用户名: 密码: 验证码:
火星无人机控制与自主导航关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会经济与科技的发展,深空探测越来越受到各国的重视。各国空间探测技术的水平也直接影响其国际地位。火星是离地球最近的最有可能存在生命的行星。因此,火星探测成为近年来国际深空探测的热点问题。利用无人机探测火星具有其它探测方法不具备的优点,这使得火星无人机探测成为未来深空探测的发展方向之一。国外对火星无人机做了一些研究,但未见有成功试飞的报道。目前,国内尚未见火星无人机相关的研究性文献或报道。本文针对火星无人机及其探测飞行中的几个关键问题做了一些研究和探讨。
     本文首先描述了火星探测无人机的总体任务,研究了火星的飞行环境特点,比较了其与地球相关环境的差异,并分析了该差异对火星无人机相关研究的影响。在此基础上,本文建立了火星无人机的纵向数学模型,并对该模型进行了相关的气动特性分析。这些内容将为今后对火星无人机导航和控制方法的研究提供平台。
     其次,本文研究了探测无人机从出舱到平飞的整个过程特点,并根据上述模型,提出了火星无人机的切换控制方法,拉起和平飞控制方法及总能量控制方法。由于火星无人机探测飞行的任务特点决定了它的一些控制动作需要导航信号的触发,同时火星无人机本身必须具备自主导航能力,因此,本文引入了对采用计算机视觉技术进行探测无人机自主导航的相关研究。本文根据探测无人机的机载计算机的局限性及其探测飞行的特点,针对性地研究了视觉导航中的景象匹配问题和机载数据存储问题,提出了火星无人机的快速图像特征提取与景象匹配方案及其具体算法,并给出了相应的机载数据存储方法。具体而言,本文针对探测无人机的平飞段和末段分别采用不同的图像特征提取和图像匹配算法,从而实现其全程景象匹配的快速性和准确性。
     最后,本文对以上的研究工作进行了总结,指出了其中的不足,并给出了下一步研究工作的建议。
With the development of human socio-economy and technology, more and more people from various countries pay more attention to deep-space exploration. The level of national space exploration technology has a direct impact on its international status. Mars is the closest planet where life is possible. So , Mars exploration is a hot issue in international deep space exploration in recent years. Mars UAV has the advantages that the other exploration methods do not have. It makes that Mars UAV exploration is becoming one of the development directions of deep space exploration .Some researches are done for Mars UAV in other countries, But , there is no news about the successful test flight of Mars UAV. The other documents about Mars UAV research have not been seen or been reported in China. In this paper, some research and discussion are done for the several key issues about Mars UAV.
     First, the overall mission of Mars UAV exploration and the feature of Mars environment surroundings are both described in this paper, The environmental differences between the Earth and Mars are compared ,and the impact on the researches for Mars UAV is analyzed. Based on the above, the longitudinal mathematical model of Mars UAV is established. And the related aerodynamic features of this model are also analyzed. These work will provide the platform for the follow-up research for Mars UAV navigation and control methods.
     Secondly, the feature of the whole process from extravehicular to level flight is researched. Based on the above model, two control methods for Mars UAV are proposed, one is a switching control method, the other is the method for pull-up control and level flight control . And then, a total energy control method is also proposed. Mars UAV control actions need navigation signals as the trigger signal of the effective implementation according to its task features. But, Mars UAV itself must have autonomous navigation capability. Therefore, computer vision technology is researched for autonomous navigation of Mars UAV in this paper. Scene matching and on-board data storage problem in visual navigation are researched, according to the features of Mars UAV exploration flight and the limitations of its on-board computer. Fast image feature extraction and matching algorithms for Mars UAV are proposed. Its On-board data storage mode is also proposed. Different methods are designed for different flight phases to reduce general performance requirements of its onboard computer, while achieving fast image matching of the whole Mars UAV exploration flight.
     Finally, the research work on the the above is summarized, and its shortcomings are also pointed out.Then,the further research proposals are given.
引文
[1]张辉旭,刘竹生.火星探测器轨道设计与优化技术[J].导弹与航天运载技术,2008,(2):15~22.
    [2] Mark D.Guynn, Mark A.Croom, Stephen C.Smith et al. Evolution of a Mars airplane concept for the ARES Mars scout mission[R].AIAA, 2003-6578.
    [3]陈其昌.火星探测技术的发展[J].科学,2009, 61 (5):16~19.
    [4] Braun R. Manning R. Mars exploration entry, descent, and landing challenges [J]. Journal of Spacecraft and Rockets, 2007, 44 (2):310- 323.
    [5] Withers P, Smith MD.Atmospheric entry profiles from the mars exploration rovers spirit and opportunity [J]. Icarus. 2006, 185:133 -142.
    [6] Spencer D A, Braun R D. Mars pathfinder atmospheric entry-trajectory design and dispersion analysis [J].Journal of Spacecraft and Rockets, 1996, 33 (5):670 - 676.
    [7] Braun R D, Powell R W, Engelund WC, et al. Mars pathfinder six-degree-of-freedom entry analysis [J]. Journal of Spacecraft and Rockets, 1995, 32 (6):993 - 1000.
    [8] Desai P N, Schoenenberger M, Cheatwood F M. Mars exploration rover six-degree-offreedom entry trajectory analysis [J]. Journal of Spacecraft and Rockets, 2006, 43 (5):1019 - 1025.
    [9]李爽,彭玉明,陆宇平.火星EDL导航、制导与控制技术综述与展望[J].宇航学报,2010, 31(3): 621-627.
    [10] Koji Shimoyama, Akira Oyama, Kozo Fujii. Multi-Objective Six Sigma Approach Applied to obust Airfoil Design for Mars Airplane[R].AIAA,2007-1966.
    [11] James E. Murray, Paul V. Tartabini et al. Development of a Mars Airplane Entry,Descent, and Flight Trajectory[R]. AIAA,2001-0839.
    [12] Marwaha M, Singh B, Valasek J. Integrated guidance and fault tolerant adaptive control for mars entry vehicle[R]. AIAA-2009-5668, 2009.
    [13] Marwaha M, Valasek J. Fault tolerant control allocation for mars entry vehicle using adaptive control[R]. AIAA-2008-7351, 2008.
    [14] Brown N, Samuel A, Richard C. Mars exploration airplane: design, construction, and flight test-ing of a stability, control, and performance demonstrator [R]. AIAA 2007-2723.
    [15] Nelson Brown, Allwyn Samuel, Richard Colgren. Mars Exploration Airplane: Design, Construction, and Flight Testing of a Stability, Control, and Performance Demonstrator [J]. AIAA 2007-2723.
    [16] Robert D. Braun, Henry S. Wright, Mark A. Croom, Joel S. Levine. Design of the ARES MarsAirplane and Mission Architecture [J]. Journal of Spacecraftaed Rockets,2006, 43(05): 1026~1034.
    [17] Reuben R. Rohrschneider, John R. Olds, Robert D. Braun and Virgil Hutchinson, Jr.Flight Syste-m Options for a Long-Duration Mars Airplane.[R].2004-6568.
    [18] Arnar Hjartarson, Yew Chai Paw, Abhijit Chakraborty. Model-based Aerospace Challenge #1, Modeling and Control Design for the ARES Aircraft [M]. AIAA, 2008-7452.
    [19] Raktim Bhattacharya, John Valasek, Baljeet Singh, Shalom Johnson, Justin Jackson, Monica Marwaha. On modeling and Robust control of ARES [R]. AIAA, 2008-7454.
    [20] Mourikis A I, Trawny N, Roumeliotis S I, et al. Vision-aided inertial navigation for spacecraft entry, descent, and landing[J]. IEEE Transactions on Robotics , 2009 : 25 (2) :264– 280.
    [21] Yang C , Adnan A. Landmark based position estimation for pinpoint landing on mars [C] Proceedings of the 2005 IEEE International Conference on Robotics and Automation , 2005 :4470 - 4475.
    [22] Li S, Cui P Y, Cui H T. Vision-aided inertial navigation for pinpoint planetary landing [J]. . Aerospace Science and Technology, 2007, 11:499 - 506.
    [23] Jie M, Huang XL, Yin H, et al . A precise vision-based navigation method for autonomous soft landing of lunar explorer [C]. Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, 2007:1138 - 1142.
    [24] Kozynchenko A I. Predictive guidance algorithms for maximal downrange maneuvrability with application to low-lift re-entry [J]. Acta Astronautica, 2009, 64 (7 - 8): 770 - 777.
    [25] Lu P. Predictor-corrector entry guidance for low-lifting vehicles [J]. .Journal of Guidance, Control, and Dynamics , 2008 , 31 (4) :1067 -1075.
    [26] Oshi A, Sivan K. Predictor-corrector reentry guidance algorithm with path constraints for atmospheric entry vehicles[J]. Journal of Guidance, Control, and Dynamics, 2007, 30 (5):1307– 1318
    [27] Saraf A, Leavitt J A, Chen D T, Mease KD. Design and evaluation of an acceleration guidance algorithmfor entry [J]. Journal of Space-craft and Rockets, 2004, 41 (6):986 - 996.
    [28] Leavitt J, Mease K. Feasible trajectory generation for atmospheric entry guidance [J]. Journal of Guidance, Control, and Dynamics,2007, 30 (2) :473 - 481.
    [29] Kuang2Yang Tu, Munir M S, Mease K D, Bayard D S. Drag-based predictive tracking guidance for mars precision landing [J]. Journal of Guidance, Control, and Dynamics, 2000, 23 (4):620 - 628.
    [30] Acikmese B, Ploen S R. Convex programming approach to powered descent guidance for mars landing [J]. Journal of Guidance, Control, and Dynamics, 2007, 30 (5):1353-1366.
    [31] Kluever C A. Entry guidance performance for mars precision landing [J]. Journal of Guidance, Control, and Dynamics, 2008, 31 (6):1537- 1544.
    [32] Trautner R,Mora M B,Hechler M,Koschny D.A newcelestial navigation method for lllars landers,Lunar Planet.Sci.2004,35
    [33] Krotkov E M,Hebert M,Bufa F,Cozman L R.Stereo driving and position estimation for autonoimous planetary rovers.In:IARP W orks.Rob.Space.1994
    [34] Benjamin P M.Celestial Navigation on the Surface of Mars. NavaI Academy Annapolis MD[R].AIAA Trident Scholar Project Report,2001,284(2).
    [35] Kuroda Y,Kurosawa T,Tsuchiya A,Kubota,T.Accurate localization in combination with planet observation and dead reckoning for lunar rover.Rob.Autom .2004.In: Proc. ICRA’04.2004 IEEE Intern. Conf. 2004, 2:2O92—2097.
    [36] Joel S. Levine, Diana L. Blaney, John E. P et al. The Aerial RegIonal-scale NvironmentaL Survey Mars[R]. AIAA,2003-6576.
    [37] Li S , Cui P Y , Cui H T. Vision—aided inertial navigation for pinpoint planetary landing[J].Aerospace Science and Technology,2007,11:499—506.
    [38] Jie M,Huang X L,Yin H,et a1. A precise vision—based navigation method for autonomous soft landing of lunar explorer[C]. Proceedings of the 2007 IEEE International Conference on Robotics‘and Biomimetics,2007:1138—1142.
    [39] LedéJ C, Parks R and Croom M A. High Altitude Drop Testing in Mars Relevant Conditions for the ARES Mars Scout Mission [R]. AIAA-2003-6609,2003.
    [40] Kenney P S and Croom M A. Simulation the ARES aircraft in the Mars environment[R]. AIAA-2003-6579,2003.
    [41]程晓丽,李俊红,王强.空间飞行器在火星载入环境下的气动力特性[J].宇航学报,2010, 31(4): 967-972.
    [42] Bhattacharya R, Valasek J, Singh B and et al. On modeling and robust control of ARES [R]. AIAA-2008-7454, 2008.
    [43]刘燕斌,陆宇平.基于反步法的高超音速飞机纵向逆飞行控制[J].控制与决策, 2007, 22(3): 313-317.
    [44] Guynn M D,Croom M A,Smith S C and et al. Evolution of a MARS airplane concept for the AERS MARS scout mission [R]. AIAA-2003-6578,2003.
    [45] Hjartarson A, Paw Y, Chakraborty A. Modeling and Control Design for the ARES Aircraft, Model- based Aerospace Challenge #1 [R].AIAA-2008-7452, 2008.
    [46] Shimoyama K, Oyama A, Fujii K. Multi-objective six sigma approach applied to robust airfoil design for mars airplane[R]. AIAA-2007-1966, 2007.
    [47] Entry H N. Descent and deployment multi-body simulation for the ARES mars airplane[R].AIAA-2009-2062, 2009.
    [48] Keshmiri S and Mirmirani M D. Six-DOF modeling and simulation of a generic hypersonic vehicle for conceptual design studies [A]. In: AIAA Modeling and Simulation Technologies Conference and Exhibit [C]. Norfolk, Virginia, AIAA 2004-4805.
    [49] Bilimoria K D and Schmidt D K. An integrated development of the equations of motion for elastic hypersonic flight vehicles [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. AIAA-92-4605-CP.
    [50] Bilimoria K D and Schmidt D K. Integrated development of the equations of motion for elastic hypersonic flight vehicles [J]. Journal of guidance, control and dynamics, 1995, 18(1): 73-81.
    [51]刘燕斌.高超声速飞行器建模及其先进飞行控制机理的研究[D], [博士学位论文].南京:南京航空航天大学,,2007.
    [52]鲁道夫,布罗克豪斯,金长江(译),肖业伦(校).飞行控制[M].北京:国防工业出版社,1999.
    [53]张庆振,安锦文.刘小刚.基于飞机总能量控制系统(TECS)的飞行航迹/速度解耦控制方法研究[J].西北工业大学学报, 2004, 22(3): 384-387.
    [54]张明廉.飞行控制系统[M].北京:国防工业出版社,1984.
    [55]王海涛,高金源.基于遗传算法求解飞机平衡状态[J].航空学报,2005,26(4): 470-475.
    [56]刘强,于达仁.高超声速飞行动态特性与特征值扰动分析[J].哈尔滨工业大学学报,2004,36(1): 7-10.
    [57]张森,张正亮. MATLAB仿真技术与实例应用教程[M].北京:机械工业出版社,2004. 153-156.
    [58]李宜达.控制系统设计与仿真[M].北京:清华大学出版社,2004.
    [59]姚克明,刘燕斌,陆宇平,等.火星探测无人机建模与切换控制[J].应用科学学报, 2010, 28(6): 655-660.
    [60] Viviani A and Pezzella G. Aerodynamic Analysis of a Capsule Vehicle for a Manned Exploration Mission to Mars[R].AIAA-2009-7386, 2009.
    [61]张庆振,安锦文,刘小刚.基于飞机总能量控制系统(TECS)的飞行航迹/速度解耦控制方法研究[J].西北工业大学学报, 2004, 22(3): 384-387.
    [62]张庆振. QFT/TECS在飞机自动着陆控制中的应用研究[D], [博士学位论文].西安:西北工业大学,2003.
    [63] Kurdjukov A P, Natchinkina G N and Shevtchenko A M. Energy approach to flight control [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Boston, MA, AIAA 98-4211.
    [64] Ganguli S and Balas G. A. A TECS alternative using robust multivariable control [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Montreal, Canada, AIAA 2001-4022.
    [65] Rysdyk R and Agarwal R K. Nonlinear adaptive flight path and speed control using energy principles [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Monterey, CA, AIAA 2002-4440.
    [66] Liz Callanan Matt Jardin, Alfred C. Watts. Model-based Aerospace Challenge #1(MACH-1)2007-2008 Undergradu-ate/Graduate Team Competition.
    [67]姚克明,刘燕斌,陆宇平,等.空间科学学报.火星无人机任务规划与建模分析[J].空间科学学报,2012,32(1):8-13.
    [68] Hu M K. Visual pattern recognition by moment invariants [J]. IEEE Trans. On Information Theory, 1962,8(2):179~187.
    [69] M. R. Teague. Image analysis via the general theory of moments [J]. J. Opt Soc.Am.1980(8):920~929.
    [70] eh, Chin R T. On image analysis by the methods of moments [J]. IEEE Trans on Pattern Analysis and Machine Intelligence,1998(6):496~513.
    [71] S.S. Reddi. Radial and angular moment invariants for image identification [J]. IEEE Trans on pattern analysis and machine intelligence, 1981,3(2):240~242.
    [72] Y.S Abu-mosttafa and D. Psaltis. Image normalization by complex moments[J]. IEEE Trans on pattern analysis and machine intelligence, 1985,7(1):240~242.
    [73] R. Mukundan. Image analysis by Chebyshev moments[J]. IEEE trans on image processing ,2001,10(9):342~346.
    [74] Shen D, Ho race H S Ip. Discriminative wavelet shape descriptors for recognition of 2D patterns [J]. Pattern Recognition. , 1999, 32 (2) : 151—165.
    [75] Moravec H P. Towards Automatic Visual Obstacle Avoidance [A]. In Proceedings of International Conference on Artificial Intelligence [C]. 1977. 584.
    [76] Harris C and Stephens M. A Combined Corner and Edge Detector [A]. Fourth Alvey VisionConference [C]. 1988. 147~151.
    [77] Smith S M , Brady J M. SUSAN—A New Approach to Low Level Image Processing [J].. International Journal of Computer Vision, May 1997. 23(1): 45~78.
    [78] C.Schmid,R.Mohr. Local Grayvalve Invariants for image Retrieval.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(5):530~535.
    [79] M.Brown,R.Szeliski. S.Winder.Multi-image Matching Using Multi-scale Oriented Patches.International Conference on Computer Vision and Pattern Recognition. 2005:510~517
    [80] Lowe D G. Distincaive image feature from scale invariant keypoints[J].International Journal of Computer Vision ,2004,60(2):91~110.
    [81]刘立.基于多尺度特征的图像匹配与目标定位研究[D].武汉:华中科技大学博士论文, 2008.
    [82]雷明.图像特征的描述、检测及匹配[D].重庆:重庆大学硕士论文, 2008.
    [83] Lindeberg tony.Scale-space theoy :A basic tool for analyzingv structures at different scales.Journal of applied statistics,1994(21):223~270
    [84] J J Koenderink,A J.van Doom.Representation of local geometry in the visual system.Biological cybernetics,1987(55):367~365
    [85]邵巍.基于图像信息的小天体参数估计及探测器着陆导航研究[D].哈尔滨:哈尔滨工业大学博士论文, 2009.
    [86] Farzin Mokhtarian,Riku J.Suomela,Robust image corner detection through curvature scale space[j]. IEEE,Transion Pattern Analysis and Machine Intelligence,1982,20(12):1376-1381.
    [87] Kirby M, Sirovich L. Application of Karhunent-Loeve procedure for the characterization of human faces[J]. IEEE Trans. on PAMI, 1990,12:103-108.
    [88]芮挺.打击效果评估与相关技术研究[D].南京:南京航空航天大学博士论文, 2004.
    [89]张贤达.矩阵分析和应用[M].北京:清华大学出版社, 2005.
    [90]庞彦伟,刘政凯,俞能海.融合奇异值分解和主分量分析的人脸识别算法[J].信号处理, Apr, 2005,Vol.21.
    [91]文成林,胡静,王天真,等.相对主元分析及其在数据压缩和故障诊断中的应用研究[J].自动化学报, Sep,2008, Vol.34.
    [92] Klema VC. The Singular value decomposition: Its computation and some application [J]. IEEE trans on Automatic control, 1980, 25(2): 164-176.
    [93] Jordan C. Memoire sur les formes bilineaires. J Math Pures A ppl, Deuxieme Serie,1874,19:35-54.
    [94] Autonne L.Sur les groupes lineasirs, reelles et orthogonaus.Bull Soc Math, France ,1902,30: 121 -133.
    [95] Delsarte P, Genin Y. On the splitting of classical algorithms in linear prediction thoey[J]. IEEE Trans Acoust , Speech signal Processing, 1987,35: 645-653.
    [96]周波,陈健.基于奇异值分解的、抗几何失真的数字水印算法[J].中国图形图像学报, 2004, Vol. 34.
    [97]夏思宇.景象匹配精确制导方法研究[D].南京:南京航空航天大学硕士论文, 2003.
    [98] Whitley D. A Genetic Algorithm Tutorial [J]. Statistics and Computing, 1994. 4: 65~85.
    [99]王彪.计算机视觉技术在低空突防与精确打击中的应用研究[D].南京:南京航空航天大学博士论文, 2004.
    [100] Salomon R. Short Notes on the Schema Theorem and the Building Block Hypothesis in Genetic? Algorithms? [J].? Evolutionary? Programming? VII,? Springer,? Berlin,? V.? W.? Porto,? N.?Saravanan,?D.?Waagen,?and?A.?E.?Eiben,?1998.?113~122.
    [101] Fogel?D?B.?An?Introduction?to?Simulated?Evolutionary?Optimization?[J].?IEEE?Trans?on?Neural?Networks,?Jan?1994.?5(1):?3~14.
    [102] Goldberg D E and Deb K. A Comparative Analysis of Selection Schemes Used in Genetic Algorithms [A]. In Foundations of Genetic Algorithms [M]. Rawlins G J (ed.), San Mateo, CA, 1991. 69~93.
    [103] Blickle T and Thiele L. A Comparison of Selection Schemes Used in Genetic Algorithms, TIK-Report Ver. 2, Swiss Federal Institute of Technology, Dec. 1995.
    [104] Zhang B-T and Kim J-J. Comparison of Selection Methods for Evolutionary Optimization [J]. Evolutionary Optimization, An International Journal on the Internet, 2000. 2(1): 55~70.
    [105] Wieczorek W and Czech Z J. Selection Schemes in Evolutionary Algorithms [A]. XI International Symposium on Intelligent Information systems [C]. Sopot, June,2002, 3-6.
    [106]罗德林.空战协调多目标攻击/机动决策与多目标攻击[D].南京:南京航空航天大学博士论文, 2006.
    [107] Huttenlocher D P, Klanderman G A, William J R. Comparing image using the Hausdorff distance [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15(9):850-863.H
    [108] Teh, Chin R T. On image analysis by the methods of moments[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,1998(6):496~513.
    [109]冷雪飞,刘建业,熊智,等.加权Hausdorff距离算法在SAR/INS景象匹配中的应用[J].控制与决策, 2006, Jan,Vol.21.
    [110]符艳军,程咏梅,潘泉,等.基于LTS-HD像素跳跃式快速景象匹配[I].光子学报,2010,39(7).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700