用户名: 密码: 验证码:
高速火箭橇—轨道系统耦合动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对高速火箭橇-轨道系统这一介于室内与室外之间的大型地面试验设备,对其耦合动力学进行了详细研究。首先对高精度试验轨道不平顺及其对火箭橇的影响进行了研究;然后运用动力学相关基础理论,推导建立了高度非线性的火箭橇-轨道耦合动力学一般模型;基于面象对象方法,开发了火箭橇-轨道耦合动力学计算软件RSTdyn (Rocket Slet-Track dynamics);对相关参数获取方法、动力学模型及计算软件进行了验证;以某单轨火箭橇-轨道系统为对象,进行了耦合动力学的应用研究。主要研究工作如下:
     (1)根据轨道不平顺功率谱密度分析方法,编制C++程序对美国HHSTT实测轨道不平顺功率谱密度(PSD)曲线进行了数据处理与分析,采用粒子群优化算法获得了高精度轨道的PSD函数及参量值;采用速度法和运动法对轨道短程不平顺影响火箭橇进行了计算与分析,提出了轨道长程不平顺影响火箭橇的PSD量纲分析法,完成了三种方法计算结果的对比分析。研究表明,高精度轨道不平顺高频特性更为明显、不平顺幅值更小、功率集中在高频段、平顺性更好,火箭橇速度越高要求的轨道长程与短程不平顺度的数值越小、波长越大,轨道建造的精度要求亦越高;火箭橇设计时应首先避开轨道的短波高频干扰段。
     (2)根据火箭橇在轨道上运动的物理过程,首先运用相对坐标法建立了火箭橇-轨道系统的动力学坐标系,采用方向余弦矩阵实现了各坐标系间的转换;然后运用矢量力学Newton-Euler方法对火箭橇、钢轨与轨道枕板进行了受力分析,考虑了系统所受到的气动力、风速、火箭推力、碰撞接触力、冲击制动力、靴轨间隙等非线性因素;运用动力学相关基础理论推导建立了火箭橇-轨道耦合动力学一般模型,获得相应的动力学矢量、矩阵和标量形式的数学方程组。所建立的动力学模型为火箭橇-轨道系统动力学响应的计算与分析奠定了基础。
     (3)基于火箭橇-轨道耦合动力学模型,采用面象对象技术Visual C++6.0开发了橇-轨耦合动力学计算软件RSTdyn,其动力学模型求解算法采用自适应步长Runge-Kutta-Fehlberg方法;以国内外现有相关火箭橇-轨道系统分析与试验结果为基础,对火箭发动机推力模型、轨道不平顺Blackman-Tukey (B-T)重构方法、火箭橇气动参数计算流体力学(CFD)获取方法、靴-轨冲击参数有限元分析(FEA)获取方法、火箭橇-刚性轨道耦合动力学模型及橇-轨耦合动力学计算软件RSTdyn进行了验证。研究表明,所建立动力学模型、参数获取方法及计算软件,具有良好的可靠性和可信度,可以应用于新火箭橇-轨道系统的分析与设计。
     (4)利用火箭橇-轨道耦合动力学模型与计算软件RSTdyn,对某单轨火箭橇-轨道系统进行了耦合动力学响应的应用研究。在发动机星形装药几何燃烧规律的基础上推导了该火箭橇质心相对矢径、运动速度与加速度及转动惯量的计算公式。采用CAD、FEA、CFD及B-T等方法获得了单轨火箭橇-轨道系统参数,计算得到了橇-轨系统的加速度、速度、位移、接触力等动态响应结果,并与其它方法结果进行了对比,最后研究了靴-轨间隙、轨道不平顺及地面风速等三个参数对系统响应的影响,总结得到了相关动态响应规律。研究表明,火箭橇低速运动时,呈现出低频振动特性且随着火箭橇速度的增加其振动减弱;火箭橇高速运动时,则呈现出高频振动特性且随着火箭橇速度的增加其振动不断加强;钢轨、轨枕构成的轨道,呈现高频振动特性,随着火箭橇速度的增加其振动不断加强;轨道缓冲作用使得橇-轨动态接触力比准静态接触力更小,按准静态方法设计的火箭橇安全系数较高,可进一步优化减轻火箭橇重量;火箭橇设计时应避开动态高频振动段,与轨道长程不平顺PSD量纲分析法得出的结论一致;靴-轨间隙、轨道不平顺对动态响应影响较大,系统设计时应选取一个与橇-轨匹配的合理值,而地面风速则影响较小,设计时可以忽略该因素。
     所采用的方法和得到的结果可以满足火箭橇-轨道系统设计与分析需要,通过研究加深了对高速火箭橇-轨道系统这一动态地面设备的认识,研究成果成功应用到了实际设备的工程研制之中。
The coupled dynamics of high speed rocket sled-track system is researched in detail, which is one type of large ground equipments between indoor and outdoor test. The irregularity of high precision test track and its influences on rocket sled are studied firstly. Then the general models are established for rocket sled-track coupled nonlinear dynamics, which are derived from dynamics theories. The computation software RSTdyn (Rocket Sled-Track dynamics) for rocket sled-track coupled dynamics is developed on object oriented technique. The getparms methods, system coupled dynamics models and computation codes are validated. Finally the coupled dynamics are applied to one monorail rocket sled-track system. The main works are as follows:
     (1) According as the method of track random irregularity analysis, the USA HHSTT track testing random irregularity Power Spectrum Density (PSD) curves are processed using C++ to gain the high precision track PSD functions and parameters by Particle Swarm Optimization method. The influences of track short range irregularities to sled are theoretically analyzed by velocity method and motion method; the PSD dimension method is put forward for long range rail irregularities affecting sled; the results of three methods are compared. These researches show that: the high precision track irregularities have clearer high frequent character, smaller irregularity amplitude, more concentrative high frequent powers and better regularity; with rocket sled velocity increasing, the long and short range irregularity magnitudes are smaller, the wave lengths are longer, the track precisions are higher, which are needed by track; rocket sled design should avoid the disturber of track high frequent short wave.
     (2) On the basis of rocket sled moving on track process, the dynamics coordinates are established for rocket sled-track system by relative coordinate method and transformed by direction cosine matrix. The mechanical analyses are carried out for rocket sled, rail and rail sleep by vector mechanics Newton-Euler method. The general models of rocket sled coupled track dynamics are derived by dynamics theories, which consider the nonlinear factors such as aerodynamics, ground winds, rocket thrusts, collision contact forces, impact braking forces and gaps of sled shoes to rail. The mathematical equations of dynamics are gained by the types of vector, matrix and scalar, which support the computation of the rocket sled-track system dynamical responses.
     (3) Based on the rocket sled-track coupled dynamics model, the dynamics computation codes are developed by object oriented Visual C++6.0, which solves the equations using self-adaption step algorithm of Runge-Kutta-Fehlber. The rocket motor thrusts model, track irregularity samples reconstruction method of Blackman-Tukey (B-T), sled aerodynamics coefficient obtaining method of computation fluid dynamics (CFD), getparms method of finite element analysis (FEA) for sled shoes impacting to rail, system coupled dynamics model and RSTdyn codes are validated by analysis and test results of existing rocket sled-track system. These researches show that:the dynamics model, getparms methods and codes have well reliability and credibility, which can be used in new rocket sled-track system analysis and design.
     (4) The dynamical responses of a certain monorail rocket sled-track system are gained by rocket sled-track coupled dynamics models and RSTdyn codes. The relative radius vector, velocity, acceleration of rocket sled centroid and inertia moments are formulated by rocket motor charge geometric burning law. The parameters of monorail rocket sled-track system are obtained by CAD, FEA, CFD and B-T methods. Then the dynamics results of sled and track are achieved such as accelerations, velocities, displacements and contact forces, which are compared with other methods'results. The parameters of shoe-rail gaps, track irregularities and ground winds are analyzed with the influences to system responses. Finally the dynamical characters of sled-track are analyzed with those results and relative dynamics laws are obtained. These researches show that:when sled runs under lower velocity, sled's vibration presents low frequency and weakens as its velocity increases; but when sled runs under higher velocity, its vibration presents high frequency and enhances with sled velocity arguments; the rail and sleep of track vibrate high frequently and enhance with its velocity grows; the dynamical contact forces are smaller than the quasi-static contact forces because of track's damping and sled designed by quasi-static method has higher safety factors, so the sled can be optimized to reduce weight hereunder; sled design should avoid the dynamical high frequent vibration, which is similar with the conclusion of track PSD dimension method; the gaps of shoe-rail and track irregularities affect the dynamical responses seriously, which should be chosen as proper values that match the sled-track during system design; ground winds have little influences to system and can be ignored.
     The methods and results can meet the demand of rocket sled-track design and analysis. These researches enhance the cognition to the ground equipment sof rocket sled-track system. The achievements are applied to the engineering prototype developments.
引文
1 Gilbert A G, Terry N G, David L P. Development of Sled Structural Design Procedures[R].6585th Test Squadron, Holloman AFB, USA AD-A004087,1974:1-154.
    2 Kevin D. Holloman High Speed Test Track Design Manual[R].846th Test Squadron, Holloman AFB, USA:AAC/PA 07-13-05-270,2005:1-84.
    3 Hooser M. The Holloman High Speed Test Track Gone Soft:Recent Advances in Hypersonic Test Track Vibration Environment [C].22nd AIAA Aerodynamic Measurement & Ground Test Conference. USA:AIAA 2002-3035,2002.
    4 周真学,周绍慧.国外火箭橇图册[M].北京:国防工业出版社,1979.
    5 William B S. Defense T & E focuses on Consolidation [R]. Holloman AFB, USA:AW&ST 1194-06-13,1994:46-55.
    6 原丽萍,徐忠信.印度的弹道学研究[J].弹箭技术,1996,4:45-49.
    7 杨兴邦.XB火箭橇试验滑轨的直线度评估[J].航空精密制造技术,1999,35(5):25-29.
    8 杨兴邦.XB高精度火箭橇试验滑轨[J].中国工程科学,2000,10:33-38.
    9 韩振江,张建平.051基地火箭橇轨道设计要点分析[J].中国铁路,2004,11:31-32.
    10余元元.双轨火箭滑车高速水刹车装置研究[D].南京:南京航空航天大学,2008.
    11 Hooser C D. Holloman High Speed Test Track Rail Alignment Criteria (R) AIAA 2000-0156, USA,2000:1-8
    12陈秀方.轨道工程[M].北京:中国建筑工业出版社,2005.
    13范俊杰.现代铁路轨道[M].北京:中国铁道出版社,2001.
    14翟婉明.车辆-轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    15陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学,2000.
    16 Mixon L C, Evans CB, Gilliam W L. Rail Roughness Study of Holloman High Speed Rocket Sled Test Track [R]. AD A105778, USA,1981.9
    17许昭鑫.振动[M].北京:高等教育出版社,1990.
    18 Hou Chuan liang, Zhang Yong lin. Numerical Simulation of Stationary Stochastic Process in Engineering [J]. Journal of Wuhan Polytechnic University,2003,22 (3):27-29.
    19 Wang Yuan feng, Wang Ying, Wang Dong jun. A New Simulating Method for the Irregularities of Railway Tracks [J]. Journal of the China Railway Society, 1997,19 (6):110-115.
    20 Averill M L, David K. Simulation Modeling and Analysis[M]. New York: McGraw-Hill Book Company,1982.
    21 Chen Guo, Zhai Wan ming. Numerical Simulation of the Stochastic Process of Railway rack Irregularities [J]. Journal of Southwest Jiaotong University,1999, 34 (2):138-142.
    22蒋海波,罗世辉,董仲美.Blackman—Tukey法的轨道不平顺数值模拟[J].中国测试技术,2006,32(4):97-100.
    23 Praharaj S C, Roger R P. Aerodynamic Computations of Integrated Missile-On-Sled Vehicles [R].AIAA 96-0290, Huntsville, AL, USA,1996:1-9.
    24 Andrew J L. Computational Aerodynamics Analysis of the Flow Field about a Hypervelocity Test Sled [D]. AFIT/GAE/ENY/02-07,2002, Department of the Air Force Institute of Technology, Air University, Ohio, USA:1-120.
    25 Andrew J L, Montgomery C H, Anthony N P. Computational Aerodynamics Analysis of the Flow Field About a Hypervelocity Test Sled [C].41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2003:1-10.
    26 Martin C H, Michael R M, Stanley C P, etc. Engineering Analysis for Rocket Sled Aerodynamics [C].44st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2006:1-15.
    27 Stewart B L, Neil B. Non-Vitiated Hypersonic Propulsion System Testing at the Holloman High Speed Test Track [C].41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2005, Tucson, AZ, USA:1-22.
    28邹伟红.火箭滑橇空气动力的数值模拟[D].南京:南京理工大学,2008.
    29 Structures Working Group. ISTRACON Handbook [C]. Interstation Supersonic Track Conference, Istracon Report No 60-1. Air Force Systems Command, Holloman Air Force Base:Printing & Publications Distribution Division, AFMDC,1961.
    30 Mixon, L C. Sled Design Techniques [R]. AFSWC-TR-71-3,6585th Test Group, Holloman AFB,NM,1971.
    31 Krupovage D J, Mixon L C, Bush J D. Design Manual for Dual Rail, Narrow Gage, and Monorail Rocket Sleds [R]. Holloman High Speed Test Track, 1985.
    32 Krupovage D J, Mixon L C, Bush J D. Design Manual for Dual Rail, Narrow Gage, and Monorail Rocket Sleds Revised [R]. Holloman High Speed Test Track,1991.
    33 Hooser, C D. Narrow-Gage Rocket Sled Design Criteria Investigation [D], USA: New Mexico State University,1989.
    34 Abbot P W. Vibration Environment of the Holloman Impact Test Sled (HIT) Second Stage [R]. ATM NO 348-44.1-6,6585th Test Group Holloman AFB, NM, USA,1967.
    35 Greenbaum, G A, Garner T N, Platus D L. Development of Sled Structural Design Procedures [R]. AFSWC-TR-73-22,6585th Test Group, Holloman AFB, NM, USA,1973.
    36 Tischler, V A, Venkayya V B, Palazotto A N. Dynamic Analysis of High Speed Rocket Sleds [R]. ASME Design Engineering Technical Conference, Hartford, CN,81-DET-42,1981.
    37 Hooser M. Simulation of a 10000 Foot per Second Ground Vehicle [R].AIAA 2000-2290, Holloman AFB, NM, USA,2000:1-9.
    38 Hooser M, Schwing A. Validation of Dynamic Simulation Techniques at the Holloman High Speed Test Track [R]. AIAA 2000-0155, Holloman AFB, NM, USA,2000:1-8.
    39 Hooser M D, Mixon L C. Rail Modal Tests [R]. Holloman High Speed Test Track Technical Report,1998.
    40 Hooser M D, Mixon L C. Comparison of Sled Impact Momentum and Rail Momentum [R]. Holloman High Speed Test Track Technical Report,2000.
    41 Anna S. Dynamic Simulation in Support of Ground Testing at the Holloman High Speed Test Track [R]. AIAA2000-2291,Denver, CO, US A,2000:1-10.
    42 Furlow J S, John S F. Parametric Dynamic Load Prediction of a Narrow Gauge Rocket Sled [D].New Mexico State University, Las Cruces, NM, USA,2006.
    43 Minto D W. CTEIP Funded Advances in Hypersonic Testing at The Holloman High Speed Test Track [C].24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, OR, AIAA-2004-2740, USA,2004.
    44 Minto D W. The Holloman High Speed Test Track Hypersonic Upgrade Program Status [C].22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, St. Louis, MO, AIAA-2002-3034, USA,2002.
    45 Minto D W. Recent Increase in Hypersonic Test Capabilities at the Holloman High Speed Test Track [C],38th Aerospace Sciences Meeting & Exhibit, Reno, NV, AIAA-2000-0154, USA,2000.
    46 Furlow J S. DADS Contact Formulation Using PRONTO FEM Results [C]. Southern New Mexico Technology Symposium, Alamogordo, NM, USA,2006.
    47 Furlow J S. Dynamic Data Comparison of a Narrow Gauge Sled:Numerical Data vs Test Data [C]. Southern New Mexico Technology Symposium, Alamogordo, NM, USA,2006.
    48 Furlow J S. DADS Flexible Body Formulation Study [R]. Engineering Seminar, Holloman High Speed Test Track, USA,2004.
    49 Eskridge S E. Development of Consistent Nonlinear Models of Flexible Body Systems [D]. Texas Tech University, USA,1998.
    50 Nedimovic P H. Dynamic Load Analysis for Design [D]. New Mexico State University, USA,2004.
    51李广慧.车辆-无碴轨道-桥梁系统振动特性及其应用[M].河南:黄河水利出版社,2007.
    52夏禾,张楠.车辆与结构动力相互作用(第二版)[M].北京:科学出版社,2005.
    53齐法琳,孙宁.铁路桥梁动力学[M].北京:科学出版社,2007.
    54长沙铁道学院振动研究室.关于机车车辆/轨道系统激励函数的研究[J].长沙铁道学院学报,1985,8(2):32-36.
    55铁道部科学研究院铁道建筑研究所.我国干线轨道不平顺功率谱的研究[R].北京:铁道部科学研究院,TY-1215,1999.
    56邱绵浩,刘箐,丛会.基于B样条插值曲线直接筛选的EMD及其在机械振动信号处理中的应用[J].装甲兵工程学院学报,2007,21(3):29-33.
    57 William H P. Numerical Recipes in C++(2nd e.d) [M]. New York:Cambridge University Press,2002.
    58 Kennedy J, Eberhart R C. Particle Swarm optimization [A]. Proc:IEEE international Conference On Neural Networks[C]. USA:IEEE Press,1995: 1942-1948.
    59 Minh C N, Anthony N P, John D C. Analysis of Computational Methods for the Treatment of Material Interfaces [C][R].46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confer, AIAA 2005-2354, Austin, Texas, USA:1-13.
    60 Andrew G S. An Improved Study of Temperature Changes During Hypervelocity Sliding High Energy Impact[C][R].47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confer, AIAA 2006-2090, Newport, Rhode Island:1-10.
    61 Aaron C. Finite Element Simulation Methods for Dry Sliding Wear [D]. Air Force Institute of Technology, Air University, Ohio, USA,2008.
    62 Cameron G, Palazotto A. An Evaluation of High Velocity Wear [J]. Wear,2008, 265 (13):1066-1075.
    63 Hooser M D. DADS Validation [R].46th Test Group, Holloman AFB, NM, USA, 1999.
    64练松良.轨道动力学[M].上海:同济大学出版社,2003.
    65佐藤吉彦著.徐勇等译.新轨道力学[M].北京:中国铁道出版社,2001.
    66王澜.轨道结构振动理论及其在轨道结构减振中的应用[D].北京:铁道部科学研究院,1988.
    67李成辉.轨道结构振动理论及应用研究[D].成都:西南交通大学,1996.
    68 Bowe C J, Mullarkey T P. Wheel-rail Contact Elements Incorporating Irregularities [J]. Advances in Engineering Software,2005, (36):827-837.
    69铁道部科技司.德国联邦铁路城际特别快车ICE技术任务书[M].成都:西南交通大学出版社,1999.
    70 Sato Y. Japanese Studies on Deterioration of Ballasted Track [J]. VSD Supplement,1995,24 (2):112-118.
    71 Sato Y. Abnormal wheel load of test train [J]. Permanent Way,1973,14(2): 1-8.
    72 Cai Z, Raymond G P. Theoretical Model for Dynamic Wheel/Rail and Track Interaction [C]. Proceeding of 10th International Wheel set Congress, Sydney, Australia,1997:127-131.
    73 Oscarsson J, Dahlberg T. Dynamic Train/Track/Ballast Interaction computer Models and Full-scale Experiments [J]. Vehicle System Dynamics,1998,28 (1):73-84.
    74 Oscarsson J. Dynamic Train-track-ballast Interaction with Unevenly Distributed Track Properties [C].17th IAVSD Symposium on Dynamics of Vehicles on Roads and on Tracks, Lyngby, Denmark,2001.
    75 Remington P J. Wheel/Rail Noise-part I:Characterization of the wheel/rail dynamic system [J]. Journal of Sound and Vibration,1976,45 (3):82-86.
    76 Bender E K and Remington P J. The influence of rails on train noise [J]。Journal of Sound and Vibration,1974,40 (3):82-86.
    77宣言.客运专线曲线线路车线耦合系统动力学性能与无碴轨道结构振动响应的仿真研究[D].北京:铁道科学研究院,2005.
    78蔡成标.高速铁路列车-线路-桥梁耦合振动理论及应用研究[D].成者:西南交通大学,2004.
    79张延教.高等动力学[M].南京:华东工学院,1986.
    80黄文虎,邵成勋.多柔体系统动力学[M].北京:科学出版社,1996.
    81洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999.
    82刘才山,陈滨.多柔体系统碰撞动力学研究综述[J].力学进展,2000,30(1):7-14.
    83邹经湘,丁开平.结构动力学[M].哈尔滨:哈尔滨工业大学出版社,2009.
    84 R克拉夫.结构动力学(第2版).北京:高等教育出版社,2006.
    85邱吉宝,向树红.计算结构动力学[M].合肥:中国科技大学出版社,2009.
    86 Chopra A K结构动力学理论及其在地震工程中的应用[M].北京:清华大学出版社,2005.
    87李东旭.高等结构动力学(第2版)[M].北京:科学出版社,2010.
    88徐明友.高等外弹道学.北京:高等教育出版社,2003.
    89韩子鹏,薛晓中,张莺译.外弹道学.北京:国防工业出版社,2000.
    90宋丕极.枪炮与火箭外弹道学[M].北京:兵器工业出版社,1993.
    91张柏生,李云娥.火炮与火箭内弹道原理[M].北京:北京理工大学出版社,1996.
    92董师颜,张兆良等.固体火箭发动机原理[M].北京:北京理工大学出版社,1996.
    93王光林,蔡峨.固体火箭发动机设计[M].西安:西北工业大学出版社,1994.
    94 Gregory S R. An Investigation of a Simplified Gouging Model[D].USA:Air Force Institute of Technology,2005.
    95 John D C, Anthony N P. Analysis and Simulation of Hypervelocity Gouging impacts for a high speed sled test[J].International Journal of Impact Engineering, 2009,36(1):254-262.
    96 Minh C N. Analysis of Computational Methods for the Treatment of Material Interfaces[D].USA:Air Force Institute of Technology,2005.
    97 Mark A B. Cost Comparison of Existing Coatings for a Hypervelocity Test Rail[D].USA:Air Force Institute of Technology,2005.
    98 Zachary A K. Determination of the Constitutive Equations for 1080 Steel and Vascomax 300[D].USA:Air Force Institute of Technology,2005.
    99 John D C, Anthony N P, Szmerekovsky A G, etc. Further Investigation of a Scaled Hypervelocity Gouging Model and Validation of Material Constitutive Models[C].47th AIAA/ASME/ASCE/AHS/ASC Structures, Structure Dynamics, and Materials Con, Newport,Rhode Island,2006.
    100 John D C, Anthony N P, Brar N S. Further Refinement of Material Models for Hypervelocity Gouging Impacts[C].47th AIAA/ASME/ASCE/AHS/ASC Structures, Structure Dynamics, and Materials Con, Newport,Rhode Island, 2006.
    101 David J L, Anthony N P. Gouge Development during Hypervelocity Sliding Impact[J].International Journal of Impact Engineering,2004,30(1):205-223.
    102 Tachau R D M, Yew C H, Trucano T G. Gouge Initiation in High-Velocity Rocket Sled Testing[J].International Journal of Impact Engineering,1995, 17(3):825-836.
    103 Gregory S R, Anthony N P, John D C. Investigation of a Simplified Hypervelocity Gouging Model[C].46th AIAA/ASME/ASCE/AHS/ASC Structures, Structure Dynamics, and Materials Con, Austin, Texas,2005.
    104 Watt T J, Bourel D L. Sliding Instabilities and Hypervelocity Gouging[J]. IEEE Transactions on Plasma Science,2011,39(1):162-167.
    105 Lankarani H M, Nikravesh P E. Continuous Contact Force Models for Impact Analysis in Multibody system [J]. Nonlinear Dynamics,1994,5(2):193-207.
    106 Srnik J, Pfeiffer F. Dynamics and CVT Chain Drivers:Mechanical model and Verification [A]. Proceedings of the 16th Biennial Conference on Mechnaical Vibration and Noise [C]. Sacrameto:ASME,1997.
    107徐文涛.火箭滑橇水刹车结构高速入水的动态分析[D].南京:南京理工大学,2008.
    108赵庆彬.火箭滑橇水刹车机构高速入水数值分析[D].南京:南京理工大学,2009.
    109高黎黎.索-梁耦合系统的动力学分析[D].山东:山东大学,2006.
    110范天佑.断裂动力学原理与应用[M].北京:北京理工大学出版社,2006.
    111马海有,郭亦萍.纤维绳索强度分析中线性回归与曲线拟合法的比较.海洋渔业,28(4),2006:304-308.
    112吕茂烈.碰撞与变质量动力学[M].北京:高等教育出版社,1992:969-985.
    113时瑾,魏庆朝,万传风等.不平顺激励下磁浮车辆轨道梁动力响应[J].力学学报,38(6),2006:850-857.
    114 Timoshenko S P, Young D H, Weaver W, etc. Vibration Problems in Engineering (4th ed) [M]. John Wiley & Sons,1974.
    115肖守讷,阳光武,张卫华,等.基于谱密度函数的轨道不平顺仿真[J].中国铁道科学,2008,29(2):28-32.
    117美国运输部联邦铁路局.轨道几何形状变化的分析说明[R].北京:中国国家科技情报中心,1983.
    118周宇,许玉德,李浩然.轨道不平顺非线性预测模型[J].交通运输工程学报,2004,4(4):21-24.
    119胡健伟,赵志勇,薛运华等译.C++数值算法(第二版)[M].北京:电子工业出版社,2005.
    120邹金安.面向对象程序设计与Visual C++6.0教程[M].厦门:厦门大学出版社,2009.
    121 Krupovage D J, Mixon L C, Pokorney O T. Wind Tunnel and Full-Scale Forces on Rocket Sleds[R]. Air Force Missile Development Center, Holloman Air Force Base, New Mexico. AD-647064,1967.
    122尚晓江,邱峰,赵海峰等.ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2005.
    123郝好山,胡仁喜,康士廷.ANSYS 12.0 LS-DYNA非线性有限元分析从入门到精通[M].北京:机械工业出版社,2010.
    124李明.火箭滑车结构强度设计分析[D].南京:南京理工大学,2010.
    125 Abelt R L, Richards J D. Force Measurements on a monorail Rocket Sled Slipper at Mach Numbers Less than 3.5[R].Lockheed Electronic Company Report No.68-13, USA,1968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700