用户名: 密码: 验证码:
快速响应制造系统产品开发过程时间估计与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为缩短产品开发和生产周期,在尽可能短的时问内满足客户需求,提出基于“快速响应”原理的快速响应制造系统。进行产品开发过程时间分析对于保障系统的快速响应能力,提高进度控制和管理能力具有重要意义,本文针对快速响应制造系统的产品开发过程开展了时间估计与优化研究。
     首先,介绍产品开发过程中的一些基本概念,对快速响应制造系统产品开发过程任务及存在的设计迭代进行分析描述,提出了基于元模型方法的快速响应制造系统产品开发过程时间分析流程。对作为重要特征的设计迭代进行重点分析,特别对基于DSM的迭代描述做了详细介绍;为能够更加科学合理的对产品开发过程时间进行估计,引入计算机仿真领域的元模型方法,针对设计活动时间估计问题的特点给出了元模型建模步骤,指出元模型拟合方法和训练数据选取方法是研究的重点。
     其次,针对元模型拟合方法开展研究,提出了基于高斯过程元模型的产品设计活动时间估计方法。将常用的元模型方法分为参数方法和非参数方法进行了介绍,指出非参数方法的弊端以及高斯过程元模型在理论上可以取代几种常见的非参数方法;介绍了高斯过程元模型的建模原理,并对协方差函数的设定以及超参数优化方法进行了相应的说明,由于训练数据存在语言型变量是设计活动时间估计问题的自身特点之一,为此引入模糊距离的概念,将语言型变量模糊化后根据其模糊距离对协方差函数进行计算,并针对该问题提出了具体建模步骤;通过实例说明了高斯过程元模型方法在解决设计活动时间估计问题中的良好特性。
     第三,针对训练数据选取问题,提出一种基于最优化拉丁超立方设计的数据选取方法。训练数据的选取在很大程度上影响着元模型的预测精度和效率,为配合元模型方法在产品开发过程时间估计中的应用,引入试验设计的概念,以最优化拉丁超立方设计来指导历史数据的选取;考虑正交属性、? p准则以及Kullback–Leibler准则对拉丁超立方设计进行多目标优化;为构造目标函数,找出了Kullback–Leibler准则的理论上下限;在以上研究基础上提出一种改进的ILS算法对LHD进行多目标优化,并将其应用于数据选取中。
     第四,针对重叠模式下快速响应制造系统产品开发过程时间评估与优化开展研究。为针对重叠模式下产品开发过程进行建模,在分析已有研究的基础上提出了一种上下游设计活动之间的信息交互策略,提出了适用于该模式的信息交互策略以及各类迭代参数表示方法;假设设计活动时间为常数构建重叠模式下的一般模型,在此基础上考虑时间不确定性再次构建时间分析模型;提出一种基于蚁群算法的优化方法对各设计活动的开始时间进行规划,通过重新安排各设计活动开始时间可有效减少产品开发过程总时间。
Quick Response Manufacturing System (QRMS) based on Quick Response theory is raised to shorten the circle of product development and manufacturing, and met the customers’requirement as quickly as possible. The time analysis of product development process is of great significance for maintaining the system’s quick response capability and promoting progress control and management ability. The thesis focuses on the research of time estimation and optimization for product development process in QRMS.
     First, some basic concepts of product development process are introduced. The task of product development process of QRMS and the design iteration problem exists in it are described, and based on meta-model approach, a time estimate program of product development process in QRMS is proposed. The analysis is mainly focused on the problem of design iteration,which is as the important feature…. Especially, depict the iteration description based on DSM in detail. In order to evaluate the time of product development process more scientifically and reasonable, the meta-model approach in computer simulation area is introduced. Meta-modeling procedures are proposed in line with the characteristics of problem of design activity time estimation, and meta-model fitting method and training data selection method are the points that focuses on.
     Secondly, in the light of meta-model fitting method, the product design activity time estimation method based on Gaussian Process meta-model is put forward. Divide the common meta-model approaches into parametric method and nonparametric method, and introduce them respectively., present the defects of nonparametric method and Gaussian Process meta-model can replaces several common nonparametric methods theoretically. Introduce the modeling principles of Gaussian Process meta-model and illustrate the covariance function setting and hyper-parameter optimization methods. Since it is one of the properties of design activity time estimation that the training data have linguistic variables, the concept of fuzzy distance is introduced. After linguistic variables fuzzed, covariance function is computed according to its fuzzy distance, and the modeling procedures are proposed. Case study shows the advantages of Gaussian Process meta-model approach in solving design activity time estimation problems.
     Thirdly, a data selection method based on optimal Latin Hypercube design is proposed for the problem of training data selection. The estimation accuracy and efficiency are greatly affected by training data selection, therefore, in order to cooperate with the application of meta-model approach in time estimation of product development process, the concept of experiment design is employed and optimal Latin Hypercube design is adopted for guiding the selection of historical data selection; Consider orthographic attributes, ? p criterion and Kullback-Leibler criterion; The theoretical high and low limits of Kullback-Leibler criterion are identified to construct objective function. The improvement is made on ILS algorithm for multi-objective optimization of LHD,
     Fourthly, the study is on time estimation and optimization of QRMS product development process in overlapping mode. To build the model for product development process in overlapping mode, the thesis suggested an information interactive strategy between upper and lower design activity based on the existing research along with the information interactive strategy and representation of every kind of iteration parameters appropriate for this mode. Assuming design activity time as the constant to construct the general model in overlapping mode, the time analysis model is reconstructed taking time uncertainty into account. An optimization method based on ant colony optimization is brought forward for setting the starting time of every design activity, and the reschedule of starting time can effectively reduce the overall time of product development process.
引文
[1]许国兵,杨绪红,琚泽钧.快速响应——供应链满足客户需求之道[M].北京:机械工业出版社, 2006.
    [2] Blackburn J.D. Time-Based Competition The Next Battle Ground in American Manufacturing[M]. McGraw-Hill Professional Publishing, 1990.
    [3]杨长辉.制造企业快速反应理论及应用研究[D].长沙:中南大学, 2004.
    [4]王立军.考虑动态迭代和人因的快速响应制造系统任务可靠性评估[D].长沙:国防科学技术大学, 2006.
    [5]李国喜.快速研制系统、技术及应用研究[D].长沙:国防科学技术大学, 2005.
    [6] Hunter N.A. Quick Response in Apparel Manufacturing[M]. The Textile Institute, 1990.
    [7]陈永亮,李森等.机械产品快速响应设计、制造的关键技术及其应用[J].航空制造技术, 2003, (4): 67-71.
    [8]郭米娜.车间快速响应制造关键技术研究[D].长沙:国防科学技术大学, 2005.
    [9]机械科学研究院.先进制造领域技术预测与技术选择研究报告[R].北京: 1999.
    [10]梁亮.快速响应制造系统产品开发过程可靠性评估与优化方法[D].长沙:国防科学技术大学研究生院, 2008.
    [11] Buckley S. Supply chain modeling[C]. Autofact Conference. Detroit, Michigan, 1996.749-756.
    [12]罗振璧,朱耀祥,张书桥.现代制造系统[M].北京:机械工业出版社, 2004.
    [13]蒋志强,施进发,王金凤.先进制造系统导论[M].北京:科学出版社, 2006.
    [14]钟廷修.快速响应工程和快速产品设计策略[J].机械设计与研究, 1999, (1): 9-12.
    [15]钟小强.个性化产品快速响应设计方法研究[D].合肥:中国科学技术大学, 2008.
    [16] Kuroda M., Takeda K.. General Structure and Characteristics of Quick Response Production System[J]. Computers ind. Engng., 1998, 35 (3): 395-398.
    [17] Lee Grubb. .Using total cycle time for quick response manufacturing[J]. Assembly Automation, 1998, 18 (1): 20-24.
    [18] Cherng J.G. et al. Feature-based Part Modeling and Process Planning for Rapid Response Manufacturing[J]. Computers ind.Engng, l998, 34 (2): 5l5-530.
    [19]徐燕申,陈永亮,牛文铁.基于创新的机械产品快速响应设计/制造的关键技术及其应用研究[J].制造技术与机床, 2003, (2): 34-37.
    [20]苟吉华.基于RPM/PDM技术的集成快速设计与制造系统的研究明[J].机械科学与技术, 2000, 19 (2).
    [21]韩培冬.快速响应制造系统设备能力规划技术研究[D].长沙:国防科学技术大学, 2007.
    [22]史宪铭.考虑设计迭代的快速研制系统任务可靠性研究[D].长沙:国防科学技术大学研究生院, 2006.
    [23]罗友发.机械装备快速响应设计的研究与应用[D].上海:上海交通大学, 2003.
    [24]郑添杰.面向大规模定制的产品快速响应设计关键技术[D].厦门:厦门大学, 2008.
    [25]张禹,刘永贤,孙维堂,白晓兰.快速响应设计的研究[J].机械制造, 2007, 45 (518): 27-29.
    [26] Steward D.V., Donald V.. Planning and Managing the Design of Systems[C]. International Conference on Management of Engineering and Technology. Portland, Oregon, 1991.
    [27] Eppinger S.D., Whitney D., Smith R., D.. Gebala. A Model-Based Method for Organizing Tasks in Product Development[J]. Research in Engineering Design, 1994, 6: 1-13.
    [28] Dixon J.R. Computer-based Models of Design Process: The Evaluation of Designs for Redesign[C]. NSF Engineering Design Research Conference. Amherst, MA, 1989.357-362.
    [29]李全敏,熊光楞.并行工程环境下过程建模的多视图方法研究[J].华中科技大学学报, 2001, 29 (5): 21-23.
    [30] Burns S.A. Generic classes of iterative behavior in engineering design optimization[C]. ASME. Chicago, 1990.299-305.
    [31]谢列卫.集成产品开发过程的理论、方法及应用研究[D].杭州:浙江大学, 2000.
    [32]乔立红,郭建飞.并行产品开发随机网络计划与仿真方法[J].计算机集成制造系统, 2008, 14 (12): 2354-2360.
    [33] Yassine A., Chelst K., Falkenburg D. A decision analytic framework for evaluating concurrent engineering[J]. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 1999, 46 (2): 144-157.
    [34] Yassine A., Falkenburg D., Chelst K. Engineering design management : an information structure approach[J]. International Hournal of Production Reserch, 1999, 37 (13): 2957-2975.
    [35] Donald L.K., William A.V.. Better estimation of PERT activity time parameters[J]. Management Science, 1993, 39 (9): 1086-1091.
    [36] Soo-Haeng Cho, Steven D. Eppinger. A Simulation-Based Process Model for Managing Complex Design Projects[J]. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2005, 52 (3): 316-328.
    [37]徐晓刚.基于信息依赖的设计过程仿真方法[J].重庆大学学报(自然科学版), 2001, 24 (4): 8-11.
    [38]梁亮,黄卓,郭波.考虑时间不确定性的研制过程评估与优化方法[J].机械工程学报, 2008, 44 (6): 248-252.
    [39] Mohan S., Gopalakrishnan M., Balasubramanian H., Chandrashekar A.. A lognormal approximation of activity duration in PERT using two time estimates[J]. Journal of the Operational Research Society, 2007, 58 (6): 827-831.
    [40]陈冬宇,邱菀华,张汉鹏,杨敏.资源约束下产品开发过程仿真模型[J].计算机工程, 2008, 34 (17): 15-17.
    [41]武照云.复杂产品开发过程规划理论与方法研究[D].合肥:合肥工业大学, 2009.
    [42]赵汝嘉.先进制造系统导论[M].北京:机械工业出版社, 2002.
    [43]张玉云,吴祚宝,张和明,熊光楞.工程设计自动化与并行工程[J].工程设计CAD与智能建筑, 1997, (3): 7-11.
    [44] Yazdani B., Holmes C. Four Models of Design definitions:sequential design centered,concurrent and dynamic[J]. Journal of Engineering Design, 1999, 10 (1): 25-37.
    [45]檀润华,王庆禹.产品设计过程模型、策略与方法综述[J].机械设计, 2000, (11): 1-3.
    [46] Zhu Q., Sheng W. H. , Xi N. Max-plus algebra model for ontime task scheduling of a reconfigurable manufacturing work-cell[C]. Procccdings of 2004 IEEE /RSJ International Conference on Intelligent Robots and Systems. Year.
    [47] Chen S., LIin L. Decomposition of interdependent task group for concurrent engineering[J]. Computers & Industrial Engineering, 2003, 44 (3): 435-459.
    [48] Boehm B. A Spiral Model of Software Development and Enhancement[J]. ACM SIGSOFT Software Engineering Notes, 1986, 11 (4): 14-24.
    [49]吴建民,敬忠良,肖刚.基于原型仿真的航空电子系统螺旋式开发方法[J].系统工程与电子技术, 2007, 3 (29): 489-490.
    [50]祖旭.基于Petri网理论的产品开发过程建模方法研究[D].博士学位论文.大连:大连理工大学, 2005.
    [51]钱晓明.面向并行工程的产品开发过程关键技术研究[D].南京:南京航空航天大学, 2004.
    [52] James M. W. Gantt charts: A centenary appreciation[J]. European Journal of Operational Research, 2003, 149 (2): 430-437.
    [53]刘磊,朱泽飞,李仁旺.基于ARIS建模和XML过程定义的工作流模型[J].计算机工程, 2005, 31 (1): 53-55,164.
    [54]徐国华.基于ARIS企业建模过程的应用研究[J].计算机工程, 2005, 31 (14): 208-210.
    [55] Mayer R.J. Information integration for concurrent engineering(IIEE) IDEF3 process description capture method report[R]. 1995.
    [56]陈禹六. IDEF建模分析和设计方法[R].北京: 1999.
    [57] Kusiak A., Zakarian A. Risk assessment of process models[J]. Computer & Industrial Engineering, 1996, 30 (4): 599-610.
    [58]李丽萍,李原,韩毅. IDEF3与甘特网络图相结合的进度计划方法[J].计算机集成制造系统, 2004, 10 (6): 657-661.
    [59]司尚文.基于活动重叠的产品开发过程建模及仿真[D].武汉:华中科技大学, 2002.
    [60]赵晋敏.并行工程环境下的产晶开发过程管理研究[D].武汉:华中理工大学, 2001.
    [61] Kurihara K., Nishiuchi N.. Efficient monte carlo simulation method of GERT-type network for project management[J]. Computers and Industrial Engineering, 2002, 42 (4): 521-531.
    [62] Petri C. A. Technical Report RADC-TR-62-377[R]. New York: 1996.
    [63]袁崇义. Petri网原理与应用[M].北京:电子工业出版社, 2005.
    [64]陈翔,刘军丽.基于着色Petri网的工作流建模[J].计算机工程, 2006, 32 (8): 86-88.
    [65]涂波.基于Petri网的产品开发过程建模及系统性能分析[D].南昌:南昌大学, 2007.
    [66]胡盛文,刘卫东,涂荣军.基于Petri网的机械产品开发过程模型及其应用[J].南昌大学学报, 2009, 31 (2): 197-199.
    [67] Liu D., Wang J., Chan S.C.F., et al. Modeling workflow Processes with colored Petri nets[J]. Computers in Industry, 2002, 49 (3): 267-281.
    [68]蒋国银,何跃.基于高级对象Petri网的工作流过程建模研究[J].系统工程理论与实践, 2005, 25 (3): 86-95.
    [69]李学.产品开发过程建模及其系统研究[D].杭州:浙江理工大学, 2007.
    [70]曹宜英,秦现生,张晓云.基于多色Petri网的产品开发过程建模[J].系统工程理论与实践, 2010, 30 (5): 909-918.
    [71] Eppinger S.D. Model-based approaches to managing concurrent engineering[J]. Journal of Engineering Design, 1991, 2 (4): 283-290.
    [72] Browning T.R. Applying the design structure matrix to system decomposition and integration problems : a review and new directions[J]. IEEE Transactions on Engineering Management Science, 2001, 48 (3): 292-306.
    [73] Sosa M. E., Eppinger S. D., Rowles C. M.. The misalignment of product architecture and organizational structure in complex product development[J]. Management Science, 2004, 50 (12): 1674-1689.
    [74] Xu D., Yan H.S.. An intelligent estimation method for product design time[J]. International Journal of Advanced Manufacturing Technology, 2006, 30 (7-8): 601-613.
    [75] Whitney D. E. Designing the design process[J]. Research in Engineering Design, 1990, 2: 3-13.
    [76] Eppinger S.D., Chitkara A.R.. The new practice of global product development[J]. MIT Sloan Management Review, 2006, 47 (4): 22-30.
    [77] Smith R.P., Eppinger S. D. A predictive model of sequential iteration in engineering design[J]. Management Science, 1997, 43 (8): 1104-1120.
    [78]史宪铭,郭波,梁亮.基于串联网络的快速研制系统性能分析[J].电子产品可靠性与环境试验, 2006, 24 (1): 32-34.
    [79]郭峰,武建伟,潘双夏,冯培恩.基于设计结构矩阵族的过程建模方法研究[J].浙江大学学报(工学版), 2006, 40 (9): 1609-1613.
    [80]施国强,李伯虎,柴旭东.基于设计结构矩阵的复杂产品开发项目规划模型[J].计算机集成制造系统, 2007, 13 (11): 2105-2109.
    [81]陈冬宇,邱菀华,杨青,杨敏.基于DSM的复杂产品开发流程优化遗传算法[J].控制与决策, 2008, 23 (8): 910-914.
    [82]武建伟,郭峰,潘双夏.基于仿真评价的产品开发过程改进技术研究[J].计算机集成制造系统, 2007, 13 (12): 2420-2426.
    [83] Browning T.R., Eppinger S.D.. Modeling impacts of process architecture On cost and schedule risk in product development[J]. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2002, 49 (4): 428-443.
    [84]钱晓明,唐敦兵,楼佩煌.基于DSM的产品并行开发过程仿真[J].南京航空航天大学学报, 2007, 39 (1): 88-93.
    [85]张卫民,周伯生,罗文劼.顺序迭代开发过程建模与仿真[J].计算机集成制造系统, 2008, 14 (9): 1696-1703.
    [86] Smith R., Eppinger S.. Identifying controlling features of engineering design iteration[J]. Management Science, 1997, 43 (3): 276-293.
    [87] Carrascosa M., Eppinger S. D. , Whitney D. E. Using the Design Structure Matrix to Estimate Product Development Time[C]. ASME Design Engineering Technical Conferences. Atlanta, Georgia, USA, 1998.1-10.
    [88]许多,严洪森.并行产品开发过程的时间模型及其优化方法[J].机械工程学报, 2006, 42 (1): 23-29,34.
    [89]白思俊,万小兵.基于设计结构矩阵的项目进度周期[J].系统工程理论与实践, 2008, (11): 51-54,61.
    [90]徐晓刚.设计结构矩阵研究及其在设计管理中的应用[D].重庆:重庆大学, 2002.
    [91]刘明周,任兰.面向产品的制造质量控制模型研究[J].计算机集成制造系统, 2004, 10 (7): 764-768.
    [92]王计斌.并行工程环境下产品开发过程研究[D].北京:清华大学, 1999.
    [93] Steward D.V. The design structure system:A Method for managing the design of complex systems[J]. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 1981, 28 (3): 71-74.
    [94] Smith R. P., Eppinger S. D. A predictive model of sequential iteration in engineering design[J]. Management Science, 1997, 43 (8): 1104-1120.
    [95] Kusiak A, Larson T N, Wang J R. Reengineering of desing and manufacturing process[J]. Computers & Industrial Engineering, 1994, 26 (3): 521-536.
    [96]董明,程福安,查建中,章节笑.并行设计过程的一种矩阵规划方法[J].天津大学学报, 1997, 30 (4): 408-415.
    [97]孟秀丽,韩向东,曹杰.机床产品协同任务规划与管理的研究[J].计算机工程, 2006, 32 (20): 238-241.
    [98]杨劲,吴子燕,孙树栋.建筑工程设计过程规划研究[J].系统工程理论与实践, 2005, (10): 125-130.
    [99]唐敦兵,郑力.模具并行设计过程建模研究[J].系统工程理论与实践, 2000, (5): 80-83.
    [100] Whitfield R. I., Duffy A H B, et al. Costes G. Efficient process optimization[J]. Concurrent Engineering Research and Applications, 2003, 11 (2): 83-92.
    [101]姚咏,熊光楞,范文惠等.基于PDM的产品开发过程智能化分析与改进[J].中国机械工程, 2004, 15 (20): 1857-1860.
    [102] Hisham M A, Bao H. A simulation-based optimization framework for product development cycle time reduction[J]. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2006, 53 (1): 69-85.
    [103]柳玲,胡登宇,李百战.基于设计结构矩阵的过程模型优化算法综述[J].计算机工程与应用, 2009, 45 (11): 22-25.
    [104]姜婷婷,郭东,魏小鹏.一种耦合功能集割裂解耦方法[J].计算机工程与应用, 2011, 47 (2): 207-209,226.
    [105]赵晋敏,刘继红,钟毅芳等.并行设计中耦合任务集割裂规划的新方法[J].计算机集成制造系统, 2001, 7 (4): 36-39.
    [106]任东锋,方宗德.并行设计中任务调度问题的研究[J].计算机集成制造系统, 2005, 11 (1): 36-39.
    [107] Kleijnen J.P.C., Sargent R.G. A Methodology for Fitting and Validating Metamodels in Simulation[J]. European Journal of Operational Research, 2000, 120 (1): 14-29.
    [108]杨峰.面向效能评估的平台级体系对抗仿真跨层次建模方法研究[D].长沙:国防科学技术大学研究生院, 2003.
    [109]李建平.仿真元建模中的拟合方法及其应用研究[D].长沙:国防科学技术大学研究生院, 2007.
    [110]许多,严洪森.产品设计时间智能预测方法的研究[J].控制与决策, 2004, 19 (2): 143-146.
    [111]许多,严洪森.基于模糊支持向量机的产品设计时间估计方法[J].中国机械工程, 2005, 16 (6): 533-536.
    [112]徐冲,刘保国,刘开云,郭佳奇.基于组合核函数的高斯过程边坡角智能设计[J].岩土力学, 2010, 31 (3): 821-826.
    [113] Gibbs M.N. Bayesian Gaussian Processes for Regression and Classification[D]. PhD Thesis. University of Cambridge, 1997.
    [114] Radford M. Neal. Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification[R]. Department of Statistics, University of Toronto, 1998.
    [115] Willianms C. K. I., Prediction with Gaussian Processes: From linear regression to linear prediction and beyond. . In Learning in Graphical Models; Jordan M. I.Kluwer Academic: 1998; 599-621.
    [116]李存华,孙志挥,陈耿,胡云.核密度估计及其在聚类算法构造中的应用[J].计算机研究与发展, 2004, 41 (10): 1712-1719.
    [117] Rosenblatt M. Remarks on some nonparametric estimates of a density function[J]. Annals of Mathematical Statistics, 1956, 27 (6): 832-837.
    [118] Parzen E. On estimation of a probability density function and mode[J]. Annals of Mathematical Statistics, 1962, 33 (8): 1065-1076.
    [119] Vapnik V.N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
    [120] C.E. Rasmussen. Evaluation of Gaussian Processes and Other Methods for Nonlinear Regression[D]. PhD Thesis. University of Toronto, 1996.
    [121] Mackay, David J. C. Introduction to Gaussian Processes.[EB OL] http://wol.ra.phy.cam.ac.uk/mackay/.
    [122]刘新亮.技术引入对武器装备体系能力影响的评估方法研究[D].长沙:国防科学技术大学, 2009.
    [123] Bailer Jones. A Summary of Gaussian Processes (White paper)[R]. University of Cmabridge, Cambridge, England: Canvedish Laboratory, 1997.
    [124] Rasmussen C.E., willianms C. K. I. Gaussian process for machine learning[M]. Cambridge: MIT Press, 2006.
    [125]许永平.潜艇装备作战使用性能双域稳健优化方法研究[D].长沙:国防科学技术大学, 2010.
    [126]许多.产品开发时间分析与估计方法的研究[D].博士学位论文.南京:东南大学, 2004.
    [127]肖伟跃.基于模糊神经网络的工艺设计知识表达与推理[J].机电工程, 2001, 18 (3): 58-60.
    [128]李士勇.工程模糊数学及应用[M].哈尔滨:哈尔滨工业大学出版社, 2004.
    [129] Hollingsworth P., Mavris D. N. .A Technique for Use of Gaussian Processes in Advanced Meta-modeling[R]. Aerospace Systems Design Laboratory, School ofAerospace Engineering, Georgia Institute of Technology, 2003.
    [130] Debora D. Daberkow. A Formulation of Metamodel Implementation Processes for Complex System Design[D]. Georgia Institute of Technology, 2002.
    [131]刘文卿.实验设计[M].北京:清华大学出版社, 2005.
    [132]陈魁.试验设计与分析(第2版)[M].北京:清华大学出版社, 2005.
    [133]张健.飞机多学科设计优化中的近似方法研究[D].西安:西北工业大学, 2006.
    [134]张玲利,吴大鸣.基于中心组合实验设计的注塑成型过程优化[J].塑料工业, 2007, 35 (增刊): 221-223.
    [135] Sacks J., Welch W. J., Mitchell T. J., Wynn H. P. Design and analysis of computer experiments[J]. Statistica Sinica, 1989, 18: 409-435.
    [136] Fang K. T. The Uniform Design: Application of Number-Theoretic Methods in Experimental Design[J]. Acta Math. Application Sinica, 1980, (3): 363-372.
    [137]方开泰.均匀试验设计的理论、方法和应用—历史回顾[J].数理统计与管理, 2004, 23 (3): 69-80.
    [138] Fang K. T., Ge G. N., Liu M.Q.. Uniform supersaturated design and its construction[J]. Science in China ,Der .A, 2002, (45): 1080-1088.
    [139] Fang K. T., Ge G.N., Liu M.Q., Qin H.. Construction on minimum generalized aberration designs[J]. Metrika, 2002, (57): 37-50.
    [140] Ye K.Q.. Orthogonal Column Latin Hypercubes and their application in computer experiments[J]. Journal of the American Statistical Association, 1998, 93 (444): 1430-1439.
    [141] Fang K. T., Ma C. X., Winker P.. Centered L2-discrepancy of random sampling and Latin hypercube design ,and construction of uniform design[J]. Math Computation, 2002, (71): 275-296.
    [142] McKay M. D., Beckman R. J., Conover W. J.. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21 (2): 239-245.
    [143] Levy Sigal, Steinberg David M. Computer experiments: a review[J]. Adv. Stat. Anal, 2010, 94 (4): 311–324.
    [144] Kuhnt Sonja, Steinberg David M. Design and analysis of computer experiments[J]. Adv. Stat. Anal, 2010, 94 (4): 307–309.
    [145] Ye K.Q., Li W., Sudjianto A. Algorithmic construction of optimal symmetric latin hypercube designs[J]. Journal of Statistical Planning and Inference, 2000, (90): 145 - 159.
    [146] Ye K.Q. Orthogonal Column Latin Hypercubes and their application in computer experiments[J]. Journal of the American Statistical Association, 1998, 93 (444): 1430-1439.
    [147] Owen A.B. Orthogonal arrays for computer experiments, integration and visualization[J]. Statistica Sinica, 1992, 2: 439-452.
    [148] Tang B. Orthogonal array-based Latin hypercubes[J]. J. Am. Stat. Assoc., 1993, 88: 1392–1397.
    [149] Steinberg D.M., Lin D.K.J. A construction method for orthogonal Latin hypercube designs[J]. Biometrika, 2006, 93: 279–288.
    [150] Bingham D., Sitter R.R., Tang B. Orthogonal and nearly orthogonal designs for computer experiments[J]. Biometrika, 2009, 96: 51–65.
    [151] Lin C.D., Mukerjee R., Tang B. Construction of orthogonal and nearlyorthogonal Latin hypercubes[J]. Biometrika, 2009, 96: 243–247.
    [152] Pistone G., Vicario G.. Comparing and generating Latin hypercube designs in Kriging models[J]. Adv. Stat. Anal, 2010, 94 (4): 353–366
    [153] Johnson M.E., Moore I.M., Ylvisaker D.. Minimax and maximin distance designs[J]. Journal of Statistical Planning and Inference, 1990, 26: 131–148.
    [154] Jourdan A., Franco J. Optimal Latin hypercube designs for the Kullback-Leibler criterion[J]. AStA. Adv. Stat. Anal., 2010, 94: 341-351.
    [155] Currin C., Mitchell T., Morris M., Ylvisaker D. Bayesian prediction of deterministic functions, with application to the design and analysis of computer experiments[J]. J. Am. Stat. Assoc., 1991, 86 (953–963).
    [156] Shewry M.C., Wynn H.P. Maximum entropy sampling[J]. J . Appl. Stat., 1987, (14): 165-170.
    [157] Bates R.A., Buck R.J., Riccomagno E., Wynn H.P. Experimental design and observation for large systems[J]. J. R. Stat. Soc. B, 1996, 58: 77–111.
    [158] Bursztyn D., Steinberg D.M. Comparison of designs for computer experiments[J]. Journal of Statistical Planning and Inference, 2006, 136: 1103–1119.
    [159] Morris M.D., Mitchell T.J. Exploratory designs for computational experiments[J]. Journal of Statistical Planning and Inference, 1995, 43 (3): 381-402.
    [160] Hickernell F.J. A generalized discrepancy and quadrature error bound[J]. Mathematics of Computation, 1998, 67 (221): 299-322.
    [161] Audze P., Eglais V. New approach for planning out of experiments[J]. Problems of Dynamics and Strengths, 1977, 35: 104-107.
    [162] Bates S.J., Sienz J., Toropov V.V. Formulation of the optimal Latin Hypercube design of experiments using a permutation genetic algorithm[C]. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. CA, Palm Springs, 2004.
    [163] Liefvendahl M., Stocki R. A study on algorithms for optimization of Latin hypercubes[J]. Journal of Statistical Planning and Inference, 2006, 136 (9): 3231-3247.
    [164] Rikards R., Chate A., Gailis G. Identification of elastic properties of laminates based on experiment design[J]. International Journal of Solids and Structures, 2001, 38 (30-31): 5097-5115.
    [165] Bulik M., Liefvendahl M., Stocki R., Wauquiez C. Stochastic simulation for crashworthiness[J]. Advances in Engineering Software, 2004, 35 (12): 791-803.
    [166] Stocki R. A method to improve design reliability using optimal Latin hypercube sampling[J]. Computer Assisted Mechanics and Engineering Sciences, 2005, 12 (4): 393-412.
    [167] Hino R., Yoshida F., Toropov V.V. Optimum blank design for sheet metal forming based on the interaction of high-and low-fidelity FE models[J]. Archive of Applied Mechanics, 2006, 75 (10): 679-691.
    [168]池元成,蔡国飙.基于蚁群算法的多目标优化[J].计算机工程, 2009, 35 (15): 168-169,172.
    [169]张景成,戴光明.基于指标的多目标进化算法研究[J].计算机工程, 2009, 35 (23): 187-189,193.
    [170] Joseph V.R., Ying Hung. Orthogonal-Maximin Latin Hypercube Designs[J]. Statistica Sinic, 2008, 18 (1): 171-186.
    [171]刘新亮,郭波.适用于复杂系统仿真试验的试验设计方法[J].国防科技大学学报, 2009, 31 (6): 95-99.
    [172] Joseph V. Roshan, Ying Hung. Orthogonal-Maximin Latin Hypercube Designs[J]. Statistica Sinica, 2008, 18 (1): 171-186.
    [173] Morris M.D., Mitchell T.J.. Exploratory design for computational experiments [J]. Journal of Statistical Planning and Inference, 1995, 43 (3): 381-402.
    [174] Simpson T.W., Allen J.K., Mistree F.. Spatial correlation metamodels for global approximation in structural design optimization[C]. ASME Design Engineering Technical Conference. Atlanta, GA, U. S., 1998.
    [175] Grosso A., Jamali A. R. M. J. U., Locatelli M.. Finding maximin latin hypercube designs by Iterated Local Search heuristics[J]. European Journal of Operational Research, 2009, 197 (2009): 541-547.
    [176] Lin J., Chai K.H., Brombacher A.C., Wong Y.S.. Optimal overlapping and functional interaction in product development[J]. European Journal of Operational Research, 2009, 196 (3): 1158–1169.
    [177] Maria Carrascosa, Steven D. Eppinger, Daniel E. Whitney. Using the Design Structure Matrix to Estimate Product Development Time[C]. 1998 ASME Design Engineering Technical Conferences. Atlanta, Georgia, USA, Year.1-10.
    [178]陈庭贵,肖人彬.产品开发的多输入多输出活动重叠模型研究[J].计算机集成制造系统, 2008, 14 (2): 255-261.
    [179] Cho S.H., Eppinger S.D.. Product development process modeling using advanced simulation[C]. Proceedings of the ASME Design Engineering Technical Conference. Pittsburgh, PA, United States, 2001.85-94.
    [180] Lin J., Chai K.H., Wong Y.S., Brombacher A.C.. A dynamic model for managing overlapped iterative product development[J]. European Journal of Operational Research, 2008, 185 (1): 378–392.
    [181]姚咏,范文慧,熊光楞.复杂产品开发过程仿真及其优化方法研究[J].系统仿真学报, 2006, 18 (3): 726-730.
    [182]郭峰,武建伟,潘双夏.支持设计过程仿真的逻辑迭代结构模型及其仿真[J].机械工程学报, 2007, 43 (3): 72-77.
    [183]陈卫明,陈庭贵,肖人彬.动态环境下基于混合迭代的耦合集求解方法[J].计算机集成制造系统, 2010, 16 (2): 271-279,309.
    [184] Eppinger S.D, Nukala M, Whitney D. Generalized Models of Design Iteration Using Signal Flow Graphs [J]. , 1997, 9(2):[J]. Research in Engineering Design, 1997, 9 (2): 112-123.
    [185] Ahmadi R., Reza H., Wang H.B. Rationalizing Product Design Debelopment Processes[R]. Los Angeles, CA: Anderson Graduate School of Management, UCLA, 1994.
    [186]彭毅,吴祚宝,张珂殊,熊光楞.并行工程产品开发过程的建模方法学[J]. [J].系统仿真学报,1996, 9: 14-18., 1996, 9: 14-18.
    [187]谢列卫,邵健,程耀东.产品的并行开发模式及提高并行度的方法[J].机械科学与技术, 2001, 20 (3): 475-477.
    [188] Browning T.R. Use of Dependency Structure Matrices for Product Development Cycle Time Reduction[C]. the Fifth ISPE International Conference on Concurrent Engineering: Research and Applications. Tokyo, Japan, 1998.
    [189] Krishnan V, Eppinger S D, Whitney D E. A model-based framework to overlap product development activities[J]. Management Science, 1997, 43 (4): 437-451.
    [190] Loch C.H., Terwiesch C. Communication and uncertainty in concurrent engineering[J]. Management Science, 1998, 44 (8): 1032–1048.
    [191]谢列卫,程耀东,祁国宁.集成产品开发过程管理的复杂性及其性能评价[J].机械工程学报, 2000, 36 (10): 37-41.
    [192] Roemer T. A, Ahmadi R, Wang R H. Time-cost trade-offs in overlapped product development[J]. Operations Research, 2000, 48 (6): 858-865.
    [193] Roemer T.A., Ahmadi R. Concurrent crashing and overlapping in product development[J]. Operations Research, 2004, 52 (4): 606–622.
    [194] Chakravarty A.K. Overlapping design and build cycles in product development[J]. European Journal of Operational Research, 2001, 134 (2): 392–424.
    [195] Jun H.B., Ahn H.S., Suh H.W.. On identifying and estimating the cycle time of product development process[J]. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2005, 52 (3): 336–349.
    [196]徐赐军,李爱平,刘雪梅.耦合活动重叠执行过程的时间模型[J].计算机集成制造系统, 2009, 15 (10): 1914-1920.
    [197]刘建刚,唐敦兵,杨春.基于设计结构矩阵的耦合任务迭代重叠建模和分析[J].计算机集成制造系统, 2009, 15 (9): 1715-1720.
    [198] Dorigo M., Maniezzo V., Colorni A.. Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Transactions on System, Man, and Cybernetics., 1996, 26 (1): 29-41.
    [199] Dorigo M., Stutzle T. Ant Colony Optimization[M]. Cambridge: MIT Press, 2004.
    [200]李士勇,陈永强,李研.蚁群算法及其应用[M].哈尔滨:哈尔滨工业大学出版社, 2004.
    [201]段海滨.蚁群算法原理及其应用[M].北京:科学出版社, 2005.
    [202] Colorni A., Dorigo M., Maniezzo V.. Positive feedback as a search strategy[R]. Italy: Department of Electronics, Politecnico di Milano, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700