用户名: 密码: 验证码:
基于永磁同步电机的电梯运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电梯作为垂直运输工具在日常生活中扮演着相当重要的角色,随着人们对生活质量要求的提高,单纯符合可靠性要求的电梯已然不能满足社会发展的需求。采用永磁同步电机无齿曳引技术是当今电梯传动中的先进技术,代表了今后电梯技术发展的一个方向,电梯用变频器作为永磁同步电机的驱动电源,决定着电梯运行的各方面性能,包括乘客的舒适度、节能问题等,且影响整个电梯系统的总成本。本文从提高舒适度、节约成本及节能角度出发探讨电梯用永磁同步电机控制的关键技术。
     论文首先剖析了电梯用变频器各个组成部分,除了详细介绍各部分的工作原理外,还给出了各组成部分的硬件电路设计、器件选型及软件实现的多种解决方案,并对方案选择给出建议,提供本文所设计变频器的系统思路,可作为业界开发变频器的参考。
     从永磁同步电机的转子结构开始,步步递进地详细分析了与永磁同步电机控制相关的各方面内容,在探讨完永磁同步电机控制的共性问题后,介绍满足电梯舒适度要求的速度曲线并提出实现方案,各种负载及各种行程下的实验结果证明了所提方案的可行性;接着以永磁同步电机的线性控制模型为参考,指出各种来源的转矩脉动在控制模型中的作用位置,总结得出高增益高带宽的双环控制器是抑制转矩脉动的主要手段,针对其中的电流环提出了优化措施以提高低频增益;提出了一种正弦编码器信号的细分方法,以提高速度检测的分辨率,降低速度检测延迟的同时减少量化误差,并给出了进一步抑制速度反馈量化误差的两个实际应用的建议。
     从节约系统成本的角度出发,研究如何用控制算法实现负载转矩识别及电机初始转子位置识别。介绍了电梯制动器松闸瞬间溜车现象的原因,探讨如何仅用现成变频器资源替代称重传感器实现松闸时的负载转矩识别以抑制溜车,首先将负载识别问题转化为松闸时的零速控制问题,通过分析电梯系统受力情况给出电机进入静止状态的充分条件,并提出了两种零速控制方案,从制动器松闸后的溜车距离及符合人体要求的加速度、加加速度比较两种控制方案的性能。通过零速控制得到的输出转矩可视为负载转矩,将此负载转矩用于系统惯量的估算并应用于速度曲线实现中。而在初始转子位置识别方面提出了一种新的利用电感饱和效应的方法,并通过实验验证了其可行性。
     引入双向工作的三相整流器代替电阻耗能型变频器中的二极管不控整流器,实现再生能量馈网及功率因素调整的作用,与电机驱动逆变器共同组成双PWM背靠背变频器,简单介绍了三相整流器的控制原理,并详细分析三相整流器锁相环的设计,提出基于同步参考坐标系的三相锁相环改进措施,使其具备快速锁相及相序识别的功能,并通过构造李雅普诺夫函数证明基于锁相环线性模型设计的PI参数不会影响锁相环的稳定性,通过相关实验及其结果验证该方法的可行性;最后将双PWM背靠背变频器与电阻耗能型变频器在典型工况中进行耗能比较实验,根据实验数据计算分析双PWM背靠背变频器的节能效果,依据最后的节能数据提出了一些提高节能率的建议。
Elevators are used as vertical transportation in human life. As the demand of the living quality rises, performance of the elevators must be improved to meet the requirements based on stability. Permanent Magnet Synchronous Motor(PMSM) drived gearless traction system represents an advanced technology in the elevator system. The drive system of PMSM determines the ride comfort and energy saving capability, and also influences the cost of the elevator system. Technologies to improve the mentioned performance are studied in this dissertation.
     The drive system is composed of several parts according to the function. Each part is analyzed in detail. Hardware circuit design principle, components choosing, and software realization are provided. Moreover, the design principle of the experimental prototype in this dissertation is also described which can be refered in the drive system development.
     Factors concerned with PMSM control are analyzed including the rotor structure, mathematic model of PMSM, main control strategies, id=0 control diagram, model decoupling and dual loop controller desgin. Speed profile which meets the ride comfort requirements is described in detail. A novel speed profile tracking method is proposed based on the acceleration control. The feasibility is verified with experimental results at typical loads and ride distances. Torque ripples from different sources are inserted into the linear control model of the PMSM to analyse their influence. The current loop is improved with the stator resistor voltage compensation to increase the gain at low frequency. A novel scaling method for sinusoidal encoder is proposed to improve the rotor position identification resolution. And speed detection lag and quantization error can be reduced. Suggestions are also provided to suppress the influence of speed detection quantization error.
     From the perspective of system cost saving, contorl algorithms are studied to achieve load torque identification and initial rotor position identification. The car slides due to weight imbalance at brake releasing. Traditionally, electromagnetic torque is generated to cancel the imbalance before brake releasing with extra sensor or transducer which increases the system cost. This dissertation proposes a electromagnetic torque gradually convergent seeking method and an optimized PI controller based method to identify the load torque. The performances comparison between the two methods indicates that the former method can achieve short sliding distance but unstable, while the latter method can guarantee the stabiliy but with longer sliding distance. This dissertation also proposes a novel method to identify the initial rotor position based on inductance saturation effect, and the feasibility of this method is also verified with experimental results.
     A three-phase rectifier is introduced into the drive system to provide unity power factor and feed the regenerated energy to the grid. The phase lock loop(PLL) of the three-phase rectifier is studied and this dissertation proposes a method to improve the phase lock dynamic response and realize fast phase sequence identification. The system stability with the PI parameters designed based on the linear model is also approved with Lyapunov stability theory. Energy dissipation experiments are executed at typical work conditions. The analysis of the experimental results concludes that the energy saving effect is remarkable at dedicated work conditions like full load and empty load with noninterrupt distance. The prototype and experimental elevator are shown at the end of this dissertation.
引文
[1]叶安丽.电梯控制技术[M].北京:机械工业出版社.2008.
    [2]许家群,于慎波,徐衍亮,等.电梯曳引驱动系统的现状及发展前景[J].微特电机,2002,30(3):5-7,13.
    [3]于国欣.电力电子技术在电梯系统中的应用及发展[J].中国电梯,2005,16(19):8-11,13.
    [4]李士林.永磁同步电机——电梯曳引主机发展方向[J].电梯工业,2006,(4):2-3.
    [5]川口守弥.高速体用永久磁铁式电机无齿轮曳引机[J].中国电梯,1998,(8):33-35.
    [6]Toshiaki Ishii. Elevator for skyscrapers[J]. IEEE Spectrum, Sept.1994,31(9); 42-46.
    [7]Dae-Woong Chung, Hyung-Min Ryu, Young-Min Lee, et al. Drive systems for high-speed gearless elevators[J]. IEEE Industry Applications Magazine, Sept./Oct.2001,7(5):52-56.
    [8]Pragasen Pillay, Ramu Krishnan. Modeling, simulation, and analysis of permanent-magnet motor drives, part I:The permanent-magnet synchronous motor drive[J]. IEEE Transactions on Industry Applications, Mar./Apr.1989,25(2):265-273.
    [9]Thomas M. Jahns. Motion control with permanent-magnet AC machines(invited paper)[C]. Proceedings of the IEEE, Aug.1994,82(8):1241-1252.
    [10]Bimal K. Bose. Power electronics and motor drives-recent progress and perspective[J]. IEEE Transactions on Industrial Electronics, Feb.2009,56(2):581-588.
    [11]R. N. Lain, A. Bedford. Recent developments in the design of gearless machines for elevators[C]. Sixth International Conference on Electrical Machines and Drives, Sept.1993, pp:334-338.
    [12]R. L. Ficheux. F. Caricchi, F. Crescimbini, et al. Axial-flux permanent-magnet motor for directi-drive elevator systems without machine room[J]. IEEE Transactions on Industry Applications, Nov./Dec.2001, 37(6):1693-1701.
    [13]Shenbo Yu, Pingping Pan, Huijun Wang, et al. Investigation on noise and vibration origin in permanent magnet electrical machine for elevator[C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems(ICEMS), Sept.2005, pp:330-333.
    [14]J. H. Wang, F. W. Tan, R. L. Jin. Research on low-speed gearless permanent magnet synchronous motor for elevator drive[C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems(ICEMS), Sept.2005, pp:454-459.
    [15]Hiroaki Mizuguchi, Toshiaki Nakagawa, Yoshiaki Fujita. Breaking the 1000mpm barrier[J]. Elevator World, Sept.,2005:71-76.
    [16]李华德.交流调速控制系统[M].北京:电子工业出版社,2007:6.
    [17]R. D. Lorenz. Key technologies for future motor drives[C]. International Conference on Electrical Machines and Systems(ICEMS),2005, pp:1-6.
    [18]杨耕,刘俊岭.未来电机驱动系统的关键技术[J].电力电子,2006,(2):27-32.
    [19]Sami Valiviita, Seppo J. Ovaska. Delayless acceleration measurement method for elevator control[J]. IEEE Transactions on Industrial Electronics, Apr.1998,45(2):364-366.
    [20]Nobuyoshi Mutoh, Naoto Ohnuma, Mahahiro Konya. A motor driving controller suitable for elevators[J]. IEEE Transactions on Power Electronics, Nov.1998,13(6):1123-1134.
    [21]Young-Min Lee, Jun-Koo Kang, Seung-Ki Sul. Acceleration feedback control strategy for improving riding quality of elevator system[C]. Conference Record of 34th IEEE Industry Applications Society Annual Meeting (IAS), Oct.1999, pp:1375-1379.
    [22]Jun-Koo Kang, Seung-Ki Sul. Vertical-vibration control of elevator using estimated car acceleration feedback compensation[J]. IEEE Transactions on Industrial Electronics, Feb.2000,47(1):91-99.
    [23]S. Bolognani, A. Faggion, L. Sgarbossa, et al. Modelling and desing of a direct-drive lift control with rope elasticity and estimation of starting torque[C]. The 33rd Annual Conference of the IEEE Industrial Electronics Society(IECON), Nov.2007, pp:828-832.
    [24]Jun-Koo Kang, Seung-Ki Sul. Application of nonlinear observers for elevator vibration control[C]. Conference Record of 32th IEEE Industry Applications Society Annual Meeting (IAS), Oct.1997, pp: 873-879.
    [25]Atsushi Arakawa, Koichi Miyata. A variable-structure control method for the suppression of elevator-cage vibration[C]. IEEE Industrial Electronics Society 28th Annual Conference, Nov.2002, pp: 1830-1835.
    [26]Jae Sung Yu, Sun Mo Hwang, Chung-Yuen Won. Performance of fuzzy-logic-based vector control of permanent magnet synchronous motor used in elevator drive system[C]. The 30th Annual Conference of the IEEE Industrial Electronics Society, Nov.2004, pp:2679-2683.
    [27]Jae-Sung Yu, Sang-Hoon Kim, Byoung-Kuk Lee, et al. Fuzzy-logic-based vector control scheme for permanent-magnet synchronous motors in elevator drive applications[J]. IEEE Transactions on Industrial Electronics, Aug.2007,54(4):2190-2200.
    [28]R. Roberts. Control of high-rise/high-speed elevators[C]. Proceedings of the 1998 American Control Conference, June 1998, pp:3440-3444.
    [29]K. Nai, W. Forsythe, R. M. Goodall. Vibration reduction techniques for high speed passenger elevators[C]. Proceedings of the Third IEEE Conference on Control Applications, Aug.1994, pp:965-970.
    [30]Hyung-Min Ryu, Sung-Jun Kim, Seung-Ki Sul, et al. Dynamic load simulator for high-speed elevator system[C]. Proceedings of the Power Conversion Conference(PCC), Apr.2002, pp:885-889.
    [31]Saligrama. R. Venkatesh, Young Man Cho, Jongwo Kim. Robust control of vertical motions in ultra-high rise elevators[J]. Control Engineering Practice,2002,10:121-132.
    [32]Masatsugu Otsuki, Kazuo Yoshida, Kosoku Nagata, et al. Experimental study on vibration control for rope-sway of elevator of high-rise building[C]. Proceedings of the American Control Conference, May 2002, pp:238-243.
    [33]Joel Fortgang, Vlad Patrangenaru, William Singhose. Scheduling of input shaping and transient vibration absorbers for high-rise elevators[C]. Proceedings of the 2006 American Control Conference, June 2006, pp: 1772-1777.
    [34]Qing Hu, Qingding Guo, Dongmei Yu, et al. H∞ robust control of vertical motion in ultra-high rise elevator[C]. Proceedings of the eighth International Conference on Electrical Machines and Systems(ICEMS), Sept.2005, pp:1632-1635.
    [35]Qing Hu, Qingding Guo, Dongmei Yu, et al. H∞ robust control of vertical motion in ultra-high rise & high speed elevators using LMIs[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, June 2006, pp:8050-8053.
    [36]Ashok B. Kulkarni, Hien Nguyen, E. W. Gaudet. A comparative evaluation of line regenerative and non-regenerative vector controlled drives for ac gearless elevators[C]. Conference Record of 35th IEEE Industry Applications Society Annual Meeting (IAS), Oct.2000, pp:1431-1437.
    [37]Shinji Tominaga, Ikuro Suga, Hiroshi Araki, et al. Development of energy-saving elevator using regenerated power storage system[C]. Power Conversion Conference(PCC), Apr.2002, pp:890-895.
    [38]Estanis Oyarbide, Ivan Elizondo, Abelardo Martinez-lturbe, et al. Ultracapacitor-based plug&play energy-recovery system for elevator retrofit[C]. IEEE International Symposium on Industrial Electronics(ISIE), June 2011, pp:462-467.
    [39]Petar J. Grbovic, Philippe Delarue, Philippe Le Moigne, et al. A three-terminal ultracapacitor-based energy storage and PFC device for regenerative controlled electric drives[J]. IEEE Transactions on Industrial Electronics, Jan.2012,59(1):301-316.
    [40]Jingping He, Chengxiong Mao, Jiming Lu, et al. Design and implementation of an energy feedback digital device used in elevator[J]. IEEE Transactions on Industrial Electronics, Oct.2011,58(10):4636-4642.
    [41]高喜阳,姜建国.电梯用双PWM可逆整流控制系统研究及实现[J].微处理机,Apr.2008,(2):123-126.
    [42]瞿博.带超级电容的馈能型电梯能量管理研究[D].博士论文,浙江大学电力电子与电力传动专业,2010.
    [43]刘宇川,肖庆清,李俊田,等.采用永磁同步电动机控制电梯的方法及系统[P].发明专利,200810065513.5.
    [44]刘宇川,高阳,张勇,等.电梯节能电源板及包含该电源板的电梯控制[P].实用新型专利,200920261334.9.
    [45]刘宇川,傅晓洲,徐忆平,等.电梯用一体化控制器[P].实用新型专利,200820213664.6.
    [46]朱海光,姜耀华,何俊.具有可控整流器的电梯控制系统[P].实用新型专利,201020180439.4.
    [1]GB 10060-93.电梯安装验收规范[S].
    [2]VDI 4704. Lifts Energy efficiency[S]. VDI Verein deutshcer Ingenieure, March 2009.
    [3]DB33/T 771-2009,电梯能源效率评价技术规范[S].
    [4]曳引电梯能耗检测方法与能效分级评定(修订稿)[Z].
    [5]周经成.一种新型的超级电容式电梯节能控制装置[P].实用新型专利,201020607246.2.
    [6]王国庆,王然.一种新型节能电梯[P].发明专利,200410054284.9.
    [7]李阳元,权文浩.一种节能电梯控制柜[P].实用新型专利,200920247993.7.
    [8]许林荣,严义.能耗可控式一体化节能电梯的能量控制方法及装置[P].发明专利,200910204167.6.
    [9]刘世君,姜华,陈亚波,菊池宽.节能电梯以及电梯节能方法[P].发明专利,200610080915.3.
    [10]黄正义.电梯节能逆变装置[P].实用新型专利,200820121249.8.
    [11]文安平,廖灿明,尹银祥,等.一种节能电梯[P].发明专利,200910060677.3.
    [12]朱国建.一种节能电梯[P].实用新型专利,201120018115.5.
    [13]张崇巍,张兴.PWM整流器及其控制[M],北京:机械工业出版社,2003.
    [14]Rodriguez J R, Dixon J W, Espinoza J R et al. PWM Regenrative Rectifiers:State of the Art[J]. IEEE Transactions on Industrial Electronics, February 2005,52(1):5-22.
    [15]王永,沈颂华,关淼.新颖的基于电压空间矢量三相双向整流器的研究[J].电工技术学报,2006,21(1):104-110.
    [16]王儒,方宇,邢岩.三相高功率因数PWM变换器可逆运行研究[J].电工技术学报,2007,22(8):46-51.
    [17]Dae-Woong Chung, Hyung-Min Ryu, Young-Min Lee et al. Drive Systems for High-Speed Gearless Elevators[J]. IEEE Industry Application Magazine, September/October 2001,7(5):52-56.
    [18]李时杰,李耀华,陈睿.背靠背变流系统中优化前馈控制策略的研究[J].中国电机工程学报,2006,26(22):74-79.
    [19]Hyeoun-Dong Lee, Seung-Ki Sul. A common-mode voltage reduction in converter-inverter system by shifting active space vector in a sampling period[C]. Applied Power Electronics Conference and Exposition(APEC), March 1999, pp:1046-1051.
    [20]李时杰.基于Back-to-Back变流技术的调速系统的研究[D].博士论文.中国科学院研究生院,2006.
    [21]何展荣.双PWM变频器在电梯中的应用[J].电梯工业,2008,(4):37-38.
    [22]HEIDENHAIN, Rotary Encoders[Z]. November 2006.
    [23]HEIDENHAIN, Optimized Scanning in Absolute Rotary Encoders[Z]. November 2006.
    [24]陈赞,张红胜.光电轴角编码器的编码方式及其发展趋势[J].中国光学与应用光学,2009,2(2):]26-133.
    [25]罗长洲,陈良益,孙岩,等.一种新型光学编码器[J].光学精密工程,2003,11(1):104-108.
    [26]邱成,朱衡君.绝对式光学编码器串行编码方法的研究[J].光学技术,2006,32(5):723-725,728.
    [27]陈赞.单圈绝对式光电轴角编码器原理的研究[D].博士论文.中国科学院长春光学精密机械及物理研究所,2006.
    [28]胡海兵.电力电子数字控制平台集成研究[D].博士论文.浙江大学电力电子与电力传动专业,2007.
    [29]Jean J.Labrosse.嵌入式实时操作系统uC/OS-2[M],北京:北京航空航天大学出版社,2003.
    [30]顾晓明,顾亦磊,吴燮华.一种零电压开关有源钳位双管正激变换器[J].浙江大学学报(工学版)2005,39(9):1296-1300.
    [31]顾亦磊,杭丽君,吕征宇,钱照明.非对称结构多路输出LLC谐振型变换器[J].中国电机工程学报,2006,26(5):82-87.
    [32]林渭勋.现代电力电子电路[M],浙江:浙江大学出版社,2004.
    [33]张占松,蔡宣三.开关电源的原理与设计(修订版)[M],北京:电子工业出版社,2004.
    [34]洪小圆,陈威,吕征宇.软开关谐振复位双管正激DC/DC变流器[J].电工技术学报,2009,24(10):65-70.
    [1]李崇坚.交流同步电机调速系统[M],北京:科学出版社,2006.
    [2]马晓鹏.变频调速永磁同步电动机的设计[D].硕士论文.浙江大学电机与电器专业,2002.
    [3]肖杭.电梯用低速无齿轮永磁同步电动机电气设计研究[D].硕士论文.上海交通大学电机电器及其控制专业,2002.
    [4]Blaschke F.. Das Prinzip der Feldorientierung, die Grundlage fur die Transvektor-Regelung von Drehfeldmachinen[C]. Siemens-Zeitschrift,1971,45:757.
    [5]Takahashi Isao, Noguchi Toshihiko, Kamitomioka Nagaoka. A new quick-response and high-efficiency control strategy of an induction motor[J]. IEEE Trans, on Industry Applications, Sept.1986,22(5):820-827.
    [6]Depenbrock M.. Direct self-control(DSC) of inverter-fed induction machine[C]. Power Electronics Specialists Conference(PESC), June 1987, pp:632-641.
    [7]李志民,张遇杰.同步电动机调速系统[M].北京:机械工业出版社,2001.
    [8]吴茂刚.矢量控制永磁同步电动机交流伺服系统的研究[D].博士论文,浙江大学电气工程专业,2006.
    [9]Bayer. Field-oriented closed-loop control of a synchronous machine with new transverter control system[C]. Siemens Review,1972,5.
    [10]Morimoto S., Takeda Y., Hirasa T.. Current phase control methods for permanent magnet synchronous motors[J]. IEEE Trans, on Power Electronics, Apr.1990,5(2):133-139.
    [11]GB/T 10058-2009.电梯技术条件[S].
    [12]GB/T 24474-2009.电梯承运质量测量[S].
    [13]龚世缨,易敏军,葛少成等.电梯理想速度曲线的理论分析及实现方法[J].电力电子技术,1996,2(1):18-20,28.
    [14]郝晓弘,张萍.VS-616G5变频器在电梯调速控制系统中的应用[J].微计算机信息(测控自动化,2006,22(1):36-38.
    [15]林信宏.电梯用永磁式同步电动机驱动器之研制[D].硕士论文,国立台湾科技大学电机工程系,2006.
    [16]Jae-Sung Yu, Sang-Hoon Kim, Byoung-Kuk Lee, et al. Fuzzy-Logic-Based Vector Control Scheme for Permanent-Magnet Synchronous Motors in Elevator Drive Applications[J]. IEEE Trans. on Industrial Electronics, Aug.2007,54(4):2190-2200.
    [17]Hyung-Min Ryu, Seung-Ki Sul. Position Control for Direct Landing of Elevator using Time-based Position Pattern Generation[C]. Industry Applications Conference 37th IAS Annual Meeting, Oct.2002, pp: 644-649.
    [18]王磊,陈丹.基于ADCM绝对剩余距离原则的电梯速度控制[J].电子产品世界,2007,5:97-98.
    [19]Thomas M.Jahns, Wen L.Soong. Pulsating Torque Minimization Techniques for Permanent Magnet AC Motor Drives-A Review[J]. IEEE Trans. on Industrial Electronics, Apr.1996,43(2):321-330.
    [20]D.Antic, J.B.Klaassens, W.Deleroi. Side Effects in Low-Speed AC Drives[C]. Power Electronics Specialists Conference(PESC), June 1994, pp:998-1002.
    [21]Shaotang Chen, Chandra Namuduri, Sayeed Mir. Controller-Induced Parasitic Torque Ripples in a PM Synchronous Motor[J]. IEEE Trans. on Industrial Applications, Sept./Oct.2002,38(5):1273-1281.
    [22]Joachim Holtz, Lothar Springob. Identification and Compensation of Torque Ripple in High-Precision Permanent Magnet Motor Drives[J]. IEEE Trans. on Industrial Electronics, Apr.1996,43(2):309-320.
    [23]Jahns,T.M. Motion control with permanent-magnet AC machines[C]. Proc. IEEE, Aug.1994, 82(8):1241-1252.
    [24]Lothar Springob, Joachim Holtz. High-Bandwidth Current Control for Torque-Ripple Compensation in PM Synchronous Machines[J]. IEEE Trans. on Industrial Electronics, Oct.1998,45(5):713-721.
    [25]Weizhe Qian, S.K.Panda, J.X.Xu. Speed Ripple Minimization in PM Synchronous Motor Using Iterative Learning Control[J]. IEEE Trans. on Energy Conversion, March 2005,20(1):53-61.
    [26]GB 12974-1991.交流电梯电动机通用技术条件[S].
    [27]Hagiwara N, Suzuki Y, Murase H. A method of improving the resolution and accuracy of rotary encoders using a code compensation technique[J]. Instrumentation and Measurement, IEEE Trans, on, Feb.1992, 41(1):98-101.
    [28]陈晓荣,陈晓芬,杨甫勤.增量式编码器的相位编码细分研究[J].仪器仪表学报,2007,28(1):132-135.
    [29]史敬灼,王秀丽,徐殿国.交流伺服系统光电编码器信号处理电路设计与实现[J].微特电机,2007,11:18-19,55.
    [30]Ju-Chan Kim, Jang-Mok Kim, Cheul-U Kim, Cheol Choi. Ultra Precise Position Estimation of Servomotor using Analog Quadrature Encoders[C]. Proc. IEEE APEC, March 2006, pp:930-934.
    [31]Tan K K, Zhou H X, Tong Heng Lee. New interpolation method for quadrature encoder signals[J]. Instrumentation and Measurement, IEEE Trans, on, Oct.2002,51(5):1073-1079.
    [32]Kok-Zuea Tang, Kok-Kiong Tan, Tong-Heng Lee, Chek-Sing Teo. Neural Network-based Correction and Interpolation of Encoder Signals for Precision Motion Control[C]. Proc. IEEE AMC, March 2004, pp: 499-504.
    [33]Kok Kiong Tan, Kok-Zuea Tang. Adaptive Online Correction and Interpolation of Quadrature Encoder Signals Using Radial Basis Functions[J]. Control Systems Technology, IEEE Trans, on, May 2005,13(3): 370-377.
    [34]Benammar M. Precise, wide-range approximations to arc sine function suitable for analog implementation in sensors and instrumentation applications[J]. Circuit and Systems 1, IEEE Trans, on, Feb.2005,52(2): 262-270.
    [35]Alhamadi M A, Benammar M, Ben-brahim L. Precise method for linearizing sine and cosine signals in resolvers and quadrature encoders applications[C]. Proc. IEEE IECON, Nov.2004, pp:1935-1940.
    [36]Benammar M, Ben-brahim L, Alhamadi M A. A Novel Converter for Sinusoidal Encoders[C]. Proc. IEEE SENSORS, Oct.2006, pp:22-25.
    [37]Xiaoyuan Hong, Zhengyu Lu. A Novel Scaling Method for Sinusoidal Quadrature Encoder[C]. Proc. IPEMC, May 2009, pp:826-829.
    [1]L.Gasc, M.Fadel, S.Astier, et al. Load Torque Observer for Minimising Torque Ripple in PMSM[C]. ICEMS, Nov.2003, pp:473-476.
    [2]Xu Dianguo, Wang Hong, Shi Jingzhuo. PMSM Servo System With Speed And Torque Observer[C]. PESC, June 2003, pp:241-245.
    [3]K.B.Lee, J.Y.Yoo, J.H.Song, et al. Improvement of low speed operation of electric machine with an inertia identification using ROELO[C]. Electric Power Applications, IEE Proceedings, Jan.2004, pp:l 16-120.
    [4]J.-W.Choi, S.-C.Lee, H.-G.Kim. Inertia identification algorithm for high-performance speed control of electric motors[C]. Electric Power Applications, IEE Proceedings, May 2006, pp:379-386.
    [5]Nobuyuki Matsui, Tatsuo Makino, Hirokazu Satoh. Autocompensation of Torque Ripple of Direct Drive Motor by Torque Observer[J]. IEEE Trans. on Industry Applications, Jan./Feb.1993,29(1):187-194.
    [6]王毅,何朕,苏宝库.摩擦模型的Simulink仿真[J].电机与控制学报,2004,8(1):60-62.
    [7]Xiaoyuan Hong, Zhe Deng, Siran Wang, et al. A Novel Elevator Load Torque Identification Method Based on Friction Mode[C]. APEC, Feb.2010, pp:2021-2024.
    [8]韦鲲,金辛海.表面式永磁同步电机初始转子位置估计技术[J].中国电机工程学报,2006,26(22):104-109.
    [9]Mitja Nemec, Uros Flisar, David Nedeljkovic, et al. Accurate Detection of Initial Rotor Position in a Multi-Pole Synchronous Machine[C]. ISIE, June 2007, pp:2274-2277.
    [10]Peter B.Schmidt, Michael L.Gasperi, Glen Ray, et al. Initial Rotor Angle Detection Of A Non-salient Pole Permanent Magnet Synchronous Machine[C]. IAS, Oct.1997, pp:459-463.
    [11]Dae-Woong Chung, Jun-koo Kang, Seung-Ki Sul. Initial Rotor Position Detection of PMSM at Standstill Without Rotational Transducer[C]. IEMD, May 1999, pp:785-787.
    [12]Limei Wang, Lorenz R.D. Rotor position estimation for permanent magnet synchronous motor using saliency-tracking self-sensing method[C]. Industry Applications Conference, Oct.2000, pp:445-450.
    [1]李时杰,李耀华,陈睿.背靠背变流系统中优化前馈控制策略的研究[J].中国电机工程学报,2006,26(22):74-79.
    [2]李时杰.基于Back-to-Back变流技术的调速系统的研究[D].博士论文,中国科学院电工研究所,2006.
    [3]高喜阳,姜建国.电梯用双PWM可逆整流控制系统研究及实现[J].微处理机.2008,(2):123-126.
    [4]Timbus A., Teodorescu R., Blaabjerg F., et al. Synchronous methods for three phase distributed power generation systems, An overview and evaluation[C]. Proceedings of Power Electronics Specialists Conference, Recife, Brazil,2005, pp:2474-2481.
    [5]Vikram Kaura, Vladimir Blasko. Operation of a phase locked loop system under distorted utility" conditions[J]. IEEE Transactions on Industry Applications,1997,33(1):58-63.
    [6]Amuda L.N., Cardoso Filho B.J., Silva S.M., et al. Wide bandwidth single and three-phase PLL structures for grid-tied PV systems[C]. Proceedings of Photovoltaic Specialists Conference, Anchorage, AK USA,2000, pp:1660-1663.
    [7]Se-Kyo Chung. A phase tracking system for three phase utility interface inverters[J]. IEEE Transactions on Power Electronics,2000,15(3):431-438.
    [8]Se-Kyo Chung. Phase-locked loop for grid-connected three-phase power conversion systems[J]. IEE Proceedings on Electric Power Applications, 2000,147(3):213-219.
    [9]Katsuhiko Ogata. Modern Control Engineering, Fourth Edition[M]. 北京:电子工业出版社,2007: 200-309.
    [10]Daniel Y.Abramovitch. Lyapunov redesign of analog phase-lock loops[J]. IEEE Transactions on Communications,1990,38(12):2197-2202.
    [11]Dan Simon, Hossny El-Sherief, Lyapunov stability analyses of digital phase-locked Ioops[C]. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, TX USA,1994: 2827-2829.
    [12]Daniel Abramovitch. Lyapunov redesign of classical digital phase-lock loops[C]. Proceedings of the American Control Conference, Denver, Colorado USA,2003:2401-2406.
    [13]Anders Rantzer. Almost global stability of phase-locked loops[C]. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA,2001:899-900.
    [14]Hassan K.Khalil. Nonlinear Systems (Third Edition) [M].北京:电子工业出版社,2007.
    [15]林海雪.电压电流频率和电能质量国家标准应用手册[M].北京:中国电力出版社,2001.
    [16]GB/T 14549-93.电能质量公用电网间谐波[S].
    [17]DB33/T 771-2009.电梯能源效率评价技术规范[s].
    [18]VDI4707 part 1. Lift Energy Efficiency[S].2009.
    [19]孙立新.电梯能源效率研究及其检测实践[R].2010.11.26.
    [20]孙立新,等.曳引电梯能耗检测方法与能效分级评定(修订稿)[Z].
    [21]孙立新,等.关于曳引电梯能耗检测方法与能效分级评定的修订说明[Z].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700