用户名: 密码: 验证码:
蒸汽型双效溴化锂吸收式热泵机组性能及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴化锂吸收式热泵技术在回收电厂余热、提高电厂的能源利用率和降低温室气体排放量等方面有着不可替代的优势。同时,溴化锂吸收式热泵机组作为空调冷热源时,破坏臭氧层潜能ODP(Ozone-depleting Potential)和地球温升潜能GWP(Global Warming Potential)为零,而且夏季可平衡电力负荷,冬季可回收低温余热、提高机组供热效率。因此,吸收式热泵技术对充分利用废热,优化能源利用结构和实现可持续发展起到不可估量的作用。在此研究背景下,本文对蒸汽型双效溴化锂吸收式热泵机组性能及优化进行了研究。
     首先,通过对蒸汽型双效溴化锂吸收式热泵机组内8个主要换热设备进行热力和传热分析,建立了吸收式热泵机组制冷名义工况、制冷部分负荷工况、制热名义工况和制热部分负荷工况数学模型。由于该数学模型中溴化锂溶液状态点温度和温度取值范围相互制约,采用基于内部映射牛顿法的子空间置信域法进行约束非线性最小求解。
     其次,为了验证蒸汽型双效溴化锂吸收式热泵机组数学模型,设计制造出样机,并对蒸汽型双效溴化锂吸收式热泵样机制冷、制热性能及主要溶液状态点热力参数进行了测试。通过比较模拟结果与测试结果,表明建立的蒸汽型双效溴化锂吸收式热泵机组数学模型是正确的。
     再次,利用蒸汽型双效溴化锂吸收式热泵机组数学模型,对四种不同运行模式下机组制冷、制热工况部分负荷性能进行了模拟分析。结果表明,采用冷(热)水进口温度为调节信号,热源蒸汽量与溶液循环量组合式调节法进行冷(热)量调节时,机组性能最优,其中机组制冷部分负荷工况性能系数最高达1.7以上,机组制热部分负荷工况性能系数最高可达2.77。
     然后,通过分析蒸汽型双效溴化锂吸收式热泵机组内8个主要换热设备的设计传热温差对机组总传热面积和机组性能的影响,以全生命周期成本LCC(Life Cycle Costs)和均值全年费用EUAC(Equivaltent Uniform Annual Costs)为优化目标函数,对机组进行了热经济性优化分析。
     最后,根据热电厂中余热资源条件和用户冷、热需求的特点,介绍了两种蒸汽型双效溴化锂吸收式热泵回收低温余热的应用方式,并以天津市某热电厂辅助建筑的空调冷热源改造工程为例,对蒸汽型双效溴化锂吸收式热泵机组作为空调冷热源方案进行了经济、节能分析。结果表明,改造后空调冷热源方案具有较好的经济效益和环保节能效益,在热电厂中可以起到很好的示范作用。
Water-lithium bromide absorption heat pump technology has a large potential for waste heat recovery, improving energy efficiency and reducing greenhouse gas emissions. As cooling and heating plant, both ozone-depleting potential (ODP) and global warming potential (GWP) of absorption heat pump are zero, and it can not only balance electric load in summer, but also recoer waste heat in winter. So absorption heat pump technology plays an invaluable role in waste heat recovery, optimization energy structure and sustainable development. For this, performance and optimization of steam operated double effect Water-lithium bromide absorption heat pump are studied in this thesis.
     Firstly, according to thermodynamic and heat transfer analysis of eight main heat exchangers of absorption heat pump, coupled simulation models of steam operated double effect lithium bromide absorption heat pump were built at cooling nominal condition, cooling part load condition, heating nominal condition and heating part load condition. Due to their complexity and mutual restraint between lithium bromide solution temperature and concentration range, they were sloved using the subspace trust region method based on Newton.
     Secondly, due to validate the simulation models a steam operated double effect water-lithium bromide absorption heat pump was designed and a test rig was established to measure the performances of absorption heat pump and the thermodynamic paramenters of its main solution state points. And the accuracy of the predictions was confirmed by the good agreement with experimental data. Thirdly, the performances of double effect water-lithium bromide absorption heat pump were evalutated at the cooling part load, heating nominal and heating part load conditions in four different operational modes. The results show that its part load performance is the best when chilled (hot) water inlet temperature keeps constant and the adjustment method of combine solution circulation rate with steam rate was used. The highest cooling coefficient of performance is 1.7 and the highest heating coefficient of performance gets to 2.77.
     Fourthly, steam operated double effect water-lithium bromide absorption heat pump system is evaluated to identify the effects of heat transfer temperature differences of eight main heat exchangers at design conditions on its total heat transfer area and its performances. Based on the evaluation results, thermoeconomic optimization analysis was present to optimize the absorption heat pump, aimed at minimizing its life cycle costs (LCC) and equivalent uniform annual costs (EUAC).
     Finally, due to the waste heat resources and cooling/heating demand in thermal power plant, two different mode of steam operated double effect water-lithium bromide absorption heat pump for waste heat recovery were introduced.And steam operated double effect water-lithium bromide absorption heat pump as air conditioning cooling and heating plant was analyzed in an auxiliary building of thermal power plant in Tianjin. The results reveal that absorption heat pump as heating and cooling plant is with economic and environmental benefits, and it can be a good example in thermal power plants.
引文
[1]《中国电力年鉴》编缉委员会.中国电力年鉴2009[J].中国电力出版社,2009.
    [2]贺平,孙刚.供热工程[M].北京:中国建筑工业出版社,2004,280-283.
    [3]张金鳞.天津市热电联产新能源战略研究[D].天津:天津大学,2004.
    [4]仝庆居,王学敏.锅炉烟气余热回收利用技术[J].工业技术,2009,18:71.
    [5]郭继平.利用电厂余热的水环热泵系统设计与研究[D].大连:大连理工大学,2003.
    [6]刘颖超.基于循环经济理念的电厂余热利用空调系统研究[D].保定:华北电力大学,2008.
    [7]王枫.电厂循环水余热利用方案的研究[D].保定:华北电力大学,2009.
    [8]韩吉才.吸收式热泵技术在热电联供中的应用研究[D].青岛:中国石油大学(华东),2009.
    [9]吕太,刘玲玲.热泵技术回收电厂冷凝热供热方案研究[J].华北电力大学学报, 2011,31(1):6-10.
    [10]柳立慧.吸收式热泵余热回收技术原理及在热电厂中的应用[J].新疆电力技术, 2011,2:64-65.
    [11]蒋开国.锅炉烟气的余热回收与利用[J].湖南城市学院学报,2007,16(2):28-30.
    [12]王健.热电厂锅炉烟气余热利用[J].能源研究与利用,2011,1:36-38.
    [13]薛馨.利用相变储能储存发电厂尾部烟气余热设计[J].应用技术,2011,8: 125-130.
    [14] Lazzarin R.M, Gasparella A. New ideas for energy utilisation in combined heat and power with cooling [J].Applied Thermal Engineering, 1997,5(17):479-500.
    [15]中国能源网考察团.关于美国校园燃气轮机热电厂情况的介绍[EB/OL]. http://www.china5e.com.
    [16] Gianfranco Chicco, Pierluigi Mancarellaa. Trigeneration primary energy saving evaluation for energy planning and policy development [J]. Enegy Police, 2007, 35 (12):6132-6144.
    [17]徐建华.热电冷联供系统的综合分析[D].青岛:中国石油大学(华东),2006.
    [18] Wu D W, Wang R Z. Combined cooling heating and power: A review [J]. Progress in Energy and Combustion Science, 2006,32(5):459-495.
    [19]朱成章.从热电联产走向冷热电联产[J].国际电力,2000,4(2):10-12.
    [20]吴子斌.我国热电冷三联供发展对策研究[D].大连:大连理工大学,2000.
    [21] Satoshi Gamou, Ryohei Yokoyama, Koichi Ito. Optional unit sizing of cogeneration systems in consideration of uncertain energy demands as continuous random variables [J]. Energy Conversion and Management, 2002,9(43):1349– 1361.
    [22]张万坤.楼宇冷热电联产系统(BCHP)的优化配置及其最优运行分析[D].上海:上海交通大学,2003.
    [23]张士杰,李宇红,叶大均.燃机热电冷联供自备电站优化配置研究[J].中国电机工程学报,2004,24(10):183-188.
    [24] Yunho Hwang. Potential energy benefits of integrated refrigeration system with microturbine and absorption chiller [J]. International Journal of Refrigeration, 2004, 8(27):816-829.
    [25]刘莉,黄锦涛,丰镇平.100kW微型燃机冷热电联产的经济性分析[J].工程热物理学报,2004,25(6):909-912.
    [26]皇甫艺,吴静怡,王如竹,等.冷热电联产CCHP综合评价模型的研究[J].工程热物理学报,2005,26(增刊):13-16.
    [27] Heejin Cho, Pedro J. Mago, Rogelio Luck,et al. Evalutaion of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme [J]. Applied Energy, 2009, 86:2540-2549.
    [28]董磊.冷热电联产系统运行优化与分析评价研究[D].大连:大连理工大学,2010.
    [29]杨承,杨泽亮,蔡睿贤.基于全工况性能的冷热电联产系统效率指标比较[J].中国电机工程学报,2008,28(2):8-13.
    [30] Kong X Q, Wang R Z, Wu J Y. Experimental investigation of a micro-combined cooling, heating and power system driven by a gas engine [J]. International Journal of Refrigeration, 2005,28(7):977-987.
    [31]冯志兵,金红光.燃气轮机冷热电联产系统与蓄能变工况特性[J].中国电机工程学报,2006,26(4):25-30.
    [32]辛长平.溴化锂吸收式制冷机实用教程[M].北京:电子工业出版社,2004.
    [33]钟理,严益群,谭盈科.水/二甘醇两级升温吸收式热泵的性能模拟[J].Energy Research and Information, 1997, 13 (3):30-34.
    [34]张为人,赵宗昌.回收工业废热的吸收式热转换器技术.节能,2005,2:11-15.
    [35] Keay D A. Heat pump research and development in USA [J]. Heat Recovery System,1983,3(3):165.
    [36] Christian Keil, Stefan Plura, Michael Radspieler, et al. Application of customized absorption heat pumps for utilization of low-grade heat sources [J]. Applied Thermal Engineering, 2008, 28:2070-2076.
    [37]张世刚,付林,李世一,等.赤峰市基于吸收式换热的热电联产集中供热示范工程[J].暖通空调HV&AC,2010,40(11):71-75.
    [38] Vincenzo Tufano. On the performance of absorption heat pump-transformer [J]. Heat Recovery System & CHP, 1995,15(4):327-332.
    [39] S.Jeong, B.H.Kang, S.W. Karng. Dynamic simulation of an absorption heat pump for recovering low grade waste heat [J]. Applied Thermal Engineering, 1998, 18: 1-12.
    [40] Greiter, C. Schweigler, G. Alefeld, et al. 500kW absorption heat pump for heating at two temperature levels: Experience of the first heating season [C] // Proceeding of the International Absorption Heat Pump Conference,New Orleans, LA, USA, 2003,31:85–92.
    [41] Gustavo R. Figueredo, Mahmoud Bourouis, Alberto Coronas. Thermodynamic modeling of a two-stage absorption chiller driven at two-temperature levels [J]. Applied Thermal Engineering, 2008,28:211-217.
    [42]姜秀华.双模式运行的第一类吸收式热泵的工艺研究[D].青岛:中国石油大学(华东),2007.
    [43] Magnus Hultén, Thore Berntsson. The compression/absorption heat pump cycle- conceptual design improvements and comparisons with the compression cycle [J]. International Journal of Refrigeration, 2002,25:487-497.
    [44] Prasanta Kumar Satapathy, M. Ram Gopal, R.C. Arora. Studies on a compression- absorption heat pump for simultaneous cooling and heating [J]. International Journal of Energy Research, 2004,28:567-580.
    [45] M. Jelinek, A. Levy, I. Borde. Performance of a triple-pressure level absorption/ compression cycle [J]. Applied Thermal Engineering, 2011(on line):1-4.
    [46] G. P. Xu, Y. Q. Dai, K.W.Tou, et al. Theoretical analysis and optimization of a double-effect series-flow-type absorber chiller [J]. Applied Thermal Engineering, 1996, 16(12):975-987.
    [47] G. P. Xu, Y.Q. Dai. Theoretical analysis and optimization of a double-effect parallel-flow-type absorption chiller [J]. Applied Thermal Engineering, 1997, 17(2):157-170.
    [48]刘婷婷.空调制冷机组的运行参数和负荷分配方案的优化[D].天津:天津大学, 2007.
    [49] Chen Lingen, Qin Xiaoyong, Sun Fengrui. Irreversible absorption heat-pump and its optimal performance [J]. Applied Energy, 2005,81:55-71.
    [50]黄跃武,孙德兴.四热源吸收式热泵的传热面积优化[J].太阳能学报,2003,24 (4) :488-482.
    [51] Gebreslassie, Berhane H, Medrano Marc. Optimum heat exchanger area estimation using coefficients of structural bonds: Application to an absorption chiller [J]. International Journal of Refrigeration, 2010, 33:529-537.
    [52] M.de Vega, J.A. Almendros-Iba?ez, G. Ruiz. Performance of a LiBr-water absorption chiller operating with plate heat exchangers [J]. Energy Conversion and Management, 2006,47:3393-3407.
    [53]邱中举.溴化锂吸收式热泵系统的研究[D].杭州:浙江大学,2011.
    [54] Ali Kodal, Bahri Sahin, Ismail Ekmekci, et al. Thermoeconomic optimization for irreversible absorption refrigerators and heat pumps [J]. Energy Conversion and Management, 2003,44:109-123.
    [55] Bahri Sahin, Ali Kodal. Finite time thermoeconomic optimization for endoreversible refrigerators and heat pumps [J]. Energy Conversion and Management, 1999,44:951-960.
    [56] R.D. Misra, P.K. Sahoo, A. Gupta. Thermoeconomic optimization of a LiBr/H2O absorption chiller using structural method [J]. Journal of Energy Resources Technology, 2005, 127:119-124.
    [57] R.D. Misra, P.K. Sahoo, A. Gupta. Thermoeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system [J]. International Journal of Refrigeration, 2005,28:331-343.
    [58] Berhane H. Gebreslassie, Gonzalo Guillén-Gosálbez,Laureano Jiménez, et al. Economic performance optimization of an absorption cooling system under uncertainty [J]. Applied Thermal Engineering, 2009,29:3491-3500.
    [59] J.Mitrovic. Influence of tube spacing and flow rate on heat transfer from a horizontal tube to a falling liquid film [C] // Proceedings of the Eighth International Heat Transfer Conference, San Francisco, USA, 1986,4:1949-1956.
    [60] X. Hu, A.M. Jacobi. The intertube falling film: Part1- flow characteristics, mode transitions, and hysteresis [J]. Journal of Heat Transfer, 1996,118:616-625.
    [61] X. Hu, A.M. Jacobi. The intertube falling film: Part2- Mode effects on sensible heat transfer to a falling liquid film [J]. Journal of Heat Transfer, 1996,118:626- 633.
    [62] J.F. Roques, V. Dupont, J. R. Thome. Falling film transitions on plain and enhanced tubes [J]. Journal of Heat Transfer, 2002,124:491-499.
    [63] Jean-Francois Roques, John R. Thome. Falling film transitions between droplet, column, and sheet flow modes on a vertical array of horizontal 19fpi and 40fpi low-finned tubes [J]. Heat Transfer Engineering, 2003, 24(6):40-45.
    [64]王书中.水平管束降膜动力学与界面吸收性能实验研究[D].天津:天津大学,2007.
    [65] S.Hari, T.Takagi, K.Tanaka, T.Higashiya. Turbulent heat transfer to the flow in a concentric annulus with a rotating inner cylinder [J]. Journal of Flow Visualization Society Japan, 1984,4:895-901.
    [66] A.M.I. Mohamed. Flow behavior of liquid film on a horizontal rotating tube [J]. Experimental Thermal and Fluid Science, 2007,31(4):325-332.
    [67] V.E. Nakoryakov, N.I. Grigoryeva. Combined heat and mass transfer during absorption in drops and films [J]. Journal of Engineering physics, 1977, 32 (3) :243-247.
    [68] N.I. Grigoryeva, V.E. Nakoryakov, Exact solution of combined heat and mass transfer problems during film absorption [J]. Journal of Engineering physics, 1977; 32(5):1349-1353
    [69] G. Grossman. Simultaneous heat and mass transfer in film absorption under laminar flow [J]. International Journal of Heat and Mass Transfer, 1983; 26 (3):357-371.
    [70] G. Grossman. Analysis of interdiffusion in film absorption [J]. International Journal of Heat and Mass Transfer, 1987; 30(1):205-208.
    [71] Md. Raisul Islam, N.E. Wijeysundera, J.C. Ho. Evaluation of heat and mass transfer coefficients for falling-films on tubular absorbers [J]. International Journal of Refrigeration, 2003, 26:197-204.
    [72] Nitin Goel, D. Yogi Goswami. Analysis of a counter-current vapor flow absorber [J]. International Journal of Heat and Mass Trasfer, 2005, 48: 1283-1292.
    [73] Papia Sultana, N.E. Wijeysundera, J.C. Ho, et al. Modeling of horizontal tube-bundle absorbers of absorption cooling systems [J]. International Journal of Refrigeration, 2007, 30:709-723.
    [74] M.J. Kirby, H. Perez-Blanco. A design model for horizontal tube water/lithium bromide absorbers [J]. ASME Heat Pump and Refrigeration Systems Design, Analysis and Applications, 1994, 32:1-10.
    [75] Icksoo Kyung, Keith E. Herold, Yong Tae Kang. Experimental verification of H2O/LiBr absorber bundle performance with smooth horizontal tubes [J]. International Journal of Refrigeration, 2007, 30:582-590.
    [76]汪磊磊.高效溴化锂吸收式制冷循环及吸收器热质传递研究[D].天津:天津大学,2010.
    [77] Victor Manuel Soto Frances, Jose Manuel Pinazo Ojer. Validation of a model for the absorption process of H2O by a LiBr in a horizontal tube bundle, using a multi-factorial analysis [J]. International Journal of Heat and Mass Transfer, 2003, 46:3299-3312.
    [78]汪磊磊,由世俊,张欢,等.水平管束降膜吸收的多因子实验研究[J].中国科技论文在线,200907-132.
    [79] Y. Nagaoka, N. Nishiyama, K. Ajisaka, et al. Study on heat transfer tubes for an absorber of the absorption refrigerator [C] // 2nd Report Proc 24th Nat Heat Transfer Symposium, Japan, 1987:507-509.
    [80] J.I.Yoon, E.Kim, K.H. Choi,et al. Heat transfer enhancement with a surfactant on horizontal bundle tubes of an absorber [J]. International Journals of Heat and Mass Transfer, 2002, 45(4):735-741.
    [81] F.Cosenza, G.C. Vliet. Absorption in falling film water/LiBr films on horizontal tubes [J]. ASHRAE Transactions, 1990,96:693-701.
    [82] L.Hoffmann. Experimental investigation of heat transfer in a horizontal tube falling film absorber with aqueous solutions of LiBr with and without surfactants [J]. International Journal of Refrigeration, 1996, 19(5):331-341.
    [83] Gherhardt Ribatski, Anthony M. Jacobi. Falling-film evaporation on horizontal tubes-a critical review [J]. International Journal of Refrigeration, 2005; 28(5): 635-653.
    [84] Mitrovic J. Influence of tube spacing and flow rate on heat transfer from a horizontal tube on a falling liquid film [C] // Proceeding of 8th International Heat Transfer Conference, San Francisco, USA, 1986,4:1949-1956.
    [85] M.-C. Chyu and A.E. Bergles, An analytical and experimental study of falling-film evaporation on a horizontal tube [J]. Journal of Heat Transfer, 1987; 109:983-990.
    [86] Fujita. Y. and Tsutsui. M. Evaporation heat transfer of falling films on horizontal tube. 1. Analytical study [J]. Heat Transfer-Japanese Research, 1995; 24:1-16.
    [87] Fujita. Y. and Tsutsui. M. Evaporation heat transfer of falling films on horizontal tube. 2. Experimental study [J]. Heat Transfer- Japanese Research, 1995; 24:17-31.
    [88] Zhen-Hua Liu, Qun-Zhi Zhu, Yu-Ming Chen. Evaporation Heat Transfer of Falling Water Film on a Horizontal Tube Bundle [J]. Heat Transfer-Asian Research, 2002, 31(1):42-55.
    [89] R. Armbruster, J. Mitrovic. Heat transfer in falling film on a horizontal tube [C] // Proceedings of the national heat transfer conference, 1995; 314:13-21.
    [90] W. Nusselt. Die Oberfl?chenkondensation des Wasserdampfes [J]. Zeitschrift des Vereins deutscher Ingenieure, 60(27 and 28): 1916, 541–546 and 569–575.
    [91] K.O. Beatty, D.L. Katz. Condensation off vapors on outside of finned tubes [J]. Chemical Engineering Progress, 1948,44(1):55–70.
    [92] R. Gregorig. Film condensation on finely rippled surface with consideration of surface tension [J]. Zeitschrift für angewandte Mathematik und Physik, 1954,5:36-49.
    [93] V.A. Karkhu, V.P. Borovkov. Film condensation of vapor at finelyfinned horizontal tubes [J]. Heat Transfer-Soviet Research, 1971,3(2):183-191.
    [94] D.L. Katz, J.M. Geist. Condensation on six finned tubes in a vertical row [J]. Transaction of ASME, 1948,70:907–914.
    [95] H. Honda, B. Uchima, S. Nozu, et al. Condensation of downward flowing R-113 vapor on bundles of horizontal smooth tubes [J]. Heat Transfer-Japanese Research, 1989,18(6):31-52.
    [96] H. Honda, H. Takamtsu, K. Kim. Condensation of CFC-11 and HCFC-123 in in-line bundles of horizontal finned tubes: Effect of fin geometry [J]. Journal of Enhanced Heat Transfer, 1994,1(2): 197–209.
    [97] H. Honda, H. Takamatsu, and N. Takada. Condensation of HCFC-123 in bundles of horizontal finned tubes: Effects of fin geometry and tube arrangement [J]. International Journal of Refrigeration, 1996,19(1):1–9.
    [98] Tomasz M. Mróz. Thermodynamic and economic performance of the LiBr-H2O single stage absorption water chiller [J]. Applied Thermal Engineering, 2006, 26 : 2103-2109.
    [99]胡金强,王如竹,夏再忠,等.溴化锂燃气空调实际运行性能与分析[J].太阳能学报,2009,30(4):470-474.
    [100]张世刚,付林,李辉,等. BCHP系统中吸收式热泵性能模拟[J].太阳能学报, 2007,28(1):1-6.
    [101]周一芳.空调用直燃型吸收式制冷机的年部分负荷能耗系数计算分析[J].制冷与空调,2008,22(3):110-113.
    [102] Cheng Zhuoming, Cui Xiaoyu, Li Meiling. Application of PRNN in dynamic modeling of absorption chiller[C] // Proceeding of the International Conference on Energy and the Environment, Shanghai, China, 2003: 1435-1438.
    [103] H.J. Manohar, R. Saravanan, S. Renganarayanan. Modelling of steam fired double effect vapour absorption chiller using neural network [J]. Energy Conversion and Management, 2006, 47: 2202-2210.
    [104] T.T.Chow, G.Q.Zhang, Z.Lin, et al. Global optimization of absorption chiller system by genetic algorithm and neural network [J]. Energy and Buildings, 2002, 34:103-109.
    [105]张晓晖,伍金泉.吸收式制冷机特性规律研究[J].机械工程学报, 2010, 46 (2): 119 -125.
    [106] Y. Kaita. Simulation results of triple-effect absorption cycles [J]. International Journal of Refrigeration, 2002, 25:999-1007.
    [107] Siyoung Jeong, Srinivas Garimella. Falling-film and droplet mode heat and mass transfer in a horizontal tube LiBr/water absorber [J]. International Journal of Heat and Mass Transfer, 2002(45):1445-1458.
    [108]高田秋一.吸收式制冷机[M].北京:机械工业出版社, 1985.
    [109]郑玉清,吴进发,耿慧彬.两效溴化锂吸收式制冷机及应用[M].北京:机械工业出版社, 1990.
    [110] Thomas F. Coleman, Yuying Li. On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds [J]. Mathematical Programming, 1994, 67: 189-224.
    [111]中国机械工业联合会.GB/T 18431-2001蒸汽和热水型溴化锂吸收式冷水机组[S].北京:中国标准出版社, 2001.
    [112]张小松,夏鸗,K.T. Chan.风冷冷水机组部分负荷运行时的节能优化运行策略与节能分析[J].暖通空调HV&AC,2004,34(2):78-82.
    [113]赵伟,周德海,石文星.多联机空调系统的性能域[J].暖通空调HV&AC,2010, 40(7):98-102.
    [114] Luca Cecchinato. Part load efficiency of packaged air-cooled water chillers with inverter driven scroll compressors [J]. Energy Conversion and Management, 2010, 51: 1500-1509.
    [115] F.W. Yu, K.T. Chan. Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control [J]. Building and Envrionment, 2007, 42: 3816-3829.
    [116]张里千,张建方.多因素最优化的重大突破—简记正交表方法的发展史(上半篇)[J].数理统计与管理,1998,17(1):31-37.
    [117]夏镇,饶若楠.一种基于正交表的功能组合测试设计方法[J].微型电脑应用, 2007, 23 (3):3-9.
    [118]万海清,彭友林.正交表在经典试验统计中的功用[J].湖南农业科学,1998,4: 31-33.
    [119]付建勋.用正交表优化实验[J].焦作大学学报,2005,3:71-72.
    [120]中国机械工业联合会.GB/T18362-2008.直燃型溴化锂吸收式冷(温)水机组[S].北京:中国标准出版社,2008.
    [121]白宁,丁元华.基于全生命周期成本理论的项目可行性研究的节能分析[J].工程项目管理,2009,3:112-115.
    [122]孟敬,孙金颖.民用节能建筑全生命周期成本分析与管理[J].低温建筑技术, 2004,4:128-129.
    [123]刘伟.绿色建筑生命周期成本分析研究[D].重庆:重庆大学建设管理与房地产学院,2006.
    [124]王沣浩,张文,张道.集中式与分散式地源热泵系统的生命周期成本评价[J].建筑科学,2007,23(10):32-35.
    [125]马明珠,张旭.空调冷热源生命周期成本评估[J].煤气与热力,2008,28(6):32-35.
    [126]王会鹏.基于变负荷的地源热泵土壤温度模拟研究[D].天津:天津大学,2010.
    [127]房华荣.基于寿命周期成本(LCC)的暖通空调方案选择的应用研究[D].长安:长安大学,2008.
    [128]李秋生.住宅用水源热泵中央空调机组动态特性研究及能耗分析[D].天津:天津大学,2004.
    [129]潘毅群,吴刚,Volker Hartkopf.建筑全能耗分析软件EnergyPlus及其应用[J].暖通空调,2004,34(9):2-9.
    [130]中国建筑科学研究院,中国建筑业协会建筑节能专业委员会.GB50189-2005公共建筑节能设计标准[S].北京:中国建筑工业出版社,2005.
    [131]中国有色工程设计研究总院.GB50019-2003采暖、通风与空气调节设计规范[S].北京:中国计划出版社,2003.
    [132] 2010中国区域电网基准线排放因子[R].中国发展改革委气候司,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700