用户名: 密码: 验证码:
耐高压高速开关电—机械转换器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的日益完善和广泛应用,电液数字控制技术已成为机械行业实现机电一体化的一种重要手段,是实现对液压系统高速、高精度控制的理想方法之一,已广泛应用于国防及民用如航空航天、汽车、冶金、武器控制、农业机械和工程机械等领域。其中,高速开关电—机械转换器是其核心技术。高速开关电—机械转换器可直接与微机相连而无需D/A转换装置,与传统的伺服阀和比例阀阀用电—机械转换器相比,具有结构简单、工艺性好、成本低、抗污染能力强、重复精度高、工作稳定可靠、能耗低等优点,目前已成为电—机械转换器的一个研究热点。对耐高压高速开关电—机械转换器的研究,能够提高电液数字控制系统的整体性能指标,更好地满足生产生活需要,进而推动相关领域理论、技术和装备的发展。
     论文以耐高压高速开关电—机械转换器为研究对象,采用理论分析、数值仿真和实验研究相结合的方法,对耐高压高速开关电—机械转换器关键技术进行了系统、深入的研究。基于耐高压动铁式高速开关电—机械转换器,对大行程时的吸合性能和释放性能综合考虑,分析了动态过程中的磁路变化,探讨了主要结构参数对静、动态特性的影响,完成了平面形磁极和圆锥形磁极耐高压大行程高速开关电—机械转换器的研制,仿真与实验表明这两种耐高压大行程高速开关电—机械转换器因匹配不同的负载弹簧特性以适用不同的工作行程;针对导磁套一体式耐高压高速开关电—机械转换器漏磁的问题,提出了永磁屏蔽式耐高压高速开关电—机械转换器的结构方案,并进行了仿真分析和实验研究,结果表明,采用永磁屏蔽策略可形成永磁磁通和线圈磁通相互约束的磁场状态,从而在减少漏磁的同时避免永磁体极化磁通的自锁力问题,能有效地增加电磁力并大幅提升吸合性能;作为应用的实例,将耐高压高速开关电—机械转换器应用于电液振动冲击系统,从而用高速开关阀替代了原系统所用的电液伺服阀,仿真与实验表明新系统性能满足设计要求,降低了成本。
     有关各章内容分述如下:
     第一章,从电液数字控制和高速开关阀技术应用的角度出发,探讨了高速开关电—机械转换器关键技术的研究进展,分析总结了阀用电—机械转换器的结构和高速响应特点以及发展趋势。
     第二章,介绍了电—机械转换器的作用、分类及结构特点;针对广泛应用的耐高压动铁式高速开关电—机械转换器,介绍了其典型结构、工作原理和性能指标;建立了电—机械转换器的动态数学模型,围绕电磁力的计算,分别介绍了磁路分析法和有限元分析法,并指出它们的各自特点和应用场合;通过仿真深入研究了高速开关电—机械转换器的动态特性,阐明了动态过程的进行规律和分析设计方法。
     第三章,研制了平面形磁极和圆锥形磁极耐高压大行程高速开关电—机械转换器,详细分析了其结构与工作原理;针对大行程的工作特点,结合磁路分析法和有限元分析法,分析了动态过程中的磁场/磁路变化以及磁场/磁路变化对静、动态特性的影响,阐述了结构参数的作用机理,明确了两种耐高压大行程高速开关电—机械转换器的具体结构参数值;介绍了静态特性测试系统和动态特性测试系统的原理、组成和实验方法;基于搭建的静、动态特性实验系统,实验研究了这两种电—机械转换器,并与仿真结果进行了对比。
     第四章,提出并介绍了新型永磁屏蔽式耐高压高速开关电—机械转换器的结构和工作原理,采用磁路分析和有限元仿真相结合的方法,探讨了其主要结构参数对静、动态特性的影响;阐述了电磁铁动态过程的功能转换分析和导磁套受压的失效形式,利用有限元工具分别进行了温升分析和强度分析,结果表明均在许可范围内;搭建了静、动态特性实验系统,进行了实验研究,并与仿真结果进行了对比;与导磁套一体式耐高压高速开关电—机械转换器进行了对比实验,结果验证了永磁屏蔽策略的有效性。
     第五章,作为耐高压高速开关电—机械转换器的应用实例,研制了基于高速开关阀的电液振动冲击系统,并应用于剁挫机;建立了耐高压高速开关电—机械转换器、高速开关阀和电液振动冲击系统的仿真模型,通过仿真获得其静、动态特性,并探讨了耐高压高速开关电—机械转换器的性能对电液振动冲击系统的影响;建立了冲击能测试系统,获得了基于高速开关阀的电液振动冲击系统的冲击力实验结果,并进行了实验研究和仿真对比。
     第六章,概况了全文的主要研究工作和成果,并展望了今后需要进一步研究的工作和方向。
With increasingly sophisticated and extensively used computer technology, the digital electro-hydraulic control technology becomes an important mean for achieving electro-mechanical machinery industry and is widely used in many sections of national economy and social surroundings, such as aerospace, automotive, metallurgy, arms control, agricultural machinery, and construction machinery, due to its advantages of high-speed, high-precision control of hydraulic systems. The high-speed on-off electro-mechanical converter is the core technology. Compared with the conventional converters for servo valves or proportional valves, the high-speed on-off electro-mechanical converters can be directly connected with the computer without the need for D/A converters and has the advantages of low cost, easy processing, strong anti-pollution, high repeatability, high stability, high reliability, and low energy consumption. So the high-speed on-off electro-mechanical converter has come to a hot topic of researches on the electro-mechanical converters. Researches on high-pressure high-speed on-off electro-mechanical converters would improve the overall performance index of digital electro-hydraulic control systemes and promote the theory, technology and equipment of related areas, to better meet the ever-increasing productions and livings.
     Based on theory analysis, numerical simulation and experimental study, the key technologies of high-pressure high-speed on-off electro-mechanical converters are systematically, deep researched in the thesis. Based on the research of moving-iron high-pressure high-speed on-off electro-mechanical converters, taking comprehensive consideration of closing performance and opening performance for long stroke condition, analyzing the dynamic process of magnetic changes, discussing the influence of structural parameters on the static and dynamic characteristics, and developing the planar-polar and conical-polar high-pressure high-speed on-off electro-mechanical converters are presented. And simulation and experimental results show that these two electro-mechanical converters match different characteristics of the spring load to apply to different working stroke. Aiming at the leakage problem of the single-piece high-pressure high-speed on-off electro-mechanical converters, a high-pressure high-speed on-off electro-mechanical converter with permanent magnet (PM) shielding is proposed, and the simulation analysis and experimental study are conducted. The results show that the PM shielding strategy can reduce the flux leakage, avoid self-locking force inherited from polarization of the permanent magnet flux, increase electromagnetic force, and enhance closing performance by forming a mutual constraint of the permanent magnet flux and the magnetic field coil flux. As an application instance, a high-pressure high-speed on-off electro-mechanical converter is applied to the electro-hydraulic vibration impact system, and the original servo valve is replaced by a high-speed on-off valve. And simulation and experimental results show that new system performance meets the design requirements with lower cost.
     The main content of each chapter is summarized as following:
     In chapter 1, from standpoints of the high-speed valves for the digital electro-hydraulic control technology, the research progress of the high-pressure high-speed on-off electro-mechanical converters is introduced. The structural and high-speed feature, development trend of the electro-mechanical converters for valves are summarized.
     In chapter 2, the function, classification and structural characteristics of electro-mechanical converters are described. Future, the typical structure, the working principle and performances of the widely used moving-iron high-speed on-off electro-mechanical converters are introduced. The dynamic mathematical model of electro-mechanical converters is established. Taking the calculation of electromagnetic force as the central task, the magnetic circuit analysis and finite element analysis are introduced. The characteristics and applicable fields of the two analytical methods are pointed out.
     In chapter 3, the planar-polar and conical-polar high-pressure high-speed on-off electro-mechanical converters are developed. Being conditional on long working stroke, the influences of dynamic process of magnetic field/magnetic field changes on the static and dynamic characteristics are analyzed as the design basis. By explaining the mechanism of structural parameters, the structure parameters of the two long working stroke electro-mechanical converters are specified. The principle, constitution and test methods of static and dynamic test systems are introduced. Based on the static and dynamic test systems, the static and dynamic characteristics of two long working stroke electro-mechanical converters are measured, and compared with simulation results.
     In chapter 4, the structure and working principle of the new high-speed on-off electro-mechanical converter with permanent-magnet (PM) shielding are proposed. Using combined methods of magnetic circuit analysis and finite element simulation, the influences of main structure parameters on static and dynamic characteristics are discussed. Based on the energy conversion relations in dynamic process and the failure mode under oil pressure, temperature and strength analyses are carried out using the finite element tools and results are all within the limits permitted. Compared the PM shielding type high-pressure high-speed on-off electro-mechanical converters with the single-piece type high-pressure high-speed on-off electro-mechanical converters, the experimental results verify the effectiveness of PM shielding strategy.
     In chapter 5. as an application instance of high-pressure high-speed on-off electro-mechanical converters, the electro-hydraulic vibration impact system based on high-speed valves is developed. The simulation models of the high-pressure high-speed on-off electro-mechanical converter, the high-speed valve, and the electro-hydraulic vibration impact system are established to obtain their static and dynamic characteristics. The influences of the high-pressure high-speed on-off electro-mechanical converter on the electro-hydraulic vibration impact system are conducted. Through the impact energy test system for the electro-hydraulic vibration impact system, the impact forces are measured and compared with the simulation results.
     In chapter 6, all achievements of the dissertation are summarized and the further research work is put forward.
引文
[1]程灿军,谭志强.电液数字控制系统在板带纠偏控制中的应用[c].2010钢材质量控制技术、形状、尺寸精度、表面质量控制与改善学术研讨会文集.中国北京:2010:71-75.
    [2]王西永.基于数字技术的无级变速器电液控制系统研究[D].吉林:吉林大学.2005.
    [3]降爱琴,郝秀芳.数字电液调节与旁路控制系统[M].北京:中国电力出版社.2006.
    [4]Sun Y. Lin Y G, Li W. et al. The Digital Soft Braking for Wind Turbine[C].2010 International Conference on E-Product E-Service and E-Entertainment, Henan. China:IEEE Computer Society.2010:1-6.
    [5]Wang J. Qin W. Gong G, et al. Several Key Technologies of Hydraulic System with High Flow and High Performance[J]. Journal of Zhejiang University (Engineering Science).2009.43(7):1264-1268.
    [6]Kim Y Y. Lee J T. Caton J A. The Development of a Dual-Injection Hydrogen-Fueled Engine with High Power and High Efficiency [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME.2006.128(1):203-212.
    [7]Lu Y X. New Challenges. New Chances. New Contributions-a Look Forward to the Future of Fluid Power Technology[C]. Proceedings of the Seventh International Conference on Fluid Power Transmission and Control ICFP'2009. Hangzhou:2009:1-3.
    [8]Lu Y X. A Systematic Philosophy Consideration On the Fluid Power Driven and Control Technology[C]. Proceedings of the Sixth International Conference on Fluid Power Transmission and Control ICFP' 2005, Hangzhou:2005:1-5.
    [9]贺娟,袁颂岳.高速开关阀控液压缸位置控制系统的H_∞控制[J].控制工程.2008,(S1):79-81.
    [10]周盛.液压自由活塞发动机运动特性及其数字阀研究[D].杭州:浙江大学,2006
    [11]金松.直动式电液数字伺服阀及其在位置伺服控制系统中的应用研究[D].杭州:浙江工业大学.2006.
    [12]Canter N. New Valve Technology Boosts Engine Performance[J]. Tribology and Lubrication Technology.2005.61(8): 14-16.
    [13]何谦,刘忠.高速开关阀的液压同步系统设计[J].制造技术与机床.2009,(01):142-143.
    [14]胡竟湘,李建军,钟定清.高速开关阀及其发展趋势[J].机电产品开发与创新.2009,(02):60-62.
    [15]王晓明,孙佳.单端封闭气缸的高速开关阀PWM控制系统[J].机床与液压.2008,(12):134-137.
    [16]胡竟湘,魏建华,滕辉.高速开关阀的控制及应用[J].矿业研究与开发.2008,(04):46-47.
    [17]吴万荣,孟莹,杨矗,等.基于AMESim的新型数字控制液压冲击器的仿真[J].机械制造与自动化.2008,(03):105-107.
    [18]明辉.汽车无级变速器数字式高速开关调压阀研究[D].吉林大学,2007.
    [19]汤展跃.高速开关阀控锥阀[D].长沙:中南大学.2006.
    [20]林锐.高速开关阀的研究及数字仿真[D].武汉:武汉理工大学,2005.
    [21]王茁,孙立宁,孟庆鑫,等.基于PWM高速开关阀控制的穿地龙机器人液压驱动系统的研究[J].液压与气动.2005,(05):40-42.
    [22]朱建公,文代明.高速开关阀流量调节的计算机控制方法研究[J].液压与气动.2005,(04):41-44.
    [23]江永泉,秦大同,杨亚联,等.基于高速开关阀控制的液压制动伺服系统研制[J].重庆大学学报(自然科学版).2005,(]2):19-22.
    [24]孟庆鑫,刘贺平,张岚,等.基于高速开关阀控制的液压冲击铲研究[J].机床与液压.2004,(10):152-154.
    [25]李玉贵,杨晓明,黄庆学,等.高速开关阀在高速带钢纠偏系统中的应用[J].山西机械.2000,(02):134-137.
    [26]刘少军,朱梅生.基于PWM高速开关阀的液压位置系统最优控制研究[J].机床与液压.2000,(02):79-81.
    [27]王会义,韩宏博,王广怀,等.液压高速开关阀位置控制系统在泵/马达上的应用研究[J].哈尔滨工业大学学报.1996,(02):59-64.
    [28]Park S H. Kitagawa A, Kawashima M. Water Hydraulic High-Speed Solenoid Valve-Part 1:Development and Static Behaviour[J]. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering. 2004,218(15):399-409.
    [29]Topcu E E, Yuksel I, Kamis Z. Development of Electro-Pneumatic Fast Switching Valve and Investigation of its Characteristics[J]. Mechatronics.2006,16(6):365-378.
    [30]Savtchkov A, Finken K H. Mank G. Development of a Fast Valve for Mitigating Disruptions in Tokamaks[J]. Review of Scientific Instruments.2002.73(10):3490-3493.
    [31]Liu S J. Zhu M S, Zhou J F. Optimal Control of Hydraulic Position System Employing High Speed On/Off Solenoid Valve[J]. Journal of Central South University of Technology.2000,7(1):46-48.
    [32]Zoppig V, Feindt K, Strohla T. et al. Fast Acting Switching Valves for Servopneumatics[C]. Advanced Intelligent Mechatronics,2003. AIM 2003. Proceedings.2003 IEEE/ASME International Conference on.2003:302-307.
    [33]Kajima T. Kawamura Y. Development of a High-Speed Solenoid Valve:Investigation of Solenoids[J]. IEEE Transactions on Industrial Electronics.1995.42(1):1-8.
    [34]Kajima T. Satoh S. Sagawa R. Development of a High-Speed Solenoid Valve (Experimental Results Under Actual Loads)[J]. Transactions of the Japan Society of Mechanical Engineers, Part C.1994.60(576):2744-2751.
    [35]Passarini L C, Nakajima P R. Development of a High-Speed Solenoid Valve:An Investigation of the Importance of the Armature Mass On the Dynamic Response[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2003.25(4):329-335.
    [36]张胜昌.高速电磁开关阀性能分析与优化设计的基础研究[D].上海:上海交通大学,2002.
    [37]Kim J. Design and Analysis of New, Quick-Response, Latching Electromagnetic Linear Actuators[D]. United States --California:University of California, Berkeley.2005.
    [38]黎启柏.液压元件手册[M].北京:冶金工业出版社/机械工业出版社.1999.
    [39]周恩涛.液压系统设计元器件选型手册[M].北京:机械工业出版社,2007.
    [40]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [41]黄向东.电液控制系统中电机械转换器的研究[D].杭州:浙江大学,1994.
    [42]骆涵秀,李世伦,朱捷,等.机电控制[M].杭州:浙江大学出版社.1994.
    [43]Takesue N, Kiyota Y, Furusho J. Development of Fast Response Mr-Fluid Actuator[J]. Proceedings of the 41st Sice Annual Conference.2002,1(5):949-953.
    [44]Seilly A H. Colenoid Actuators——Further Developments in Extremely Fast Acting Solenoids[J]. SAE preprints. 1981,(810462):12.
    [45]Seilly A H. Helenoid Actuators——a New Concept in Extremely Fast Acting Solenoids[J]. SAE Preprints.1979,(790119): 10.
    [46]Schechter M M. Multipole Solenoids[P]. US4390856.1983-06-28.
    [47]Schechter M M. Fast Response Multiple Solenoids[J]. SAE Preprints.1982,(820203).
    [48]Mutai H, Yamasawa K. Fundamental Operations of a Multipolar Disk-Solenoid[J]. IEEE Transactions on Magnetics.1995, 31(4):2445-2449.
    [49]Takeuchi K, Shimizu M. Okazaki K. et al. Fast Actuator Modeling by Finite Element Method[J]. IEEE Transactions on Magnetics.1994,30(6):4284-4286.
    [50]Kushida T. High Speed Powerful and Simple Solenoid Actuator "Disoie" and its Dynamic Analysis Results[J]. SAE Preprints.1985,(850373).
    [51]Green C J. Wallance J S. Electrically Actuated Injectors for Gaseous Fuels[J]. SAE Paper.1989,(892143).
    [52]Shigeiku E, Moriyasu G, Koji T. Electromagnetic Device with Stator Displacement Regulation[P], US5939811(A). 1999-08-17.
    [53]徐家龙,藤泽英也.电装公司的电控喷油器[J].现代车用动力.2003,(4):7-17.
    [54]王九如,徐林昌.高压共轨燃油系统涡旋叠片高速电磁铁的研制[J].现代车用动力.2004,(3):7-12.
    [55]Linkner H L, Rizk G M. Solenoid Valve with Spherical Armature[P]. US7195226.2007-03-27.
    [56]Krawczyk G J. Linkner H L. Ehb Proportional Solenoid Valve with Stepped Gap Armature[P]. US2006208563. 2006-09-21.
    [57]Collins D E. Tackett W D. Hool P H. et al. Control Valve for a Vehicular Brake System[P]. US2004178378.2004-09-16.
    [58]Starr J A. Kaye E R. Valve Seat for a Control Valve in a Vehicle Brake System[P]. US2004251737.2004-12-16.
    [59]Tackett W D. Knight G R. Control Valve with Single Piece Sleeve for a Hydraulic Control Unit of Vehicular Brake SystemsfP]. US6520600.2003-02-18.
    [60]Babbin M. Sturman Industries Breakthrough Digital Hydraulic Platform[J], Automotive Industries Al.2007.187(11).
    [61]Johnson B. Massey S. Sturman O. Sturman Digital Latching Valve[C]. Proc.7th Scandinavian Int. Conf. Fluid Power. Linkping University. Linkping. Sweden:2001:299-314.
    [62]Sturman O E. Hydraulic Actuator for an Internal Combustion Engine[P]. US5960753.1999-10-05.
    [63]Maley D C. Shinogle R D, Sommars M F. et al. Fuel Injection Control Valve with Dual Solenoids[P]. US5494219. 1996-02-27.
    [64]曹瑞征.数字阀的突破[J].机械开发.1995,(01):66-70.
    [65]刘少军.高速开关电磁阀的现状及应用[J].液压与气动.1995,(06):12-14.
    [66]向忠.气动高速开关阀关键技术研究[D].杭州:浙江大学,2010.
    [67]向忠,刘昊,陶国良.高频电气喷射阀优化设计与试验[J].农业机械学报.2009,40(04):210-214.
    [68]向忠,陶国良,谢建蔚,等.气动高速开关阀动态压力特性仿真与试验研究[J].浙江大学学报(工学版).2008,42(05):845-849.
    [69]Xiang Z. Liu H, Tao G L. et al. Development of an E-Type Actuator for Enhancing High-Speed Electro-Pneumatic Ejector Valve Performance[J]. Journal of Zhejiang University:Science A.2008.9(11):1552-1559.
    [70]巴克海默R.,巴克海默布雷恩.电磁阀装置及采用该阀的燃料喷射系统[P].97123010.1998-06-10.
    [71]郁秀峰,韩秀坤,李建纯,等.电控柴油机高速数字开关阀(HSV)的特性与应用研究[J].车辆与动力技术.1995,(04):12-17.
    [72]钱人一.日本电装公司的ECD-U2柴油机共轨喷油系统(三)[J].汽车与配件.2003,(20):31-33.
    [73]钱人一.日本电装公司的ECD-U2柴油机共轨喷油系统(二)[J].汽车与配件.2003,(19):29-31.
    [74]钱人一.日本电装公司的ECD-U2柴油机共轨喷油系统(四)[J].汽车与配件.2003,(21):29-31.
    [75]徐家龙,藤泽英也.电装公司的电控喷油器[J].现代车用动力.2003,(04):7-17.
    [76]贺玉海.柴油机中压共轨液力增压式电控燃油喷射系统的研究[D].武汉:武汉理工大学,2005.
    [77]张小军,朱国伟,崔可润.双自由内锥阀芯二位三通式电磁阀[P].00115916.2000-12-20.
    [78]张小军,凌宁,朱国伟,等.新型高速开关阀的设计与研究[J].机床与液压.2001,(06):88-89.
    [79]刘金榕.基于高速电液阀的变气门执行系统关键技术研究[D].杭州:浙江大学,2009.
    [80]Liu J R, Jin B, Chen Y, et al. Research On Variable Valve System Based On Electro-Hydraulic Drive[C]. IET Conference Publications, Hangzhou, China:2006:2204-2208.
    [81]Liu J R, Jin B. Xie Y J. et al. Investigation On the Characteristics of a New High Frequency Three-Way Proportional Pressure Reducing Valve in Variable Valve System of Automobile Engine[J]. Indian Journal of Engineering and Materials Sciences.2009.16(1):7-13.
    [82]Liu J R, Jin B, Xie Y J, et al. Research On the Electro-Hydraulic Variable Valve Actuation System Based On a Three-Way Proportional Reducing Valve[J]. International Journal of Automotive Technology.2009,10(1):27-36.
    [83]夏胜枝,周明,李希浩,等.高速强力电磁阀的动态响应特性[J].清华大学学报(自然科学版).2002.42(02):258-261.
    [84]杜传进,欧阳明高,卢启龙,等.电控柴油喷射用电磁控制旁通阀的研究[J].清华大学学报(自然科学版).1999.39(04):61-64.
    [85]卢启龙,欧阳明高,杜传进.电控柴油喷射系统用高速强力电磁阀的性能研究[J].内燃机工程.1997.18(03):18-23.
    [86]欧阳明高,卢启龙,杜传进.高速强力电磁控制阀[P].97202928.1998-11-25.
    [87]Khandan Fadafan H. Tajabor N, Fruchart D, et al. A Survey On the Effect of Vanadium Content On the Magnetoelastic Properties of Yfe12-Xvx Alloys[J]. Journal of Magnetism and Magnetic Materials.2011,323(7):988-991.
    [88]Butvin P, Butvinova B. Vec Sr. P, et al. Magnetic Properties of Fe-Co-Mo-Cu-B Nanocrystalline Ribbons with Stressing Surfaces[J]. Journal of Alloys and Compounds.2011.509(3):997-1000.
    [89]Huang M, Mandru A O, Petculescu G, et al. Magnetostrictive and Elastic Properties of Fe100-X Mo X (2X12) Single Crystals[C]. United States:American Institute of Physics.2010.
    [90]Nlebedim I C, Snyder J E. Moses A J. et al. Dependence of the Magnetic and Magnetoelastic Properties of Cobalt Ferrite On Processing Parameters[J]. Journal of Magnetism and Magnetic Materials.2010,322(24):3938-3942.
    [91]李弘.先进功能材料[M].北京:化学工业出版社.2011.
    [92]李垚,唐冬雁,赵九蓬.新型功能材料制备工艺[M].北京:化学工业出版社,2011.
    [93]项占琴,吕福在.高速强力电磁阀在柴油机电喷系统中的应用研究[J].内燃机工程.2000,(03):7-13.
    [94]孟爱华.脉冲喷射开关阀理论及其在BCP应用中的研究[D].杭州:浙江大学.2006.
    [95]Narendra Babu S. Siddeshwar A. Srinivas K. et al. Magnetoelectric Properties of Ni/Pzt/Ni Layered Composite for Low Field Applications[J]. Journal of Materials Science.2009,44(15):3948-3951.
    [96]Zhen Y, Li J, Zhang H. Electrical and Elastic Properties of 1-3 Pzt/Epoxy Piezoelectric Composites[J]. Journal of Electroceramics.2008,21(1-4):410-413.
    [97]Yang C, Zhang S. Zhang H, et al. Structure and Ferroelectric Properties of Pzt Thin Film Deposited On Lanio3 Bottom Electrodes[J]. Integrated Ferroelectrics.2008.98(1):69-76.
    [98]Zhang H L. Li J F. Zhang B P. et al. Enhanced Mechanical Properties in Ag-Particle-Dispersed Pzt Piezoelectric Composites for Actuator Applications[J]. Materials Science and Engineering A.2008,498(1-2):272-277.
    [99]金国庆.新型压电式高速开关阀的研究[D].江苏大学.2003.
    [101]Kajima T. Development of a High-Speed Solenoid Valve:Investigation of the Energizing Circuits[J]. IEEE Transactions on Industrial Electronics.1993.40(4):428-435.
    [102]刘志珍,张忠祥,侯延进.电-气比例阀高压驱动与低压PWM的双压控制模式[J].农业机械学报.2008,39(07):159-163.
    [103]卢启龙,欧阳明高.电控柴油喷射用高速强力电磁阀的结构设计与功率驱动[J].车用发动机.1996,(03):33-37.
    [104]郁凯元.电谐振补偿法原理及其在电液控制中的应用[J].机床与液压.1996,(02):16-20.
    [105]刘新亮,张建武,陈兆能.高速开关阀功率驱动特性研究及电路实现[J].液压气动与密封.1998,(02):9-11.
    [106]郑萍,李广荣,郑云,等.一种新型高速电磁阀驱动电路[J].电子产品世界.2006,(04):85-88.
    [107]Okada Y, Noda Y, Miyoshi T, et al. Optimization of Input Pulse Considering Both High-Speed Response and Rebound Suppression for Solenoids[C]. International Conference on Advanced Computer Control, Singapore:1nst. of Elec. and Elec. Eng. Computer Society.2009:176-182.
    [108]Taku N. Koichi O. Yasuyuki S. et al. Electromagnetic Operating Device[P]. US6968859.2005-11-29.
    [109]永野卓,大场孝一,新宫康之,等.电磁操作装置[P].00820122.2004-03-03.
    [110]何希才.新型集成电路及其应用实例[M].北京:科学出版社,2003.
    [111]何希才,邹炳强.通用电子电路应用400例[M].北京:电子工业出版社,2005.
    [112]田静.高速开关阀PWM控制电路的开发[J].中国民航学院学报.2003,21(06):133-135.
    [113]Reuter J. Maerkl S, Jaekle M. Optimized Control Strategies for Fast Switching Solenoid Valves[C]. Hamburg.Germany: Fluid Power Net International,2010:23-33.
    [114]孙克军.电工手册[M].北京:化学工业出版社.2009.
    [115]严密,彭晓领.磁学基础与磁性材料[M].杭州:浙江大学出版社,2006.
    [116]奥汉德利R.C.现代磁性材料原理和应用[Z].北京:化学工业出版社.2002.
    [117]田民波.磁性材料[M].北京:清华大学出版社.2001
    [118]都有为.磁性材料新近进展[J].物理.2006,(9):730-739.
    [119]刘亚丕,何时金,包大新,等.软磁材料的发展趋势[J].磁性材料及器件.2003,(03):26-29
    [120]李亚峰.NdFeB永磁材料的应用领域与发展前景[J].矿冶.2005.14(02):67-69.
    [121]李卫,冯海波.稀土永磁材料研究进展[C].首届中国包头·稀土产业发展论坛,中国内蒙古包头:2009.
    [122]齐凤春.永磁材料的磁稳定性[J].磁性材料及器件.1998,29(05):26-31.
    [123]刘亚丕,何时金,包大新,等.永磁材料的发展趋势[J].磁性材料及器件.2003,34(01):33-36.41.
    [124]周寿增.稀土永磁材料及其应用[M].北京:冶金工业出版社,1990.
    [125]吴恒颛.电机常用材料手册[M].西安:陕西科学技术出版社,2001.
    [126]赵阳,徐兵,周盛.高速开关阀液动力补偿研究[J].工程机械.2008,39(08):46-50.
    [127]郑淑娟.阀芯运动过程液压锥阀内部流场的CFD计算[D].太原:太原理工大学,2005.
    [128]冀宏,傅新,杨华勇.非全周开口滑阀稳态液动力研究[J].机械工程学报,2003,39(06):13-17.
    [129]汤志勇,范鸿滏,曹秉刚,等.关于锥阀动态液动力的探讨[J].机床与液压.1993,(01):1-9.
    [130]中野和夫,曹秉刚内流式锥阀液动力的理论探讨[J].西安交通大学学报.1995,29(07):1-6.
    [131]曹秉刚,史维祥,中野和夫.内流式锥阀液动力及阀芯锥面压强分布的实验研究[J].西安交通大学学报.1995,29(07):7-13.
    [132]江海兵,周兆忠.强力马达伺服阀(FMV)的稳态液动力的研究[J].机床与液压.2006,(12):127-128.
    [133]廖义德,张铁华,李壮云.无液动力分流阀设计及仿真研究[J].武汉化工学院学报.2002.24(01):79-80.
    [134]张慧兰.液动力对滑阀使用的影响[J].南方冶金学院学报.1996,17(03):200-203.
    [135]Yuan Q H. Li P Y. Modeling and Experimental Study of Flow Forces for Unstable Valve Design[C].2003 ASME International Mechanical Engineering Congress, Washington, DC, United states:American Society of Mechanical Engineers.2003:29-38.
    [136]Amirante R, Moscatelli P G, Catalano L A. Evaluation of the Flow Forces On a Direct (Single Stage) Proportional Valve by Means of a Computational Fluid Dynamic Analysis[J]. Energy Conversion and Management.2007,48(3):942-953.
    [137]周盛,徐兵,杨华勇.高速开关阀液动力补偿[J].机械工程学报.2006,42(S1):5-8.
    [138]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [139]李壮云.液压元件与系统[M].北京:机械工业出版社,2005.
    [140]李勇.低功耗比例电-机械转换器关键技术研究[D].杭州:浙江大学,2009.
    [141]中国船舶工业总公司.CB3403-1991船用比例电磁铁[S].中华人民共和国船舶行业标准,1991.
    [142]中国国家标准化管理委员会.GB14048.1-2006低压开关设备和控制设备第1部分总则[S].中华人民共和国国家标准,2006.
    [143]国家机械工业局.JBT 10160-1999直流湿式阀用电磁铁[S].中华人民共和国机械行业标准,1999.
    [144]中华人民共和国国家经济贸易委员会.JBT 10373-2002液压电液动换向阀和液动换向阀[S].中华人民共和国机械行业标准,2002.
    [145]中国机械工业联合会.JBT 5244-2001液压阀用电磁铁[S].中华人民共和国机械行业标准.2001.
    [146]Takeuchi K, Shimizu M, Okazaki K. et al. Fast Actuator Modeling by Finite-Element Method[J]. IEEE TRANSACTIONS ON MAGNETICS.1994,30(6):4284-4286.
    [147]Subic A, Cvetkovic D. Virtual Design and Development of Compact Fast-Acting Fuel Injector Solenoid Actuator[J]. INTERNATIONAL JOURNAL OF VEHICLE DESIGN.2008.46(3):309-327.
    [148]Cvetkovic D, Cosic I. Subic A. Improved Performance of the Electromagnetic Fuel Injector Solenoid Actuator Using a Modelling Approach[J]. INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS. 2008,27(4):251-273.
    [149]Stewart P, Gladwin D. Fleming P J. Multiobjective Analysis for the Design and Control of an Electromagnetic Valve Actuator[J].. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING.2007.221(D5):567-577.
    [150]Taghizadeh A, Ghaffari A, Najafi F. Modeling and Identification of a Solenoid Valve for Pwm Control ApplicationsfJ]. Comptes Rendus Mecanique.2009,337(3):131-140.
    [151]Fang S H. Lin H Y, Ho S L. Transient Co-Simulation of Low Voltage Circuit Breaker with Permanent Magnet Actuator[J]. IEEE Transactions on Magnetics.2009,45(3):1242-1245.
    [152]Lequesne B. Dynamic Model of Solenoids Under Impact Excitation. Including Motion and Eddy CurrentsfJ]. IEEE Transactions on Magnetics.1990.26(2):1107-1116.
    [153]Kawase Y, Ohdachi Y. Dynamic Analysis of Automotive Solenoid Valve Using Finite Element Method[J]. IEEE Transactions on Magnetics.1991,27(5):3939-3942.
    [154]王以真.实用磁路设计(第2版)[M].北京:国防工业出版社.2008.
    [155]易敬曾.磁场计算与磁路设计[M].成都:成都电讯工程学院出版社,1987.
    [156]林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987.
    [157]倪光正,杨仕友,邱捷.工程电磁场数值计算[M].北京:机械工业出版社.2010.
    [158]周克定.工程电磁场数值计算的理论及应用[M].北京:高等教育出版社,1994.
    [159]倪光正.工程电磁场原理[M].北京:高等教育出版社,2009.
    [160]赵博.Ansoft12在工程电磁场中的应用[M].北京:中国水利水电出版社.2010.
    [161]张廷羽,张国贤.高速开关电磁阀的性能分析及优化研究[J].机床与液压.2006,(09):139-142.
    [162]李庆民,钱家骊,黄瑜珑,等.高压开关操作电磁铁动态特性逆分析的研究[J].中国电机工程学报.2004.24(06):131-135.
    [163]安士杰,欧阳光耀.电控喷油器控制电磁阀理论与试验研究[J].内燃机学报.2003,21(05):356-360.
    [164]黄维纲,王旭永,王显正,等.高速电磁开关阀开关特性的机理研究[J].上海交通大学学报.1998,32(12):40-43.
    [165]Xu Y, Jones B. Simple Means of Predicting the Dynamic Response of Electromagnetic Actuators[J]. Mechatronics.1997, 7(7):589-598.
    [166]Park J, Keller S, Carman G P, et al. Development of a Compact Displacement Accumulation Actuator Device for Both Large Force and Large Displacement[J]. SENSORS AND ACTUATORS A-PHYSICAL.2001,90(3):191-202.
    [167]赵延心.长行程直流电磁铁设计及应用[J].低压电器.1991,(06):21-25.
    [168]满军,丁凡,李勇,等.耐高压大行程高速开关电磁铁的动态特性[J].煤炭学报.2010,35(05):871-875.
    [169]史秋明.直流电磁铁和高速电磁阀的研究与设计[D].杭州:浙江大学,2007.
    [170]满军,丁凡,李其朋,等.圆锥和平面形磁极高速电磁铁动态特性对比[J].农业机械学报.2009,40(3):213-217.
    [171]Sung B J, Lee E W. Kim H E. Characteristics of Non-Magnetic Ring for High-Speed Solenoid Actuator[C]. the Eleventh Biennial IEEE Conference on Electromagnetic Field Computation, Korea:2004:342.
    [172]Alexander D. Cassaidy K, Parikh A A, et al. Method for Manufacturing Solenoid Actuator, Involves Forming Solenoid Actuator Using Two Materials Having Similar Moduli of Elasticity.[P]. US.2010-02-04.
    [173]Jun M, Fan D. Qipeng L, et al. Novel High-Speed Electromagnetic Actuator with Permanent-Magnet Shielding for High-Pressure Applications[J]. Magnetics, IEEE Transactions on.2010,46(12):4030-4033.
    [174]周顺荣,王建辉,周洁.电磁场与机电能量转换[M].上海:上海交通大学出版社.2005.
    [175]汤蕴璆.电机学—机电能量转换[M].北京:机械工业出版社,1986.
    [176]高里辛卡 V.,凯利D.H.机电能量转换[Z].北京:国防工业出版社,1982.
    [177]刘振海主编.热分析导论[M].北京:化学工业出版社,1991.
    [178]王非.化工压力容器设计:方法、问题和要点[M].北京:化学工业出版社,2005.
    [179]栾春远编著.压力容器ANSYS分析与强度计算[M].北京:中国水利水电出版社.2008.
    [180]李建国编著.压力容器设计的力学基础及其标准应用[M].北京:机械工业出版社.2004.
    [181]中华人民共和国机械工业部,中华人民共和国化学工业部,中国人民共和国劳动部,等.JB 4732—95钢制压力容器——分析设计标准[S].中华人民共和国行业标准.1995.
    [182]Genet M. Yan W. Tran-Cong T. Investigation of a Hydraulic Impact:A Technology in Rock Breaking[J]. Archive of Applied Mechanics.2009.79(9):825-841.
    [183]Ji Yun Z, De Sheng Z. Wen Cheng L, et al. Design and Experiment of Hydraulic Impact Loading System for Mine Cable Bolt[J]. Procedia Earth and Planetary Science.2009,1(1):1337-1342.
    [184]范思源.液压破碎锤计算机仿真与实验研究[D].上海交通大学.2008.
    [185]吴嵩.电液控制冲击试验机液压系统的研究[D].杭州:浙江大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700