用户名: 密码: 验证码:
TA15钛合金大型航空结构件成形特性与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金作为当代飞机结构设计的重要选材之一,其应用水平的高低甚至已成为衡量飞机结构设计选材先进程度的重要标志之一。钛合金对于减轻飞机整体结构重量、提高结构设计效率、改善结构可靠性、提高机体寿命、满足高温和高载以及腐蚀环境要求等方面能够发挥其他金属无法比拟的作用。目前航空器上应用的钛合金结构件正朝着整体化、大型化方向发展。而对于钛合金,锻造工艺是应用最广泛的成形方法,能够通过变形和热处理精确改变合金的显微组织和性能。因此,研究大型钛合金航空结构件的锻造成形特性与工艺有着重要的现实意义。TA15钛合金整框模锻件是具有典型代表的大型钛合金航空结构件,通过研究TA15钛合金的热变形特性并结合锻造生产工艺参数的优化研究,可以为这类大型钛合金结构件的模锻生产提供相关生产基础数据和工艺经验。
     为了研究TA15钛合金的热变形特性,本文首先利用Gleeble-1500D材料热/力模拟试验机对TA15钛合金在800℃、850℃、900℃、950℃、1000℃、1050℃温度条件下采用应变速率为0.01s-1、0.1 s-1、1 s-1、10 s-1进行热压缩试验,通过热压缩试验数据分析了其高温流变特性并建立了基于Arrhenius流动模型的本构方程以及基于Fields-Backofen流动应力方程及并加入了软化因子的本构方程;对建立的本构方程进行了验证和讨论。
     基于动态材料模型加工图的理论,采用TA15钛合金高温压缩试验数据建立了实验条件下应变为0.2、0.4、0.6时的热加工图,对该合金的高温变形能力进行了综合分析,对热加工工艺参数进行了优化。
     运用塑性有限元分析软件DEFORM-2D,对TA15钛合金热物理模拟压缩实验方案进行了模拟仿真。通过对TA15钛合金韧性损伤力学行为的数值模拟研究,从材料临界损伤因子角度探讨了TA15钛合金的加工工艺性能。确立了TA15钛合金临界损伤因子随着变形温度和应变速率变化规律。
     针对TA15钛合金大型整框模锻件,采用数值模拟技术研究了其成形工艺过程。通过对坯料外形、尺寸的的研究获得了在对击锤上模锻的最佳工艺坯料方案。对锻造成形过程中的锻造温度、打击速度、变形载荷对锻件成形的影响进行了全面分析,获得了对钛合金整框锻造合理的工艺参数。通过采用基于热压缩实验的本构方程对整框锻件数值模拟研究,验证了该模型的可靠性。
     在基础理论和数值模拟研究的基础上,对TA15钛合金大型整框模锻件在1MJ对击锤上进行了试制。对锻件坯料的工艺,模锻工艺参数进行了验证,通过对成形锻件组织和力学性能的测试和评估,结果达到了相关标准对锻件的要求。通过试制验证了本文所建立的流变应力模型和数值模拟结果。总结了大型钛合金锻件质量现场生产控制技术,即“组织准备+锻造变形量和变形温度协调控制+组织监控”诸过程的严格控制是钛合金大锻件成功研制的重要保证。在试制过程中,还研究了碳化物分布对H13模具用钢的组织及性能的影响。研究结果对于制定大型钛合金锻件锤上模锻生产工艺具有指导意义。
Titanium alloy, as the most important selectable structural material in modern aircraft, its application level in design even become the most important mark to measure the extent of advanced in selection of aircraft structural material. Titanium alloy can play the role that other metals can not match on such aspects, to decrease the total weight of aircraft, to raise the design efficiency of aircraft structure, to improve the structural reliability, to enhance the life of aircraftbody, to meet the requirements that worked under high temperature, high load and corrosive condition. At present the application of titanium aircraft structural parts are moving in the overall and large-scale direction. Forging process is the most applied forming method to titanium alloy; it can change the microstructure and mechanical properties accurately by deformation and heat treatment. So, it has the most practical significance to research the forming features and process of large-scale titanium alloy aircraft structural parts.
     TA15 titanium alloy whole frame die forging part was the typical large scale titanium alloy aircraft structural part. By study on the hot deformation features and combined with the reaserch on forging process parameters optimization, it can provide the base pudution data and process experience to die forging process of this type of large scale titanium alloy structural part.
     To study the hot deformation features of TA15 titanium alloy, a series of hot compression tests which were tested on Gleeble-1500D material thermal / power simulation test machine were carried out. In the test, TA15 titanium alloy pecimence were compressed under the heating temperature of 800℃、850℃、900℃、950℃、1000℃and 1050℃by strain rates of 0.01s-1、0.1 s-1、1 s-1、10 s-1 respectively. By the hot compression test results data, the high temperature rheological behavior of TA15 were analysised and the constitutive equation based on Arrhenius flow model and Fields-Backofen flow stress model were established. The constitutive equation were verified and discussed.
     Based on the theory of dynamic material modeling (DMM), processing map of TA15 were established with the hot compression test data that the strain were 0.2,0.4,0.6 respectively. The hot deformation ability of this alloy was analysised and the hot working process parameters were optimized.
     Plastic finite element analysis software DEFORM-2D was apllied to simulate the TA15 titanium alloy hot compression test plan. The hot process performance of it was discussed in terms of material critical damage factor by study on the mechanical behavior of ductile damage with numerical simulation. The law that the material critical damage factor varied with the deforming temperature and strain rate changing was established.
     With the large scale TA15 titanium alloy whole frame die forging, numerical simulation technology was carried out to study its hot forming process. The optimized scheme of forging blank piece was obtained by study on the outline and size of it. Forging temperature, stroke speed, and deformation power effect on the forging forming process were anlysised comprehensively, the reasonable parameters of titanium alloy whole frame part forging process were obtained. The reliability of the constitutive model that eatablished using hot compression test data was verified by using it in whole frame forging part numerical simulation research.
     The large scale TA15 titanium alloy whole frame die forging was trialed on 1MJ counter-blow hammer based on the study of basic theory and numerical simulation. The process of forging blank piece and parameters of die forging were verified in the trial. The microstructure and mechanical properties of the finished forging were tested and evaluated; the results show that the forging had reached the demand of standards. The trial verified the results of numerical simulation and flow stress model which established by hot compression test also. The site production quality control technology of large titanium forging were summaried, that is the critical control of the process“microstructure preparation+coordination and control of forging deformation and forming temperature+microstructure monitoring”is the important guarantee for the successful development of large scale titanium alloy forging. In the trial process, the die steel H13 was researched in terms of carbides. The research results are instructive to the development of large-scale forging on hammer.
引文
[1] [德]莱茵斯(Leyens, C.),[德]皮特尔斯(Peters, M.)编,陈振华等译.钛与钛合金[M].北京:化学工业出版社, 2008.
    [2]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社, 2005.
    [3]王向明,刘文铤等.飞机钛合金结构设计与应用[M].北京:国防工业出版社2010.
    [4]徐文臣,单德彬,李春峰等. TA15钛合金的动态热压缩行为及其机理研究[J].航空材料学报, 2005, (4):10-15.
    [5]纪仁峰,闵新华,胡弘剑等. TA15钛合金高温塑性变形流变应力行为研究[J].稀有金属与硬质合金, 2009,(2):12-16.
    [6]李淼泉,李晓丽,龙丽TA15合金的热变形行为及加工图[J].稀有金属材料与工程, 2006, (9) :1354-1357.
    [7]王洋,尤逢海,朱景川等. TA15合金热变形行为研究[J].机械工程材料, 2006, (11) :63-65.
    [8]梁业,郭鸿镇,刘鸣等. TA15合金高温本构方程的研究[J].塑性工程学报, 2008, (14): 150-154.
    [9] C. H. Lee, S. Kobayashi. New Solution to Rigid-Plastic Deformation Problems Using a Matrix Method[J]. Trans. ASME, J. Eng. Ind, 1973(95): 865-877.
    [10] C. C. Chen, S. Kobayashi. Rigid-Plastic Finite Element Analysis of Plane Strain Closed Die Forging[J]. Process Modeling, ASME, Metal Park, Ohio.1980: 167-176
    [11] Li Guoji, S. Kobayshi. Rigid-Plastic Finite Element Analysis of Plane Strain Rolling[J]. Trans. ASME, J. Eng. Ind,1982(104):55-61.
    [12] C. Zienkiewiez. Numerical Analysis of Forming Process[M]. New York: Wiley Swansea, 1984.
    [13] K. Osakada, J. Nakano, K. Mori. Finite Element Method of Rigid PlasticAnalysis of Metal Forming-Formulation for Finite Deformation[J]. Int. J.Mech. Sci., 1982, (8): 459-68.
    [14] Y. C. Kim, B. M. Kim. A Study on the Corner Filling in the Drawing of a Rectangular Rod from a Round Bar[J]. International Journal of Machine Tools and Manufacture, 2000, (40): 2099-2117.
    [15] Wang Guangchun, Zhao Guoqun. Simulation and Analysis of Rotary Forging a Ring Workpiece Using Finite Element Method[J]. Finite Elements in Analysis and Design, 2002, (38): 1151-1164.
    [16] Li-Ping Lei, Jeong Kim, Sung-Jong Kang, Beom-Soo Kang. Rigid-plastic Finite Element Analysis of Hydroforming Process and Its Applications[J]. Journal of Materials Processing Technology, 2003, (139): 187-194.
    [17] H. Lippmann, R. Iankov. Mathematical Modeling of Sintering during Powder Forming Processes[J]. Int. J. Mech. Sci., 1997, (5): 585-596.
    [18] K.L. Wang, M.W. Fu , S.Q. Lu , X. Li. Study of the dynamic recrystallization of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy in b-forging process via Finite Element Method modeling and microstructure characterization [J]. Materials and Design, 2011(32):1283-1291.
    [19] Z.C. Sun, H. Yang, G.J. Han, X.G. Fan. A numerical model based on internal-state-variable method for the
    [20] microstructure evolution during hot-working process of TA15 titanium alloy[J]. Materials Science and Engineering A, 2010, (527): 3464–3471.
    [21] P. Perzyna. Fundamental Problems in Viscoplasticity[J]. Adv. App. Meth, 1969, (9): 243.
    [22]于德军,柏春光,徐东生等.钛合金开坯锻造过程的有限元模拟[J].中国有色金属学报, 2010,(10):s500-504.
    [23]彭飞飞,杨合,孙志超等.钛合金大型复杂件预制坯成形工艺模拟研究[J].塑性工程学报, 2008, (5): 47-52.
    [24]龙丽. TA15合金锻造过程的数值模拟[D].西安:西北工业大学, 2005.
    [25]唐泽,杨合,孙志超等. TA15钛合金高温变形微观组织演变分析与数值模拟[J].中国有色金属学报, 2008, (4) :722-727.
    [26]王敏,杨合,郭良刚等.基于3D-FEM的大型钛环热辗扩过程微观组织演变仿真[J].塑性工程学报, 2008, (6): 76-80.
    [27] ZHAN G Xianhong (张先宏) ,RUAN Xue-yu(阮雪榆), K. Osakada Forgeability of AZ31B magnesium alloy in warm forging[J]. Trans. Nonferrous Met. Soc. , 2003, (3): 632-635.
    [28] E. Cerri, E. Evangelista, A. Forcellese, H.J. McQueen. Comparative Hot Workability of 7012 and 7075 Alloys after Different Pretreatments[J]. Materials Science and Engineering A, 1995, (2): 181-198.
    [29] F. Bardi, M. Cabibbo, E. Evangelista, S. Spigarelli, M. Vuk evi. An Analysis of Hot Deformation of an Al-Cu-Mg Alloy Produced by Powder Metallurgy[J]. Materials Science and Engineering A, 2003,( 339): 43-52.
    [30] Jiantao Liu, Hongbin Chang, Ruihen Wu, et al. Investigation on Hot Deformation Behavior of AISI T1 High-speed Steel[J]. Materials Characterization,2000, (45): 175-186.
    [31] Woei-Shyan Lee, Chi-Feng Lin. High-temperature Deformation Behaviour of Ti6Al4V Alloy Evaluated by High Strain-rate Compression Tests[J]. Journal of Materials Processing Technology, 1998, (75): 127-136.
    [32] Songwon Seo, Oakkey Min, Hyunmo Yang. Constitutive Equation for Ti–6Al–4V at High Temperatures Measured Using the SHPB Technique [J]. International Journal of Impact Engineering, 2005, (31): 735-754.
    [33] Zhou M, ClodeM P. Constitutive equations for modeling flow softening due to dynamic recovery and heat generation during plastic deformation [J]. Mechanics of Materials, 1998, (27) : 63-76.
    [34] Zhou M, ClodeM P. A constitutive model and its identification for the deformation characterized by dynamic recovery [J]. Journal of Engineering Materials and Technology, Transaction of the ASME, 1997, (119): 138-142.
    [35] C. Zener, J. H. Hollomon. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, (15): 22-32.
    [36] Rao K P, Hawbolt E B. Development of constitutive relationship s using compression testing of a medium carbon steel[J]. Transactions of the ASME Journal of Engineering Materials and Technology, 1992, (114): 116-123.
    [37] Pu Z J, et al. Development of constitutive relationships for the hot deformation of boron microalloying TiAl2Cr2 Valloys[J]. Materials Science and Engineering A, 1995, (192 /193): 780-787.
    [38] Y. Suna, W.D. Zenga, Y.Q. Zhao, et al. Research on the hot deformation behavior of Ti40 alloy using processing map[J]. Materials Science and Engineering A, 2011, (528):1205-1211.
    [39] C. M. Sellars, W. J. Tegart. Hot workability[J]. International Metallurgical Reviews, 1972, (17): 1-24.
    [40]刘东,罗子健.以Zener-Hollomon参数表示GH169合金的本构关系[J].塑性工程学报, 1995, (2 ):15-19.
    [41] Jonas J J , Sellars J C M , McGJ W. Strength and structure under hot working condition[J]. International of Material Reviews ,1969, (14) :1-24.
    [42] Mc Qeen H J , Belling J . Constitutive Constant s for Hot Working of A1-4. 5 Mg-0. 35Mn [J]. Canadian Metallurgical Quarterly, 2000, (4) :483-492.
    [43] Olson, G B Transformation Plasticity and the Stability of Plastic Flow [J]. Deformation, Processing and Structure , 1982,(23-24) :391-424.
    [44] Z. J. Pu, K. H. Wu, D. Zou. Development of Constitutive Relationships for the Hot Deformation of Boron Microalloying TiAl-Cr-V alloys[J]. Materials Science and Engineering A, 1995, (2): 780-787.
    [45]陈慧琴,林海,郭灵,曹春晓. TC11钛合金热变形特性分析及其本构关系的建立[J].材料工程, 2007, (8): 32-36.
    [46]王进,陈军,张斌等. 35CrMo结构钢热塑性变形流变应力模型[J].上海交通大学学报, 2005, (11) : 1785-1786.
    [47] S F Medina, C A Hernandez. Modeling of the dynamic recrystallization of austenite in low alloy and microalloyed steels[J]. Acta mater, 1996, (1) :165-171.
    [48] Qite Zhao , Guoqing Wu, Wei Sh . Deformation of titanium alloy Ti–6Al–4V under dynamic compression [ J ]. Computational Materials Science,2010, (50): 516-526.
    [49] Beynon J H, Sellars C M. Modeling microstructure and its effects during multiphase hot rolling [J]. ISIJ International, 1992, (3) : 359-367.
    [50] Cho S H, et al. The p rediction of deformation resistance of Al6061 during hot deformation[J]. J. Kor. Inst. Met. Mater. , 1998, (4) : 502-508.
    [51] John Walters, Wei-Tsu Wu, Anand Arvind, et al . Recent Development of Process Simulation for Industrial Applications[J]. Journal of Materials Processing Technology, 2000, (2): 205-211.
    [52] RAJ Rishi. Development of a processing map for use in warm forming and hot forming processes [J]. Metallurgical and Materials Transactions A, 1981, (6):1089-1097.
    [53] Sanjib Banerjee, P.S. Robi, A. Srinivasan, Lakavath Praveen Kumar. High temperature deformation behavior of Al-Cu-Mg alloys micro-alloyed with Sn[J]. Materials Science and Engineering A, 2010, 527(10-11): 2498-2503.
    [54] Xiao Yan Liu, Qing Lin Pan, et al. Flow behavior and microstructural evolution of Al-Cu-Mg-Ag alloy during hot compression deformation[J]. Materials Science and Engineering A, 2009, 500(1-2): 150-154.
    [55] Y. Wang, W.Z. Shao, L. Zhen, L. Yang and X.M. Zhang. Flow behavior and microstructures of superalloy 718 during high temperature deformation[J]. Materials Science and Engineering A, 2008, 497(1-2): 479-486.
    [56] H. J. McQueen, N. D. Ryan. Constitutive analysis in hot working[J]. Materials Science and Engineering A, 2002, 322(1-2): 43-63.
    [57] H. J. Frost, M. F. Asbby. Deformation Mechanism maps[M]. New York: Pergamon Press, 1982.
    [58] S. B. Brown, K. H. Kim, L. Anand. An Internal Variable Constitutive Model for Hot Working of Metals[J]. International Journal of Plasticity, 1989, (5): 95-130.
    [59]张先宏,崔振山,阮雪榆.镁合金塑性成形技术-AZ31成形性能及流变应力[J].上海交通大学学报, 2003, 3(12), 1874-1877.
    [60] PRASAD Y V R K, SASIDHARA S. Hot Working Guide: A Compendium of Processing Maps[M]. Ohio: ASM International, 1997.
    [61] PRASAD Y V R K, SESHACHARYULU T. Processing maps for hot working of titanium alloys[J]. Material Science and Engineering A, 1998, 243(1/2): 82-88.
    [62] SIVAKESAVAM O, PRASAD Y V R K. Hot deformation behavior of as -cast Mg -2Zn -1Mn alloy in compression a study with processing map[J]. Material Science and engineering A, 2003, 362 (1/2): 118-124.
    [63] PRASAD Y V R K. Processing maps: a status report [J]. Journal of Engineering and Performance, 2003, 12 (6): 638-645.
    [64]鞠泉,李殿国,刘国权. 15Cr-25Ni-Fe基合金高温塑性变形行为的加工图[J].金属学报, 2006, 42(2): 218-224.
    [65]鲍如强,黄旭,曹春晓,等.加工图在钛合金的应用[J].材料导报, 2004, 18(7): 26-29.
    [66]汪凌云,范永革,黄光杰等.镁合金AZ31B的高温塑性变形及加工图[J].中国有色金属学报, 2004, 14(7): 1068-1072.
    [67]李庆波,周海涛,蒋永峰等.加工图的理论研究现状与展望[J].冶金设计与研究, 2009, 30(4): 1-6.
    [68] Jiménez H, Devia D M, Benavides V, et al. Thermal protection of H13 steel by growth of (TiAl)N films by PAPVD pulsed arc technique[J]. Materials Characterization, 2008,59(8):1070-10777
    [69] McHugh K M, Lin Y, Zhou Y, et al. Influence of cooling rate on phase formation in spray-formed H13 tool steel [J]. Materials Science and Engineering A, 2008, 477(1) 50-57
    [70] Shahram Kheirandish, Ahmad Noorian. Effect of Niobium on Microstructure of Cast AISI H13Hot Work Tool Steel [J]. Journal of Iron and Steel Research International, 2008, 15(4): 61-66
    [71] Branco J R T,Krauss George.Alloy partitioning and grain growth control of H13 steel, Proceeding of the 6th international congress on heat treatment of materials [C].,Chicago: ASM,1988:195-199.
    [72]刘树勋,李培杰,黄相全等.高Co稀土热作模具钢析出相沉淀析出的研究[J].材料热处理学报, 2002, 23(3):15-19.
    [73] Tsujii N, Abe G, Fukura K, et a1. Effect of testing Atmosphere on low cycle fatigue of hot work tool steel at elevated temperature [J]. ISIJ International, 1995, 35(7):920-926.
    [74] Mebarki N, Lamesle P, Delagnes D, et a1.Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel [J]. Materials Science and Engineering A, 2004, 387-389 (1): 171-175.
    [75] Cai Guang-Jun, Andren Hans-Olof, Svensson Lars-Erik, Microstructure change of a 5%Cr steel weld metal during tempering[J]. Materials Sci and Engin, 1998, 242(1): 202-209.
    [76] Bjarbo Anders, Hattestrand Mats. Complex carbide growth dissolution and coarsening in a modified 12% chromium steel-an experimental and theoretical study[J]. Meta and Mat Tran A, 2001, 32(1): 19-25.
    [77] HU Xinbin, LI Lin, WU Xiaochun , et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium[J]. International Journal of Fatigue , 2006, 28 (3): 175-182.
    [78] Homolova V, Janovec J, Kroupa A. Experimental and thermodynamic studies of phase transformations in Cr-V low alloy steels[J]. Materials Science and Engineering, 2002, 335(1):290-297.
    [79]董建新,谢锡善.不同Cr含量高温合金中α-Cr相析出行为及作用[J].金属学报,2005,41(11).1159-1161
    [80]金华军,唐立平.钼含量对精铸热锻模具钢高温磨损性能的影响[J].热加工工艺, 2009, 38(10):78-83.
    [81]吴晓春,崔崑.钒、钛对非调质塑料模具钢组织与性能的影响[J].机械工程材料, 1997, 21(6):16-19.
    [82]胡心彬,李麟. H13钢热疲劳后碳化物形态和组分的变化[J].材料热处理学报, 2007, 28(12):82-87.
    [83] Sadao Koshiba, Tsuneo Kuno D S E. The Effect of W, V, Ti and Mo+V+Nb on the Heat Treatment Hardness and Mechanical Properties at High Temperature of 12 % Cr System Heat Resisting Steel [J]. THE HITACHI-HYORON, 1956, 38(10):93-100.
    [84] LIU Yan, LIU Zhi-lin, ZHANG Cheng-wei. Calculation and Analysis of Valence Electron Structure of Mo2C and V4C3 in Hot Working Die Steel [J], JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL. 2006, 13(1):50-56.
    [85]符仁钰,刘以宽.铸造H13钢的回火转变及碳化物的研究[J].金属热处理学报,1992, 13(3):27-32.
    [86]刘宗昌,任慧平,李文学. H13钢的退火软化[J].包头钢铁学院学报, 1997,16(4):285-288.
    [87]鲁世强,李鑫,王克鲁等.基于动态材料模型的材料热加工工艺优化方法[J].中国有色金属学报, 2007, 17(6): 890-896.
    [88] Y. Prasad, H. L. Gegel, S. M. Doraivelu, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical transactions, 1984, 15(10): 1883-1892.
    [89] C. S. Dedai, D. R. Curran. Constitutive laws for engineering materials: theory and application[M]. North Holland: Elsevier Science Publishing Co Inc, 1987.
    [90] M. G. Cockcroft,D. J. Latham. Ductility and the workability of metals[J]. Journal of the Institute of Metals, 1968, 96(2): 33-39.
    [91]张志文.锻造工艺学[M].北京:机械工业出版社, 1983.
    [92] Y. Prasad. Recent advances in the science of mechanical processing[J], Indian Journal of Technology, 1990, 28(6-8): 435-451.
    [93] H. Ziegler. Progress in Solid Mechanics[M]. New York:Wiley Press, 1963.
    [94] Quan Guozheng, Tong Ying, Chen Bin. A Constitutive Description for Drawing Limit of Magnesium Alloy Tube Based on Continuum Damage Mechanics[J]. Materials Science Forum, 2009,( 610-613): 951-954.
    [95]张津.钛合金及应用[M].北京:化学工业出版社, 2003.
    [96]中国锻压协会.特种合金及其锻造[M].北京:国防工业出版社, 2009.
    [97] [德]Reiner Kopp, Herbert Wiegels,康永林,洪慧平译.金属塑性成形导论[M].北京:高等教育出版社, 2010.
    [98] [苏]л.А.尼克里斯基等著,陈石卿,焦明山译.钛合金的模锻与挤压[M].北京:国防工业出版社, 1982.
    [99]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社, 1999.
    [100]郭会光,田继红.大型锻造的质量控制和研究方略[J].大型铸锻件,2007, (2): 45-46.
    [101]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟[M].北京:冶金工业出版社, 1997.
    [102]吕丽萍.有限元法及其在锻压工程中的应用[M].西安:西北工业大学出版社, 1989.
    [103]俞汉青,陈金德.金属塑性成形原理[M].北京:机械工业出版社, 2010.
    [104]李强,徐永波,赖祖涵等. Monel合金高速塑性剪切变形与动态再结晶[J].金属学报,1999, (l): 49-52.
    [105]包合胜,王礼立,卢维娴.钛合金在低温下的高速变形特性和绝热剪切[J].爆炸与冲击, 1989, (2): 109-119.
    [106] Dong-Geum Lee, Sunghak Lee. Quasi-static and Dynamic Deformation Behavior of Ti-6Al-4V Alloy Containing Fineα2-Ti3Al Precipitates[J]. Materials Science and Engineering A, 2004, (8): 25-37.
    [107]曾卫东,徐斌,何德华等.应用加工图理论研究Ti2AlNb基合金的高温变形特性[J].稀有金属材料与工程,2007, 36(4): 592-596.
    [108]陈如欣,胡忠民.塑性有限元及其在金属成形中的应用[M].重庆:重庆大学出版社, 1989.
    [109]王霄腾.β型钛合金高温粘塑性本构建模及数值计算[D].哈尔滨:哈尔滨工业大学,2009.
    [110]汪凌云,刘静安.计算金属成形力学及应用[M].重庆:重庆大学出版社, 1991.
    [111]郭会光,张巧丽,陈慧琴.大锻件热成形的现代集成研究方法[J].大型铸锻件,2003, (2): 3-5.
    [112]权国政,王熠昕,张艳伟等.温度及应变速率对7075铝合金临界损伤因子的影响[J].重庆大学学报,2011, (7): 51-55.
    [113]肖景容,李尚健.塑性成形模拟理论[M].武汉:华中理工大学出版社, 1994.
    [114]陶新刚,徐春国,任广升.金属塑性损伤阈值[J].塑性工程学报,2011, (3): 1-4.
    [115]司家勇,韩鹏彪,高帆等. TiAl合金高温锻造开坯过程数值模拟研究[J].材料工程,2009, (3): 22-26.
    [116]张晓冬,樊立伟,解向军.变形温度和冷却速度对TA15合金组织性能的影响研究[J].飞机设计,2009, (6): 76-80.
    [117] [俄]瓦利金N.莫伊谢耶娃.著董宝明,张胜,郭德伦,梁慧凤译.钛合金在俄罗斯飞机及航空航天上的应用[M].北京:航空工业出版社, 2008.
    [118]史科. TC11钛合金叶轮类复杂构件等温成形规律与数值模拟[D].哈尔滨:哈尔滨工业大学,2008
    [119]中国锻压协会.锻造工艺模拟[M].北京:国防工业出版社, 2009.
    [120]吴伏家,尹晓霞,赵长瑞. TC4钛合金等温锻造过程的数值模拟和实验研究[J].锻压技术,2009,(5):147-150.
    [121]权国政,佟莹,周杰.不同温度及应变速率条件下AZ80镁合金临界损伤因子研究[J].功能材料,2010,(5):892-894.
    [122] Fengcang Ma, Weijie Lu, Jining Qin, Di Zhang. Microstructure evolution of near-αtitanium alloys during thermomechanical processing[J]. Materials Science and Engineering A, 2006, (416):59-65.
    [123] Sergey Zherebtsov, Gennady Salishchev, Witold ?ojkowski. Strengthening of a Ti–6Al–4V titanium alloy by means of hydrostatic extrusion and other methods[J]. Materials Science and Engineering A, 2009, (515):43-48.
    [124]谭成文,王富耻,李树奎.绝热剪切变形局部化研究进展及发展趋势[J].兵器材料科学与工程, 2003, 26(5): 62-67.
    [125]欧阳德来,鲁世强,黄旭等. TA15钛合金β区变形动态再结晶的临界条件[J].中国有色金属学报, 2008, (8): 1539-1544.
    [126] Michael E. Nixon, Ricardo A. Lebensohn, Oana Cazacu, Cheng Liu. Experimental and finite-element analysis of the anisotropic response of high-purity a-titanium in bending[J]. Acta Materialia, 2010, (58): 5759–5767.
    [127]刘克威. 7075铝合金热加工性能的实验与理论分析研究[D].重庆:重庆大学,2010.
    [128]吕炎.锻件组织性能控制[M].北京:国防工业出版社, 1988.
    [129]王金友,葛志明.航空用钛合金[M].上海:上海科学技术出版社, 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700