. Text classification from labeled and unlabeled documents using EM [J]. Machine Learning, May, 2000, 39 (2-3): 103-134.
    [137] Rosenberg, C., Hebert, M., Schneiderman, H. Semi-supervised self-training of object detection models [A]. In WACV-MOTION’05: Proceedings of the Seventh IEEE Workshops on Application of Computer Vision (WACV/MOTION’05)[C], 2005; 29–36.
    [138] Blum, A., Mitchell, T. Combining labeled and unlabeled data with co-training [A]. In COLT[C], 1998; 92-100.
    [139] Collobert, R., Sinz, F., Weston, J., etc. Large scale transductive SVMs [J]. Journal of Machine Learning Research, Aug, 2006, 7 1687-1712.
    [140] Raina, R., Shen, Y., Ng, A. Y., etc. Classification with hybrid generative / discriminative models [A]. In 16th Conference on Advances in Neural Information Processing Systems[C], 2003.
    [141] Prevost, L., Oudot, L., Moises, A., etc. Hybrid generative/discriminative classifier for unconstrained character recognition [J]. Pattern Recognition Letters, Sep, 2005, 25 (12): 1840-1848.
    [142] Lasserre, J., Bishop, C., Minka, T. Principled hybrids of generative and discriminative models [A]. In Proc. IEEE Conf. Computer Vision and Pattern Recognition[C], 2006.
    [143] Weber, C., Wermter, S., Elshaw, M. A hybrid generative and predictive model of the motor cortex [J]. Neural Networks, May, 2006, 19 (4): 339-353.
    [144] Druck, G., Pal, C., Zhu, C. R., etc. Semi-supervised classification with hybrid generative / discriminative methods [A]. In 13th ACM SIGKDD International Conference on Knowledge Discovery and DataMining[C], 2007; 280-289.
    [145] Fujino, A., Ueda, N., Saito, K. Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Mar, 2008, 30 (3): 424-437.
    [146] Sun, H., Wang, C., Wang, B. L. Hybrid generative-discriminative human action recognition by combining spatiotemporal words with supervised topic models [J]. Optical Engineering, Feb, 2011, 50 (2): 027203.
    [147] Kelm, B. M., Pal, C., McCallum, A. Combining generative and discriminative methods for pixel classification with multi-conditional learning [A]. In 18th IEEE International Conference on Pattern Recognition[C], 2006; 828-832.
    [148] Zhang, D. Q., Chang, S. F. A generative-discriminative hybrid method for multi-view object detection [A]. In IEEE Conference on Computer Vision and Pattern Recognition[C], 2006; 2017-2024.
    [149] Fujino, A., Ueda, N., Saito, K. A hybrid generative/discriminative approach to semi-supervised classifier design [A]. In 20th AAAI National Conference on Artificial Intelligence[C], 2005; 764-769.
    [150] Shahshahani, B. M., Landgrebe, D. A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon [J]. IEEE Transaction of Geoscience and Remote Sensing, 1994, 32 (5): 1087-1095.
    [151] Bruzzone, L., Chi, M. M., Marconcini, M. A novel transductive SVM for semisupervised classification of remote-sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, Nov, 2006, 44 (11): 3363-3373.
    [152] Bruzzone, L., Persello, C. A Novel Context-Sensitive Semisupervised SVM Classifier Robust to Mislabeled Training Samples [J]. IEEE Transactions on Geoscience and Remote Sensing, Jul, 2009, 47 (7): 2142-2154.
    [153] Chi, M. M., Bruzzone, L. Semisupervised classification of hyperspectral images by SVMs optimized in the primal [J]. Ieee Transactions on Geoscience and Remote Sensing, Jun, 2007, 45 (6): 1870-1880.
    [154]骆剑承,王钦敏.遥感图像最大似然分类方法的EM改进算法[J].测绘学报, 2002, 31 (3): 234-239.
    [155] Ren, G. B., Zhang, J., Ma, Y., etc. Generative model based semi-supervised learning method of remote sensing image classification [J]. Journal of Remote Sensing, 2010.
    [156] Lacoste-Julien, S., Sha, F., Jordan, M. I. DiscLDA: Discriminative learning for dimensionality reduction and classification [A]. In Advances in Neural Information Processing System (NIPS)[C],2008.
    [157] Chapelle, O., Vapnik, V., Bousquet, O., etc. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46 (1-3): 131-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700