用户名: 密码: 验证码:
探针扫描式液相原子力显微镜技术及系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科技是近年来飞速发展的前沿学科领域之一。原子力显微镜(AFM)因具有极高的分辨率,并且可在大气和液体等多种环境下进行微纳米检测,而成为纳米科技领域的重要工具。目前,国内外已有的液相AFM系统大多采用样品扫描方式,仅适用于小样品、小区域及小扫描范围检测;同时,这些系统只在样品表面滴上一小滴液滴,仅有极小面积的样品表面浸润在液体中,并非全液相环境。为此,本文发展了一种基于探针扫描方式的大范围液相AFM新方法与新技术,克服了现有液相AFM的局限性,不仅具有重要的科学意义,而且在物理学、化学及电化学、材料学和生命科学等领域有着广泛的应用前景。
     论文首先阐述了液相AFM的工作原理、成像特点以及国内外发展现状,对AFM探针在溶液中受到的固液界面相互作用进行了系统的理论研究,讨论了它们对液相AFM成像的影响。通过对探针扫描式AFM的传统探测光路进行分析,对光路中的扫描误差和反馈误差进行了理论推导与计算,讨论了这些误差对AFM成像造成的影响,并提出了消除扫描误差和反馈误差的关键因素。
     在此基础上,提出和发展了一种探针扫描式液相AFM的新方法。开展了液相AFM成像理论的研究,分析了AFM的液相成像特性。提出了探针扫描式AFM的光路跟踪新方法,该方法可实现扫描过程中检测光对探针运动的追踪,消除扫描器的运动给光电探测信号引入的横向扫描误差和纵向反馈误差。此外,本文还提出了一种基于位置敏感元件的光路误差检测法,可对扫描误差进行直观的判断和分析,指导检测光路的进一步调试。
     本文研究和发展了一种新型液相AFM探头系统。该探头采用探针扫描方式和开放式设计,消除了对样品尺寸和重量的限制。特殊的液相视窗和探针座的设计,可将样品和AFM探针完全浸入到液体中,实现全液相环境下的扫描检测。搭建了新型探针扫描式液相检测光路,切实解决了扫描过程中的光路跟踪问题,消除了因扫描器的运动所引起的XY向扫描误差和Z向反馈误差。设计制作了叠层式与管式组合型扫描与反馈控制器,该扫描器结合了叠层式压电陶瓷位移量大和管式压电陶瓷响应迅速的优点,可实现较大扫描范围和纳米级分辨率的XY向扫描和高精度的Z向反馈控制。采用二维步进移动台,既可以实现探针与样品之间的快速定位(扫描选区),又能实现更大范围的图像拼接。
     在上述理论和技术研究的基础上,研制了探针扫描式液相AFM系统。该系统可测量最大尺寸300mm×300mm、最大重量10kg的样品,可实现液相和气相两种环境下的AFM扫描检测。压电陶瓷扫描器的XY方向最大扫描范围有4gm×4μm和20gm×20μm可选,分辨率可达纳米量级。二维步进移动台的步进移动范围为30mm×30mm,可实现探针在样品表面任意位置的快速定位。
     为了研究考察探针扫描式液相AFM的性能,利用该系统气相及液相环境下全面开展了实验技术研究。首先,分别在液体和空气中对标准光栅和锗量子点等典型样品进行了扫描检测,成功获得了样品表面的纳米结构图像。其次,在草酸溶液中对多孔氧化铝模板进行了AFM图像的序列测量,通过图像拼接获得了较大范围的高分辨AFM图像。此外,对铝在NaOH溶液中的腐蚀和铁片基底铜的电化学沉积过程进行了实时观察,获得了这些反应过程的序列图像。实验结果表明,本文自主研发的液相型AFM,无论是在空气中还是在液相环境下,均可获得良好的图像分辨率、重复性和对比度,而且其液相成像性能突出,完全可满足科研及工业等领域对大样品进行大范围及高分辨扫描检测的要求。
     最后,对论文的研究内容和研究成果进行了总结,阐述了探针扫描式液相AFM的新方法及本文研制的新型液相AFM系统的特点及创新之处。同时,提出了课题研究工作中的不足和需要改进之处,对未来的研究工作提出了展望。
Nanotechnology opens new frontier in scientific research. Atomic force microscope (AFM). a high-resolution imaging technique that can resolve atomic features, can be operated in various environments, such as ambient air and liquids. It makes AFM an important analytic tool for nanotechnology. Traditional liquid-AFMs usually adopt sample-scanning method, which promises a high stability and sensitivity but encounters challenges when imaging large and massive samples. Moreover, the liquid cell of commercial AFMs is available to immerse samples in liquid but only maintain a limited area of sample surface for their limited volume and closed design. In contrast, probe-scanning type AFM is not subject to this limitation and can obtain images with high speed either in air or in liquid.
     The objective of this dissertation is to develop a novel liquid-AFM system capable of imaging large samples in liquid environment with a high resolution. With a unique optical detection method, the laser beam can reflect from the same point on the cantilever during scanning. It can overcome the limitations of current liquid-AFM systems described above, and shows its broader potential applications in the fields of physics, chemistry, electrochemistry, materials and biology.
     Firstly, the principle, features and state-of-the-art of liquid AFM system are briefly reviewed and presented. Then the probe-sample interactions in liquid environment and their influences have been detailed analyzed. Besides, the scanning-and feedback-induced errors in traditional probe-scanning AFMs and their influences on AFM measurements have been theoretical analyzed and calculated. Based on these theoretical analyses, the research plan for this project will be demonstrated.
     Secondly, a novel optical detection method for probe-scanning AFM is designed. With a new beam tracking method, the laser beam can reflect from the same point on the cantilever throughout raster scan over the entire scan area. This method has enabled elimination of the scanning- and feedback-induced errors in the optical path of current probe-scanning AFMs. To estimate the scanning-induced error, a detection method based on position sensitive detector (PSD) is developed. With the aid of this method, the optical path of the detection system can be easily adjusted.
     On the basis of the new optical detection method, a liquid-AFM probe unit has been designed and fabricated. In the liquid-AFM head, the laser adjustment can be eliminated regardless of the measuring environment. Thanks to the special designed window, the beam shift that normally occurs upon immersion into liquid is completely absent in the AFM head, which makes the measurements in liquid environment as simple as measuring in air. Additionally, a new kind of three-dimensional piezoelectric scanner is designed. The new compound scanner uses two stacked piezoelectric actuators in the X and Y directions for their large displacements, and a piezoelectric tube in Z-axis for its fast response. It combines the advantages of these two kind of piezoelectric actuators. With the help of the two-dimensional step scanner, our AFM probe unit is able to locate on the sample surface rapidly and scan AFM images in adjacent regions successively.
     Based on above theoretical analyses and developed novel methods, a liquid-AFM system is established to address measurements in liquid environment of both the research lab and industrial applications. It enables imaging large sample in liquid with high resolution and high performances. Furthermore, image stitching method has been developed to build a wider AFM image with range from micrometers to millimeters.
     Below is a summary of the key features of this AFM. The system is designed to image samples with size up to 300mm×300mm and weight up to 10kg. To satisfying different measurement needs, two kinds of piezo scanner are fabricated. The smaller scanner has a scan range of 4μm×4μm with spatial resolution of 0.1 nm. The compound scanner, which combines the advantages of stacked piezo and piezo tube, has a scan range of 20μm×20μm and spatial resolution of nanometer. The two-dimensional step scanner with an X-Y travel range of 30mm×30mm, allows fast travelling and location of AFM probe on large sample surface in X-Y plane and scanning AFM images in adjacent regions successively. Combined with the Z-axis piezo tube, it can also realize larger-size AFM measurements. In addition, an image stitching method is utilized to build a broad merged microscopic image with range up to millimeters while keeping nanometer order resolution. This function enables us to obtain wide AFM images with high resolution, which satisfies the rising scientific and industrial demands in micro- and nano-measurements.
     To demonstrate the imaging ability and stability of the developed liquid-AFM system, serials of experimental measurements were carried out. Results show that the overall shape, size, and contrast are nearly identical in those images. Furthermore, by studying the corrosion behavior of aluminum surface in NaOH solution, as well as copper plating on silicon wafer in real time with the developed liquid-AFM system, we also show that the system can observe the solid-liquid interface of the electrochemical reactions and processes in the atomic level. The superior performance of the system renders its great prospect in research and industry applications among chemical, electrochemical and biological studies, where large-size scanning and high-resolution imaging are required for large, heavy samples in liquid environment.
引文
[1]Ernst Meyer, Hans Josef Hug, Roland Bennewitz. Scanning Probe Microscopy:The Lab on a Tip [M]. New York Springer Verlag,2004.
    [2]Veeco Instruments Inc. Scanning Probe/Atomic Force Microscopy:Technology Overview and Update[M],2005.
    [3]Seizo Morita. Roadmap of Scanning Probe Microscopy. Springer-Verlag Berlin Heidelberg, 2007.
    [4]C. Bai. Scanning Tunneling Microscopy and Its Applications[M]:New York:Springer Verlag, 2000.
    [5]G. Binnig, C. F. Quate, Ch Gerber. Atomic Force Microscope[J]. Physical Review Letters, 1986,56(9):930.
    [6]Peter Eaton, Paul West. Atomic Force Microscopy [M]. New York:Oxford University Press, 2010.
    [7]F. Zenhausern, Y. Martin, H. K. Wickramasinghe. Scanning Interferometric Apertureless Microscopy:Optical Imaging at 10 Angstrom Resolution[J]. Science,1995,269(5227): 1083-1085.
    [8]S. Manne, J. P. Cleveland, H. E. Gaub, G. D. Stucky, P. K. Hansma. Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double Layer[J]. Langmuir, 1994.10(12):4409-4413.
    [9]P. M. Bridger, Z. Z. Bandi?, E. C. Piquette. T. C. Mcgill. Measurement of induced surface charges, contact potentials, and surface states in GaN by electric force microscopy[M]:AIP, 1999.
    [10]Y. Martin, H. K. Wickramasinghe. Magnetic imaging by "force microscopy" with 1000 A resolution[J]. Applied Physics Letters,1987,50(20):1455-1457.
    [11]D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. Mcfadyen, T. Yogi. Magnetic force microscopy:General principles and application to longitudinal recording media[J]. Journal of Applied Physics,1990,68(3):1169-1183.
    [12]R. M. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Luthi, L. Howald, H. J. Giintherodt. M. Fujihira, H. Takano, Y. Gotoh. Friction measurements on phase-separated thin films with a modified atomic force microscope[J]. Nature,1992,359(6391):133-135.
    [13]R. W. Carpick, D. F. Ogletree, M. Salmeron. Lateral stiffness:A new nanomechanical measurement for the determination of shear strengths with friction force microscopy[J]. Applied Physics Letters,1997,70(12):1548-1550.
    [14]W. Travis Johnson. AFM imaging in liquids [EB]. http://www.chem.agilent.com/Library/sli depresentation/Public/AFM%20Imaging%20in%20Liquids_Travis%20Johnson_1107.pdf
    [15]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用[M].北京:化学工业出版社,2007.
    [16]朱传凤,王琛.扫描探针显微术应用进展[M].北京:化学工业出版社,2007.
    [17]G. Binnig, H. Rohrer, Ch Gerber, E. Weibel. Surface Studies by Scanning Tunneling Microscopy[J]. Physical Review Letters,1982,49(1):57.
    [18]Daisuke Fujita, Keisuke Sagisaka. Active nanocharacterization of nanofunctional materials by scanning tunneling microscopy [J]. Science and Technology of Advanced Materials, 2008,9(1):013003.
    [19]M. Bode. Spin-polarized scanning tunnelling microscopy [J]. Reports on Progress in Physics,2003,66(4):523.
    [20]A. Kubetzka, M. Bode, O. Pietzsch, R. Wiesendanger. Spin-Polarized Scanning Tunneling Microscopy with Antiferromagnetic Probe Tips[J]. Physical Review Letters,2002,88(5): 057201.
    [21]Chr. Wittneven, R. Dombrowski, S. H. Pan, R. Wiesendanger. A low-temperature ultrahigh-vacuum scanning tunneling microscope with rotatable magnetic field[J]. Review of Scientific Instruments.1997.68(10):3806-3810.
    [22]Y. D. Kim, W. Choi, H. Wakimoto, S. Usami. H. Tomokage, T. Ando. Characterization of boron doped polycrystalline CVD diamond by ultra high vacuum scanning tunneling microscopy[J]. Diamond and Related Materials,2000.9(3-6):1096-1099.
    [23]Q. Zhong, D. Inniss, K. Kjoller, V. B. Elings. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy[J]. Surface Science,1993,290(1-2):L688-L692.
    [24]A. J. Putman Constant, O. Van Der Werf Kees, G. De Grooth Bart, F. Van Hulst Niek, Greve Jan. Tapping mode atomic force microscopy in liquid[J]. Applied Physics Letters,1994, 64(18):2454-2456.
    [25]Antonio Checco, Yuguang Cai, Oleg Gang, Benjamin M. Ocko. High resolution non-contact AFM imaging of liquids condensed onto chemically nanopatterned surfaces[J]. Ultramicroscopy,2006,106(8-9):703-708.
    [26]W. Mahoney, D. M. Schaefer, A. Patil, R. P. Andres, R. Reifenberger. Substrate induced deformation of nanometer-size gold clusters studied by non-contact AFM and TEM[J]. Surface Science,1994,316(3):383-390.
    [27]L. Nony, Et Al. Cu-TBPP and PTCDA molecules on insulating surfaces studied by ultra-high-vacuum non-contact AFM [J]. Nanotechnology,2004,15(2):S91.
    [28]P. Maivald, Et Al. Using force modulation to image surface elasticities with the atomic force microscope[J]. Nanotechnology,1991,2(2):103.
    [29]Fukuma. Takeshi, Kilpatrick. Jason I., Jarvis. Suzanne P. Phase modulation atomic force microscope with true atomic resolution[J]. Review of Scientific Instruments,2006,77(12): 5.
    [30]Takeshi Fukuma, Kei Kobayashi, Kazumi Matsushige, Hirofumi Yamada. True atomic resolution in liquid by frequency-modulation atomic force microscopy [J]. Applied Physics Letters,2005,87(3):034101.
    [31]F. J. Giessibl. A direct method to calculate tip?sample forces from frequency shifts in frequency-modulation atomic force microscopy [J]. Applied Physics Letters,2001,78(1): 123-125.
    [32]Tomas R. Rodriguez, Ricardo Garcia. Theory of Q control in atomic force microscopy[J]. Applied Physics Letters,2003,82(26):4821-4823.
    [33]Gajendra S. Shekhawat, Vinayak P. Dravid. Nanoscale Imaging of Buried Structures via Scanning Near-Field Ultrasound HoIography[J]. Science,2005,310(5745):89-92.
    [34]A. J. Huber, Zieglera, Kockt, Hillenbrandr. Infrared nanoscopy of strained semiconductors[J]. Nature Nanotechnology,2009,4(3):153-157.
    [35]Sergiu Amarie, Thomas Ganz, Fritz Keilmann. Mid-infrared near-field spectroscopy[J]. Opt. Express,2009,17(24):21794-21801.
    [36]A. J. Huber, Et Al. Infrared spectroscopic near-field mapping of single nanotransistors[J]. Nanotechnology,2010,21(23):235702.
    [37]Kislon Voitchovsky, Jeffrey J. Kuna, Sonia Antoranz Contera, Erio Tosatti, Francesco Stellacci. Direct mapping of the solid-liquid adhesion energy with subnanometre resolution[J]. Nat Nano,2010,5(6):401-405.
    [38]Andreas Ruediger, Federico Rosei. Interfaces:AFM extends its reach[J]. Nat Nano.2010, 5(6):388-389.
    [39]O. Marti, B. Drake, P. K. Hansma. Atomic force microscopy of liquid-covered surfaces: Atomic resolution images[J]. Applied Physics Letters,1987,51(7):484-486.
    [40]B Drake, Cb Prater, Al Weisenhorn, Sa Gould, Tr Albrecht, Cf Quate,Ds Cannell, Hg Hansma, Pk Hansma. Imaging crystals, polymers, and processes in water with the atomic force microscope [J]. Science,1989,243(4898):1586-1589.
    [41]Patricia G. Arscott, Victor A. Bloomfield. Scanning tunnelling microscopy in biotechnology[J]. Trends in Biotechnology,1990,8:151-156.
    [42]S. Manne, J. Massie, V. B. Elings, P. K. Hansma, A. A. Gewirth. Electrochemistry on a gold surface observed with the atomic force microscope[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1991,9(2):950-954.
    [43]S. Manne, P. K. Hansma, J. Massie, V. B. Elings. A. A. Gewirth. Atomic-Resolution Electrochemistry with the Atomic Force Microscope:Copper Deposition on Gold[J]. Science.1991.251(4990):183-186.
    [44]P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. mode atomic-force microscopy in liquids[J]. Applied Physics Letters,1994,64(13): 1738-1740.
    [45]J. N. Israelachvili, H. K. Christenson. Liquid structure and short-range forces between surfaces in liquids[J]. Physica A:Statistical Mechanics and its Applications,1986,140(1-2): 278-284.
    [46]Jacob Israelachvili. Direct Measurements of Forces between Surfaces in Liquids at the Molecular Level [J]. Proceedings of the National Academy of Sciences of the United States of America,1987,84(14):4722-4724.
    [47]A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, C. F. Quate. Forces in atomic force microscopy in air and water[J]. Applied Physics Letters,1989,54(26):2651-2653.
    [48]Brian J. Rodriguez, Stephen Jesse, A. P. Baddorf, Sergei V. Kalinin. High Resolution Electromechanical Imaging of Ferroelectric Materials in a Liquid Environment by Piezoresponse Force Microscopy[J]. Physical Review Letters,2006,96(23):237602.
    [49]张虎.液相原子力显微镜[D].硕士学位论文,浙江大学,2004.
    [50]Ragnar Erlandsson, Lars Olsson, Per Martensson. Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7×7[J]. Physical Review B, 1996,54(12):R8309-R8312.
    [51]Andrew C Hillier, Allen J Bard, ac-mode atomic force microscope imaging in air and solutions with a thermally driven bimetallic cantilever probe[J]. Review of Scientific Instruments,1997,68(5):2082-2090.
    [52]Irene Revenko, Roger Proksch. Magnetic and acoustic tapping mode microscopy of liquid phase phospholipid bilayers and DNA molecules[J]. Journal of Applied Physics,2000, 87(1):526-533.
    [53]Wenhai Han, S. M. Lindsay. Probing molecular ordering at a liquid-solid interface with a magnetically oscillated atomic force microscope[J]. Applied Physics Letters,1998.72(13): 1656-1658.
    [54]H. Schindler, D. Badt, F. Kienberger P. Hinterdorfer, A. Raab, S. Wielert-Badt, V. Ph Pastushenko. Optimal sensitivity for molecular recognition MAC-mode AFM[J]. Ultramicroscopy,2000,82(1-4):227-235.
    [55]J. I. Kilpatrick. Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning[J]. Rev. Sci. Instrum.,2009,80(2):023701.
    [56]http://www.atomicforce.de/Asylum-Research-Accessories-MFP-3D-iDrive.php.
    [57]Veeco. MultiMode SPM Instruction Manual V5[M]. Santa Barbara, CA,2004.
    [58]S. Belaidi, P. Girard, G. Leveque. Electrostatic forces acting on the tip in atomic force microscopy:Modelization and comparison with analytic expressions[J]. Journal of Applied Physics,1997,81(3):1023-1030.
    [59]Huang Wen Hao, A. M. Baro, J. J. Saenz. Electrostatic and contact forces in force microscopy[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1991,9(2):1323-1328.
    [60]Hans-Jurgen Butt. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope[J]. Biophysical Journal,1991,60(6): 1438-1444.
    [61]N. A. Burnham, R. J. Colton, H. M. Pollock. Work-function anisotropies as an origin of long-range surface forces[J]. Physical Review Letters,1992,69(1):144.
    [62]Seung-Woo Lee, Wolfgang M. Sigmund. AFM study of repulsive van der Waals forces between Teflon AF(TM) thin film and silica or alumina[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,204(1-3):43-50.
    [63]Oscar H. Willemsen, Margot M. Snel, Kees O. Van Der Werf, Bart G. De Grooth. Jan Greve, Peter Hinterdorfer, Hermann J. Gruber, Hansgeorg Schindler, Yvette Van Kooyk, Carl G. Figdor. Simultaneous Height and Adhesion Imaging of Antibody-Antigen Interactions by Atomic Force Microscopy [J]. Biophys. J.,1998,75(5):2220-2228.
    [64]O. Van Der Werf Kees, A. J. Putman Constant, G. De Grooth Bart, Greve Jan. Adhesion force imaging in air and liquid by adhesion mode atomic force microscopy [J]. Applied Physics Letters,1994,65(9):1195-1197.
    [65]J. N. Israelachvili, D. Tabor. The Measurement of Van Der Waals Dispersion Forces in the Range 1.5 to 130 nm[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1972,331(1584):19-38.
    [66]A. L. Weisenhorn, P. Maivald, H.-J. Butt, P. K. Hansma. Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope[J]. Physical Review B,1992,45(19):11226-11232.
    [67]J. Lyklema. Fundamentals of Interface and Colloid Science Vol. II:solid-liquid interface[M]. London:Academic press,1995.
    [68]S. Bogotsky. Fundamentals of Electrochemistry[M]. Hoboken, N.J.:Wiley-Interscience, 2006.
    [69]O'shea S. J., Welland M. E., Pethica J. B. Atomic force microscopy of local compliance at solid-liquid interfaces [J]. Chemical physics letters,1994,233:4.
    [70]吕明泰,林俊勋,吴靖宙,张宪彰.原子力显微术之力-距离曲线于微管壁电双层特性之评估[J]..界面科学会志(台湾),2005,27:207-215.
    [71]Ya I. Rabinovich, R. H. Yoon. Use of atomic force microscope for the measurements of hydrophobic forces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1994,93:263-273.
    [72]Ann V. Nguyen, Jakub Nalaskowski, Jan D. Miller, Hans-Jurgen Butt. Attraction between hydrophobic surfaces studied by atomic force microscopy [J]. International Journal of Mineral Processing,2003,72(1-4):215-225.
    [73]Hans-Jurgen Butt, Manfred Jaschke, William Ducker. Measuring surface forces in aqueous electrolyte solution with the atomic force microscope[J]. Bioelectrochemistry and Bioenergetics,1995,38(1):191-201.
    [74]Loredana S. Dorobantu, Subir Bhattacharjee, Julia M. Foght, Murray R. Gray. Analysis of Force Interactions between AFM Tips and Hydrophobic Bacteria Using DLVO Theory [J]. Langmuir,2009,25(12):6968-6976.
    [75]Hans-Jurgen Butt, Manfred Jaschke, William Ducker. Measuring surface forces in aqueous electrolyte solution with the atomic force microscope [J]. Bioelectrochemistry and Bioenergetics,1995,38(1):191-201.
    [76]D. Rugar, H. J. Mamin, P. Guethner. Improved fiber-optic interferometer for atomic force microscopy [J]. Applied Physics Letters,1989,55(25):2588-2590.
    [77]T. Akiyama, U. Staufer, N. F. De Rooij, P. Frederix, A. Engel. Symmetrically arranged quartz tuning fork with soft cantilever for intermittent contact mode atomic force microscopy [J]. Review of Scientific Instruments,2003,74(1):112-117.
    [78]Dara Bayat, Terunobu Akiyama, Nicolaas F. De Rooij, Urs Staufer. Dynamic behavior of the tuning fork AFM probe[J]. Microelectronic Engineering,2008,85(5-6):1018-1021.
    [79]Manuel J. Romero, C.-S. Jiang, J. Abushama, H. R. Moutinho, M. M. Al-Jassim. R. Noufi. Electroluminescence mapping of CuGaSe2 solar cells by atomic force microscopy [J]. Applied Physics Letters,2006,89(14):143120.
    [80]Gerhard Meyer, Nabil M. Amer. Novel optical approach to atomic force microscopy[J]. Applied Physics Letters,1988,53(12):1045-1047.
    [81]S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, Matt Longmire, John Gurley. An atomic-resolution atomic-force microscope implemented using an optical lever[J]. Journal of Applied Physics,1989,65(1):164-167.
    [82]Kawakatsu. Hideki, Bleuler. Hannes, Saito. Takashi, Hiroshi. Kougami. Dual Optical Levers for Atomic Force Microscopy [J]. Japanese Journal of Applied Physics,1995,34: 3400-3402.
    [83]Xia Fu, Dongxian Zhang, Haijun Zhang, Zhigang Xie. A large-sample atomic force microscope observing in both air and liquid[J]. Microscopy Research and Technique,2011, 74(11):1058-1061.
    [84]S. K. Hung, L. C. Fu. Novel three-dimensional beam tracking system for stationary-sample-type atomic force microscopy [J]. Ieee Transactions on Instrumentation and Measurement,2006,55(5):1648-1654.
    [85]K. Nakano. Three-dimensional beam tracking for optical lever detection in atomic force microscopy[J]. Review of Scientific Instruments,2000,71(1):137-141.
    [86]P. S. Jung, D. R. Yaniv. Novel stationary-sample atomic force microscope with beam-tracking lens[J]. Electronics Letters,1993,29(3):264-266.
    [87]P. E. West. Introduction to atomic force microscopy-Theory, practice and applications[M]. Pacific Nanotechnology,2007.
    [88]http://www.mechmat.caltech.edu/-kaushik/park/2-2-5.htm.
    [89]J. Kwon, J. Hong, Y. S. Kim, D. Y. Lee, K. Lee, S. M. Lee, S. I. Park. Atomic force microscope with improved scan accuracy, scan speed, and optical vision[J]. Review of Scientific Instruments,2003,74(10):4378-4383.
    [90]David P. Allison, Ninell P. Mortensen, Claretta J. Sullivan, Mitchel J. Doktycz. Atomic force microscopy of biological samples[J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology,2010,2(6):618-634.
    [91]Haijun Zhang, Dongxian Zhang, Yulin He. A novel atomic force microscope operating in liquid for in situ investigation of electrochemical preparation of porous alumina[J]. Microscopy Research and Technique,2005,66(2-3):126-131.
    [92]伏霞,谢志刚,章海军,张冬仙.新型液相/电化学原子力显微镜的研制及其应用研究[J].中国激光,2008,35:147-150.
    [93]田中哲朗.压电陶瓷材料[M].北京:科学出版社,1982.
    [94]陈大任.压电陶瓷位移驱动器概述[J].电子元件与材料,1999,13:2-7.
    [95]马淑海,陈彬.超精密加工中的微位移技术[J].同济大学学报,2000,28:684-687.
    [96]http://www.brukerafmprobes.com/Product.aspx?ProductID=3254.
    [97]http://en.wikipedia.org/wiki/PID_controller.
    [98]陶永华.新型PID控制及其应用[M]..北京:机械工业出版社,2002.
    [99]邓北川.浅谈模拟PID电路的学习与辨识[J].西安航空技术高等专科学校学报,2007,25(5):14-16.
    [100]章海军张冬仙.原子力显微镜的压电陶瓷非线性及图象畸变的校正[J].光子学报,2002,31(10):1252-1255.
    [101]B. Mokaberi, A. A. G. Requicha. Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation[J]. Automation Science and Engineering, IEEE Transactions on,2008, 5(2):197-206.
    [102]http://www.nano-tm-agilent.com/index.php/afmspm-e-seminar-archives.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700