用户名: 密码: 验证码:
船舶CAE前后处理系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CAE软件已成为众多工程领域不可或缺的计算工具,CAE技术在现代工业技术发展和高新技术创新等方面具有重要的地位和作用,良好的CAE前后处理支持是CAE技术走向工程应用的前提和基础。
     本文以研发具有自主知识产权的船舶CAE前后处理系统为目标,系统地研究了CAE前后处理系统的设计与实现、关键算法、在船舶领域内的应用。具体内容如下:
     (1)绪论部分,从CAE前后处理的基本概念和相关背景入手,简述了本文工作的研究背景、研究目的和研究内容。
     (2)在CAE前处理方面,首先介绍了CAE前处理软件的设计与实现。按照软件工程的要求,从软件需求、设计和实现几个方面阐述了CAE前处理软件的整个实现过程,重点介绍了CAE前处理软件的总体架构和软件工程模块化设计,以及关键模块的设计方案,包括模型定义、网格划分、材料定义、属性定义、LBC(载荷和边界条件)定义等,并将最终实现的CAE前处理软件,与国际领先的软件MSC.Patran、Femap前处理部分进行比较,说明本软件在功能方面已经满足船舶结构CAE分析的前处理要求,且在某些方面超过Femap等国外知名软件。
     然后分别介绍了CAE前处理软件中的两大重难点:CAD/CAE模型转换与有限元网格自动生成。
     在CAD/CAE模型转换方面,本文自定义了一套采用离散边界法表示的模型数据结构,通过多种不同的CAD/CAE接口实现模型数据转换功能:通过统一数据接口实现了主流通用CAD文件如IGES, STEP等模型数据的读取和转换;通过研究、解析STL文件和Tribon的XML文件,实现了STL模型和船舶专用CAD模型数据的转换;通过拓扑重建解决了目前CAD/CAE模型数据转换过程中普遍存在的拓扑信息丢失问题。在有限元网格自动生成方面,本文结合自定义模型数据的特点,尤其是船舶模型的特点,采用了波前推进法(AFT)进行改进,实现了组合复杂离散曲面的有限元面网格自动生成算法,并给出几个典型算例予以验证。
     (3)在CAE后处理方面,首先给出了CAE后处理软件的总体实现思路。考虑到CAE软件繁多,本文自定义了一套船舶领域内CAE后处理标准文件格式,开发相应转换接口,实现了不同CAE计算结果文件到标准格式文件的转换,并完成结果数据的常用后处理功能。
     然后阐述了CAE后处理软件实现过程中的关键算法:大规模模型的快速显示、云图显示、任意截面及其结果云图显示等。其中在普通PC机器上即可实现千万级别节点自由度模型的快速显示也是本文的创新点之一,其显示速度远远超过目前国际上通用的MSC.Patran和Femap等前后处理软件。
     (4)在应用方面,基于前文的研究成果,通过模块选择与改进,完成了多个CAE软性集成软件等。
     最后对所做工作与主要研究成果进行了简要总结,并提出了进一步的研究方向。
CAE software has become an indispensable computational tool in many engineering fields. CAE technology plays an important role in the development of modern industrial technology and high-tech innovation. Good support of pre and post processing is the premise and foundation of CAE technology heading to engineering application.
     To develop the pre and post processing software system for ship CAE with independent intellectual property rights, the system design and implementation of the software are systematically studied in the thesis. The key algorithm of the main functions, as well as the application in ship field, is further discussed. The detail is as follows:
     (1)The concept and background of CAE pre-post processing is introduced first to explain the research background, objectives and research content of this thesis.
     (2)As for the CAE pre-processing, the design and implementation of pre-process of CAE software are first introduced. According to the demand of software engineering, the software requirements, design and implementation are introduced to explain how the entire pre-process of CAE software are fulfiled. The main modules include the geometric modeling, mesh, material definition, property definition, LBC (loads and boundary conditions) definition and so on. By comparison to the MSC.Patran, Femap, in terms of functionality, the software has already met requirements of the pre-process of CAE analysis in ship FEA area, and in some ways is better than them.
     Then the two key and difficult points in pre process part are introduced, i.e. CAD/CAE model data transforming and automatic mesh generation.
     Concerning CAD/CAE model data transforming, a set of self-defined model data structure using discrete boundary representation is designed, based which the model data is transformed from CAD to CAE by different interfaces. By the unified data interface, model data is read and transformed from a variety of mainstream and standard CAD model files such as IGES, STEP and so on. By Studing and parsing the STL file and Tribon XML file format, the STL model file and ship CAD model data conversion is realized. Topology reconstruction is used to solve the topology information loss problem in the CAD/CAE model data conversion process.
     Concerning mesh generation, according to the model data structure, the Advancing Front Technique (AFT) is improved to generate finite element mesh from complex discrete surface like ship model automaticly, which is validated by some typical examples given at last, and the CAD/CAE model data transforming function is also test implicitly.
     (3)As for the CAE post-processing, likewise, the overall realization ideas of the CAE post-processing software is discussed first. In consideration of the large variety of CAE software, a standard file format of post-processing application data is defined, especially for ship field. The model and result data are converted from all kinds of CAE result files to it to realize basic post functions.
     Then the implementation of the key features in the CAE post-processing software are described, using a series of custom algorithms or improving existing algorithms to achieve fast display of large-scale model, contour display, arbitrary cross section and its contour display. One of the innovations of this thesis is the rapid display of large-scale model, which realizes quick display of degree freedom model of the 10 million level nodes on the ordinary PC machine, far more pre-post processing software in the world like Patran, Femap, etc.
     (4)As for the application, based on the research results above, a number of CAE software products are developed through the module selection and improvement, including the pre-process of Jifex for Dalian University of Technology, ship cabin noise prediction software and three-dimensional hydroelastic integrated software.
     Finally, the main contributions in this work are summarized and further research considerations are proposed.
引文
[1]吴广明. CAE在船舶结构设计中的应用及展望[J].中国舰船研究. 2007, 2(6): 30-34
    [2]钟万勰等.发展CAE软件产业的战略对策——第339次香山科学会议召开[J].计算机辅助工程. 2009:
    [3]陈庆强,朱胜昌,郭列等.用整船有限元模型分析方法计算舰船的总纵强度[J].船舶力学. 2004, 8(1): 79-85
    [4] Beom-Seon J, Jae-Hoon J, Yong-Suk S. Use of 3D Compartment Model for Simplified Full Ship FE Model. Part I: construction of FE model[J]. Journal of Marine Science and Technology. 2008, 13(2): 154-163
    [5] Daley C G. Derivation of Plastic Framing Requirements for Polar Ships[J]. Journal of Marine Structures. 2002, 15(6): 543-599
    [6] Daley C G. Application of Plastic Framing Requirements for Polar Ships[J]. Journal of Marine Structures. 2002, 15(6): 533-542
    [7] Parviz G, Mohammad A, Faizi C. A Novel Approach to Node Distribution for 2D Mesh Generation and Its Application in Marine and Ocean Engineering. [J]. Advances in Engineering Software. 2010, 14(10-11): 1149-1159
    [8] Jensen P S. Automatic panel generation for seakeeping and wave resistance calculations[J]. CFD and CAD in ship Design. 1990: 133-146
    [9] Wu B S, Pan Z Y, Xia X. Investagation of The Hydrodynamic Characteristics of Boby of Revolution with Stern Ring2wing[J]. Journal of Ship Mechanics. 2003, 7(6): 54-59
    [10] Li G, Hong M, Guo Y S. Static and Dynamic Behavior Analysis of Damaged Panel Using FEM[J]. Journal of Ship Mechanics. 2005, 9(6): 93-102
    [11] Wu Y S, Ni Q J. Advances in Technology of High Performance Ships in China[J]. Journal of Ship Mechanics. 2008, 12(6): 1014-1031
    [12] Tian Chao, Wu Y S. The Second-Order Hydroelastic Analysis of a SWATH Ship Moving in Large-Amplitude Waves[J]. Journal of Hydrodynamics. 2006, 18(6): 631-639
    [13] Du S X, Wu Y S, G. P W. Forward speed effect on the structure eesponses of a ship traveling in waves[C]. Proceedings of 2th International Conference on Hydroelasticity in Marine Technology, Fukuoka,Janpan, 1998,401-410
    [14]范彦斌.有限元分析结构的计算机图形可视化显示[J].计算机辅助设计与图形学报,1995,17(1):11~17
    [15]王建良.铸造模拟软件数据库设计及后处理可视化研究[D]:[硕士学位论文].武汉:武汉理工大学, 2010
    [16]马超.冲压成形CAE软件KMAS后处理若干功能的实现[D]:[硕士学位论文].长春:吉林大学, 2007
    [17]王德清.基于OpenGL的有限元分析数据可视化系统开发[D]:[硕士学位论文].武汉:武汉理工大学, 2008
    [18]左正兴有限元后置处理程序的研究计算机辅助设计与图形学学报,1992,4(1):20~24
    [19]张淑霞,曾鸣,赵宏林等. CAD与CAE软件的数据接口及转换方法研究[J].石油矿场机械. 2007, 36(2): 4-6
    [20]郑加洲.结构的CAD/CAE模型导入技术与疲劳分析[D]:[硕士学位论文].西安:西安电子科技大学, 2007
    [21]沈利斌,纪爱敏,黄全生.面向CAE分析的CAD模型转换研究[J].机床与液压. 2009,37(11): 202-210
    [22]党松,莫蓉,常智勇等. CAD /CAE集成中的几何模型转换方法研究[J].现代制造工程. 2007, (12): 47-50
    [23]李晓宁,吴爱萍. CAD /CAE集成中几何模型自动修复问题的研究[J].计算机辅助工程. 2003, (3): 1-5
    [24]谢世坤,黄菊花,杨国泰. CAD/ CAE集成中的有限元模型转换之研究[J].中国机械工程. 2005, 16(5): 428-431
    [25]张淑霞. CAD与CAE的数据交换技术[J].油气田地面工程. 2009, 28(3): 34-35
    [26]蒋唯.基于CAD/CAE混合模板库的锻压机床快速设计、优化方击研究[D]:[博士学位论文].合肥:中国科学技术大学, 2008
    [27] Laug E, Borouchaki H. Molecular Surface Modeling and Meshing[J]. Engineering with Computers & Stuctures. 2002, 8(3): 199-210
    [28] Laug R, Borouchaki H. Interpolating and Meshing 3D Surface Grids[J]. International Journal for Numerical Methods in Engineering. 2003, 58(2): 209-225
    [29]单菊林.自适应有限元网格生成算法研究与应用[D]:[博士学位论文].大连:大连理工大学, 2007
    [30]段丽,郑建靖,孙力胜等.一类基于ACIS的CAD/CAE数据转换接口实现[J].计算机工程与应用. 2010, 46(25): 72-74
    [31]李海生,杨钦,陈其明.根据STL文件生成三维四面体网格[J].中国机械工程. 2003, 14(11): 926-930
    [32]肖涵山,刚刘,陈作斌等.基于STL文件的笛卡尔网格生成方法研究[J].空气动力学学报. 2006, 24(1): 120-124
    [33]杨晟院,杜亚娟,舒适.基于STL文件的曲面网格重建算法[J].计算机工程2011, 37(4): 10-14
    [34]刘静珏,韩利芬,彭爱连等.一种基于STL几何模型的有限元三角形网格的自动生成方法[J].现代机械. 2007, (4): 68-69
    [35]王威信,吴延江,张凤军.以STL为接口的CAD/CAE集成应用[J].计算机辅助设计与图形学学报. 2005, 17(8): 1878-1882
    [36] Turner R C. An overview of sterolithography (STL)[J]. J Biocommun. 2003, 29(4): 3-4
    [37] Hafen R P, et.al.. Syndromic surveillance: STL for modeling, visualizing, and monitoring disease counts[J]. BMC Med Inform Decis Mak. 2009, 9: 21
    [38]张媛嫒.基于CASTSoft软件STL文件预处理及网格转换技术研究[D]:[硕士学位论文].太原:中北大学, 2007
    [39]杨晟院,舒适.基于数据相关性的STL曲面网格快速重建算法[J].计算机辅助设计与图形学学报. 2009, 21(1): 67-71
    [40] Hole K. Finite element mesh generation methods:a review and classification[J]. Computer aided Design. 1998, 20(1): 208-214
    [41] Tremel U, Deister F, Hassan O. Weatherili NE Automatic Unstructured Surface Mesh Generation for Complex Configurations[J]. International Journal for Numerical Methods in Fluids. 2004, 45(4): 341-364
    [42]关振群,宋超,顾元宪等.有限元网格生成方法研究的新进展[J].计算机辅助设计与图形学学报. 2003, 15(1): 1-14
    [43] Bruce P, John M, Sullivan J R. Fully automatical two dimensional mesh generation using normal offsetting[J]. International Journal for Numerical Methods in Engineering. 1992, 33(4): 425-442
    [44] Dari E A, Buscaglia G C. Mesh optimization: how to obtain good unstructured 3D finite element meshes with not-so-good mesh gengrators[J]. Struct Optim. 1994, (8): 181-188
    [45] Liu A, Joe B. Quality Local Refinement of Tetrahedral Meshes Based on Bisection[J]. SIAM Journal on Scientific Computing. 1995, 16(6): 1269-1291
    [46] Borouchaki H, George P L. Aspects of 2-D Delaunay Mesh Generation[J]. International Journal for Numerical Methods in Engineering. 1997, 40(11): 1957-1975
    [47] Borouchaki H, Laug P G. Parametric Surface Meshing Using a Combined Advancing-Front Generalized Delaunay Approach[J]. International Journal for Numerical Methods in Engineering. 2000, 49(1): 233-259
    [48] Tautges T J. Automatic mesh generation of curved hull surface[J]. Trans Korea Committee Ocean Resour Eng. 1997, 11(2): 138-144
    [49] Tautges T J. The Generation of hexahedral meshes for assembly geometry: survey and progress[J]. International Journal for Numerical Methods in Engineering. 2001, (50): 2617-2642
    [50] Su Y, Lee K H, Senthil K A. Automatic mesh generation and modification techniques for mixed quadrilateral and hexahedral element meshes of non-manifold models[J]. Comput Aided Des. 2004, (36): 581-594
    [51] Alauzet F, Li X, Seol E S. Parallel Anisotropic 3D Mesh Adaptation by Mesh Modification[J]. Engineering with Computers. 2006, 21(3): 247-258
    [52] Chrisochoides N, Nave D. Parallel Delaunay Mesh Generation Kernel[J]. International Journal for Numerical Methods in Engineering. 2003, 58(2): 161-176
    [53] Cougny H L d, Shephard M S. Parallel Volume Meshing Using Face Removals and Hierarchical Repartitioning[J]. Computer Methods in Applied Mechanics and Engineering. 1999, 174(3-4): 275-298
    [54] Coupez T, Digonnet H, Ducloux R. Parallel Meshing and Remeshing[J]. Applied Mathematical Modeling. 2000, 25(2): 153-175
    [55] Larwood B, Weatherill N P, Hassan O. Domain Decomposition Approach for Parallel Unstructured Mesh Generation[J]. International Journal for Numerical Methods in Engineering Computations. 2003, 58(2): 177-188
    [56] Lo S H. Finite Element Mesh Generation and Adaptive Meshing[J]. Progress in Structural Engineering and Materials. 2002, 4(4): 381-399
    [57] Almeida R C F o R A. Adaptive finite element computational fluid dynamics using an anisotropic error estimator[J]. Computer Methods in Applied Mechanics and Engineering. 2000, 182(34): 379-400
    [58] Gutierrez M A. An algorithm for mesh rezoning with application to strain localization problems[J]. Computers & Stuctures. 1995, 55(2): 237~247
    [59] Cuilliere J C. An adaptive method for the automatic trangulation of 3D parametric surface[J]. Computer Aided Design. 1998, 30(2): 139-149
    [60] Smooth L C. subdivision surfaces based on triangles [D]:[Doctor]. Salt Lake: University of Utah, 1987
    [61] Daniel R, Krysl P. Triangulation of 3D surfaces[J]. Enginnering with Computers. 1997, (13): 87-98
    [62] Talbert J A, Prkinson A R. Development of an automatic, two-dimensional finite element mesh generator using quadrilateral elements and Bezier curve boundary definition[J]. Int J number Methods Eng. 1990, (29): 1551-1567
    [63] Tam T K H, Armstrong C G. 2D Finite elenaent mesh generation by medial axis subdivision[J]. Advances in Engineering Soft-ware. 1991, (13): 313-324
    [64]陈建军.基于模板法的全四边形有限元网格生成器的研制及网格质量的几何优化[D]:[硕士学位论文].杭州:浙江大学, 2003
    [65]陈建军.非结构化网格生成及其并行化的若干问题研究[D]:[博士学位论文].杭州:浙江大学, 2006
    [66]陈炎,曹树良,梁开洪等.结合前沿推进的Delaunay三角化网格生成及应用[J].计算物理. 2009, 26(4): 527-532
    [67]丁力平.基于模板法和四叉树法的混合网格划分算法的研究与实现[D]:[硕士学位论文].南京:南京航空航天大学, 2006
    [68]方兴,张武,唐锦春等.一种改进的生成有限元全四边形网格的铺砌法[J].浙江理工大学学报. 2005, 22(1): 43-47
    [69]傅波海.基于几何分解与铺砌的网格生成算法的研究[D]:[硕士学位论文].南京:南京航空航天大学, 2007
    [70]李任君.有关四边形有限元网格生成算法的研究[D]:[硕士学位论文].长春:吉林大学, 2007
    [71]李阳.注塑模CAE软件网格关键技术研究[D]:[硕士学位论文].武汉:华中科技大学, 2004
    [72]梁义.自适应表面网格生成研究[D]:[博士学位论文].杭州:浙江大学, 2009
    [73]梅中义,范玉青.一种用于自动生成二维全四边形有限元网格的改进的铺设算法[J].计算机辅助设计与图形学学报. 2000, 12(6): 429-434
    [74]王世军,赵金娟.四边形有限元网格的快速生成算法[J].计算机辅助设计与图形学学报. 2003, 15(5): 631-634
    [75]郑志镇,李尚健,李志刚.复杂曲面上的四边形网格生成方法[J].计算机辅助设计与图形学学报. 1999, 11(6): 521-524
    [76] Los H. Generation of high quality gradation finite element mesh[J]. Engineering Fracture Mechanics. 1992, 12(2): 81-84
    [77] Sezer L. Automatic quadrilateral/triangular freeform mesh generation for planar regions[J]. Int J Number Meth Eng. 1991, (32): 1441–1483
    [78] LoS H. A New Mesh Generation Scheme For Arbitrary Planar Domains[J]. Int JNumer Meth Eng. 1985, (21): 1403-1426
    [79]陈建军,梁义,黄争舸等.面向STL模型的几何自适应曲面网格生成[J].机械工程学报2011, 47(7): 128-133
    [80]陈立亮,刘瑞祥,林汉同.基于STL网格剖分技术的研究[J].计算机应用. 1999, (1): 145-147
    [81]陈涛.基于离散模型的网格剖分方法及覆盖件冲压仿真参数化建模[D]:[博士学位论文].长沙:湖南大学, 2007
    [82] Brchet E, Cuilliere J C, Trochu F. Generation of a Finite Element Mesh from Stereolithography (STL)Files[J]. Computer-Aided Design. 2002, 34(1): 1-17
    [83]陈立岗.面向工程与科学计算的表面网格处理方法的若干问题研究[D]:[博士学位论文].杭州:浙江大学, 2008
    [84] Lau T S, Lo S H. Finiter element mesh generation over analytical curved surfaces[J]. Computer&Structures. 1994, 59(2): 301-309
    [85] Kadivar M H, Sharifi H. Double mapping of isoparametric mesh generation[J]. Computer&Structures. 1996, 59(3): 471-4772
    [86] J S, A H. Efficient unstructured quardrilateral mesh generation[J]. International Journal for Numerical Methods in Engineering. 2000, (49): 1327~1350
    [87] Bykat A. Design of a recursive shape controlling mesh generator[J]. Int J Num Meth Eng. 1983, (19): 1375-1390
    [88] Greaves D M. Hierarchical tree-based finite element mesh generation[J]. International, Journal for Numeric Methods in Engineering. 1999, (45): 447-471
    [89] McMorris H K Y. Octree-advancing front method for generation of unstructured surface and volume meshes[J]. AIAA Journal. 1997, 35(6): 976-984
    [90]郝跃宏.基于四叉树法和波前法的混合网格划分算法的研究和实现[D]:[硕士学位论文].南京:南京航空航天大学, 2007
    [91] McMoms H, Kallinderis Y. Octree-advancing front method for generation of unstructured surface and volume meshes[J]. AIAA J. 1997, 35(6): 976-984
    [92] Du Q, Wang D. Recent Progress in Robust and Quality Delaunay Mesh Generation[J]. Joumal of Computational and Applied Mathematics. 2006, 195(1-2): 8-23
    [93] Said R, Weatherill N, Morgan K. Distributed Parallel Delaunay Mesh Generation[J]. Computer Methods in Applied Mechanics and Engineering. 1999, 177(1-2): 109-125
    [94] N S I, R P. Advanced techniques for automatic finite element meshing from solid models[J]. Computer Aided Design. 1989, 24(10): 248-253
    [95]宋超.非结构化自适应有限元网格生成的AFT方法[D]:[博士学位论文].大连:大连理工大学, 2004
    [96] Blacker T D, Stephenson M B. Paving: a new approach to automated quadrilateral mesh generation[J]. Int J number Methods Eng. 1991, (32): 811-847
    [97] Daniel R, Pelx K. Triangulation of 3D surfaces[J]. Engineering with Computers. 1997, (13): 87-98
    [98] Buscaglia G C, Dari E A. Anisotropic mesh optimization and its application in adaptivity[J]. Int, J, Number Methods Eng. 1997, (40): 4119-4136
    [99] Lee C K. Automatic adaptive mesh generation using metric advancing front approach[J]. Engineering Computations. 1999, (16): 230-267
    [100] Zienkiewicz O C, Zhu X. Adaptivity and mesh generation[J]. Int.J.Num.Meth.Engr. 1991, (32): 783—810
    [101] Deister F, Tremel U, Hassan O. Fully Automatic and Fast Mesh Size Specification for Unstructured Mesh Generation[J]. Engineering with Computers. 2004, 20(3): 237-248
    [102] George P L, Hecht F, Saltel E. Automatic Mesh Generator with Specified Boundary[J]. Computer Methods in Applied Mechanics and Engineering. 1991, 92(3): 269-288
    [103] Zheng Y, Lewis R W, Gethin D T. Three-Dimensional Unstructured Mesh Generation:Volume Meshes[J]. Computer Methods in Applied Mechanics and Engineering. 1996, 134(3-4): 285-310
    [104] Li Feng, Xu WenBo, Leng Wenhao. A Hole Repairing Method for Triangle Mesh Surfaces. In: IEEE Proceedings of the 2006 International Conference on Computational Intelligence and Security. Guangzhou; 2006:972-975.
    [105] Sanchez-Vazquez M J, Nielen M, Gunn G J,等. Using seasonal-trend decomposition based on loess (STL) to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005-2011[J]. Prev Vet Med. 2011:
    [106] Chen W L, Zhang S, Jin X B. Research on the Algorithm of Hole Repairing for Finite Element Mesh[J]. Chinese Journal of Computers. 2005, 28(6): 1068-1071
    [107] Owen S J, Staten M L, Canann S A. Q-Morph:an indirect approach to advancing front quad meshing[J]. Int J Numer Method Eng. 1999, (44): 1317-1340
    [108] Lee C K. Automatic Adaptive Mesh Generation Using Metric Advancing Front Approach[J]. Engineering Computations. 1999, 6(2): 230-263
    [109] Lee C K. Automatic Metric Advancing Front Triangulation over Curved Surfaces[J]. Engineering Computations. 2000, 7(1): 48-74
    [110] Lee C K. On Curvature Element-Size Control in Metric Surface Mesh Generation[J]. International Journal for Numerical Methods in Engineering. 2001, 50(4): 787-807
    [111] Lee C K. Automatic Metric 3D Surface Mesh Generation Using Subdivision Surface Geometrical Model Part 2:Mesh Generation Algorithm and Examples[J]. International Journal for Numerical Methods in Engineering. 2003, 56(11): 1615-1646
    [112] Lfihner R. Extensions and Improvements of the Advancing Front Grid Generation Technique[J]. Communications in Numerical Methods in Engineering. 1996, 12(10): 683-702
    [113] Krause R, Rank E. A fast algorithm for point location in a finite element mesh[J]. Computing. 1996, (57): 49—62
    [114] Johnsion B P, Sullivan J M, Kwasnik A. Automatic conversion of triangular finite element meshes to quadrilateral elements[J]. Int J number Methods Eng. 1991, (31): 67-84
    [115] Maza S, Noel F, Leon J C. Generation of quadrilateral mesh on free-form surfaces[J]. Computer and Structures. 1999, (71): 505-524
    [116] In-Il K. A Development of Data Structure and Mesh Generation Algorithm for Whole Ship Analysis Modeling System[J]. Advances in Engineering Software. 2006, (37): 85-96
    [117] Cass R J, Benzley S E, Meyers R J. Generalized 3-D Paving:An Automated Quadrilateral Surface Mesh Generation Algorithm[J]. International Journal for Numerical Methods in Engineering. 1996, 39(9): 1475-1489
    [118] Lee K Y, Kim I, Cho D Y. Kim TW. An algorithm of automatic 2D quadrilateral mesh generation with line constraints[J]. Comput Aided Des. 2003, (35): 1055-1068
    [119] Shinobu Y, Yoshitaka W, Genki Y. Automatic mesh generation of quadrilateral element using intelligent local approach[J]. Computer Methods in Applied Mechanics and engineering. 1999, 179: 125-138
    [120] L. B R P. Geometrically based automatic two-dimension mesh generation[J]. Engineering With Computers. 1987, (24): 1043-1078
    [121] Wang A M, Wang X C. Construction of the transition elements between the sparse and dense meshes in the finite element computation[J]. Tsinghua Univ (Sci & Tech). 1999, 1(39): 100-103
    [122] Lee C K, Lo S H. A new scheme for the generation of a graded quadrilateral mesh[J]. Comput Struct. 1994, (52): 847-857
    [123]冯少宏.板料成形有限元模拟软件后置处理系统设计与研究[D]:[硕士学位论文].武汉:华中科技大学, 2006
    [124]关云,罗宏志,李世其.船体结构有限元计算结果可视化系统的设计与实现[J].船舶. 1997, (6): 18-22
    [125]关云,罗宏志,李世其.船舶结构有限元模型及分析结果可视化系统的研究与开发[J].船舶设计通讯. 1998, (1-2): 30-35
    [126]肖何.电磁场的三维可视化技术研究及实现[D]:[硕士学位论文].西安:电子科技大学, 2005
    [127]齐同军.科学计算可视化在结构有限元分析中的应用[D]:[硕士学位论文].大连:大连理工大学, 2001
    [128]郑贤中,王乘.有限元后处理系统功能性框架的高效设计和实现[J].计算机工程与科学. 2005, 27(6): 53-56
    [129] Pang S Y, Chen L L, Chen T. Reconstruction Algorithm of Binary Finite Difference Data during Post Processing of Casting CAE System[J]. ezhong Zuzao Ji Youse Hejin. 2010, 30(6): 514-516
    [130] Wijk J J v. Views on Visualization[J]. IEEE Transactions on Visualization and Computer Graphics. 2006, 12(4): 421-432
    [131] Santos B S. An introductory course on visualization[J]. Computers&Graphics. 2000, 24(1): 163-169
    [132]吕珍.基于OpenGL的流场数据可视化技术[D]:[硕士学位论文].武汉:武汉理工大学,2007
    [133]杜凤山,朱光明,常征. OpenGL在可视化有限元图形结果处理系统开发中的应用[J].计算机辅助设计与图形学学报. 2003, 15(12): 1554-1556
    [134] Jackie N, Tom D, Mason W. OpenGL Programming Guide[M]: Addison-Wesley, 2005
    [135]李建波,陈健云,林皋.针对三维有限元数据场的精确后处理算法[J].计算机辅助设计与图形学学报. 2004, 16(8): 1169-1175
    [136]刘永军,李宏男,林皋.有限元应力场可视化的一种新方法[J].计算力学学报. 2003, 20(2): 195-198
    [137]余卫平.有限元网格图形处理技术及计算结果的可视化[J].计算机辅助设计与图形学学报. 2003, 15(12): 1561-1565
    [138]刘永军,李宏男,林皋.有限元计算结果可视化显示[J].大连理工大学学报. 2002, 42(6): 728-731
    [139]王璋奇,安利强,王孟.有限元分析结果的可视化处理方法[J].工程图学学报2002, (1): 72-77
    [140]杨晓松.三维有限元数据场可视化技术研究与实现[D]:[博士学位论文].大连:大连理工大学, 2000
    [141]李建波,林皋,陈健云.简便精确的有限元后处理可视化算法研究[J].大连理工大学学报. 2005, 45(1): 102-107
    [142] Lee S Y, Lee S, Nishido S. Development of a new simulation method of mold filling based on a body-fitted coordinate system[J]. Cast Metals. 2002, 15(4): 389-393
    [143] Marshall R E, Kempf J L, Scott D D. Visualization methods and simulation steering a 3D turbulence model of lake Erie[J]. Computer Graphics. 1990, 24(2): 89-97
    [144]詹梅,刘郁丽,杨合.三维有限元模拟等值线生成的新方法[J].重型机械. 2000, (1): 36-38
    [145]蒋健明,周迪斌,胡斌.矢量可视化研究现状综述[J].科技通报. 2010, 26(4): 611-616
    [146]李延芳.基于Clifford傅立叶变换的流场可视化[D]:[硕士学位论文].无锡:江南大学, 2008
    [147] Wickens C D, Merwin D H, Lin E L. Implication of graphics enhacements for the visualization of scientitle data[J]. IEEECG&A. 36(3): 44-61
    [148] Ward M O. A Taxonomy of Glyph Placement Strategies for Multidimensional Data Visualization[J]. Information Visualization. 2002, 1(1): 194-210
    [149] Wittenbrink C M, Pang A T, hxtha S K. Glyphs for Visualizing Uncertainty in Vector Fields[J]. IEEE Transactions on Visualization and Computer Graphics. 1996, 2(3): 266-279
    [150] Robert S L. Interactive 3D Flow Visualization Based on Textures and Geometric Primitives [D]:[Doctor]. Vienna,Austria: Vienna University of Technology, 2004
    [151]吴晓莉.面向空间遥科学实验的流场可视化技术研究[D]:[博士学位论文].长沙:国防科学技术大学, 2007
    [152]崔加胜.流线可视化技术的研究与应用[D]:[硕士学位论文].镇江:江苏大学, 2008
    [153] Boucheny C. A Perceptive Evaluation of Volume Rendering Techniques[J]. ACM Transactions on Applied Perception. 2008, 5(4): 83-90
    [154]袁政强,张志刚,杨佑发.三维有限元结果数据在切割面上的图形可视化[J].重庆大学学报(自然科学版). 2005, 28(9): 102-104
    [155]王宝山.煤矿虚拟现实系统三维数据模型和可视化技术与算法研究[D]:[博士学位论文].郑州:解放军信息工程大学, 2006
    [156]杨小辉,方宗德,杨青.基于剖面的三维有限元可视化方法研究[J].计算机工程与应用. 2005: 68-70
    [157]梁振光,唐任远.电磁场有限元结果的剖切显示[J].电机与控制学报. 2004, 8(3): 242-246
    [158]张晶王,索文超,徐大平.基于统计能量分析法的船艇机舱舱室噪声仿真[J].装甲兵工程学院学报. 2006, 20(1): 58-62
    [159]俞孟萨吴.舰船声弹性及声辐射理论研究概述[J].船舶力学. 2008, 12(4): 669-676
    [160] Wu Y S, Ni Q J, Ge W Z. Advances in technology of high performance ships in China[J]. Journal of Ship Mechanics. 2008, 12(6): 1014-1031
    [161] Wu Y S. Hydroelasticity of floating bodies [D]:[Doctor]: Brunel University, 1984
    [162] Tian Chao, Wu Y S. Numerical Predictions on the Hydroelastic Responses of A Large Bulker in Waves[C]. Proceedings of the 5th International Conference on Hydroelasticity in Marine Technology, University of Southampton, UK, 2009,205-213
    [163] Lin J, Shi L, You G. The Method for Evaluating the Design Wave Loads on SWATH Ship[J]. Shipbulding of China. 2008, 49(3): 104-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700