用户名: 密码: 验证码:
次同步振荡抑制装置及其控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交流线路的串联补偿技术和直流输电技术是增加电网远距离输电容量和提高电力系统稳定性的经济有效方法,但这两种方法都有可能引起次同步振荡(SSO)问题,对发电机轴系造成损害。随着“十二五”期间我国西部大型能源基地的不断建设,大量电力的送出势必需要更多的串联补偿交流线路和直流输电线路投入运行,可以预料电力系统次同步振荡问题将会更加突出。本文正是在这一背景下,对电力系统次同步振荡的抑制装置及其控制策略进行了研究,研究的主要内容如下:
     (1)介绍了测试信号法的原理及具体实现方法。通过分别计算出系统的电气阻尼和机械阻尼系数来判断系统次同步振荡的稳定性。基于加入TCSC的IEEE次同步谐振(SSR)第一标准测试系统,使用Prony方法分析时域仿真曲线,将辨识得到的模态阻尼与测试信号法分析结果进行比较,验证了测试信号法的有效性。将测试信号法扩展应用于多机系统的次同步振荡分析,通过对单厂多机系统各种运行工况的计算和分析,给出了一套适用于多机系统次同步振荡分析的测试信号法应用准则。
     (2)研究了使用晶闸管控制的串联补偿电容器(TCSC)抑制次同步振荡及附加阻尼控制器设计方法。介绍了TCSC的基本构造和运行原理,通过电气阻尼特性分析表明TCSC和固定串补的组合串补方式无法完全阻止次同步振荡的发生。针对此问题,基于相位补偿原理设计了TCSC的附加阻尼控制器。通过对发电机转速差信号进行适当的放大和移相,产生附加控制信号来调节TCSC的触发角,使TCSC能够在整个次同步频段提供正的电气阻尼来抑制次同步振荡。最后通过基于IEEE SSR第一标准测试系统的频域和时域仿真验证了所设计的TCSC附加控制器的有效性。
     (3)使用了基于电压源换流器(VSC)的新型串联补偿装置-静止同步串联补偿器(SSSC)来抑制次同步振荡。研究了SSSC基本运行原理和控制方法,分析了不同容量的SSSC的电气阻尼特性。设计了通带内低相移的扭振模式带通滤波器,通过带通滤波器对系统每个扭振模式分别进行相位补偿,使SSSC能够在所有扭振频率附近提供正的电气阻尼,达到抑制次同步振荡的目的。基于改进的IEEE次同步谐振第一标准测试系统的仿真结果表明,所设计的SSSC次同步振荡多模式阻尼控制器能够阻止发电机和线路之间次同步振荡的产生。
     (4)对门极控制串联电容器(GCSC)在抑制电力系统次同步振荡方面的应用进行了研究。介绍了GCSC的结构及基本控制原理,分析了GCSC稳态运行特性。对基于GCSC的各种不对称串补结构抑制SSO的能力做了相关研究,并采用测试信号法求取电气阻尼来展示不对称串补结构缓解SSO的效果。针对单相GCSC设计了次同步振荡阻尼控制器,在成功抑制次同步振荡的同时,减少了工程费用。
     (5)提出了一种基于附加励磁阻尼控制器(SEDC)和感应电机阻尼器(IMDU)的组合式次同步振荡抑制方案。SEDC通过对发电机转速信号的反馈控制持续地提供阻尼,能够抑制稳态和小扰动时SSO的发生:在系统受到大扰动后,通过加装在发电机轴系一端的IMDU来抑制故障时的暂态力矩放火。首先分析了SEDC控制器的设计过程,然后对IMDU的结构和参数的选取做了详细的研究。最后通过时域仿真分析验证了所设计的组合式次同步振荡抑制方案能较好地防范电力系统在稳态和暂态产生SSO的风险,弥补了SEDC在暂态故障时阻尼不足的缺点。
Series capacitor compensation of ac transmission lines and high voltage direct current (HVDC) transmission systems have been recognized as useful and economical means to increase long distance power transfer capability and to improve system stability. However, both of the two methods may lead to subsynchronous oscillation (SSO) problems and cause a great damage to the turbine-generator system. During the National 12th Five-Year Plan period, with the rapid growth of large energy bases in Western China, more series compensated transmission lines and HVDC transmission lines are needed in order to send large amount of electric power from West to East. The risks of SSO will be more severe than ever. In such circumstances, this dissertation studies the suppression devices and their control strategies of subsynchronous oscillation. The main works are organized as follows.
     (1) The basic principle of test signal method and its realization is introduced. Electrical damping and mechanical damping are calculated separately, and the results are used to indicate the system SSO stability. Based on the IEEE SSR first benchmark model (FBM), the analysis results of Prony modal identification and test signal method are compared in order to validate the effectiveness of the test signal method. The test signal method is then extended to multi-machine system. Different working conditions of a plant with three generators are analyzed and some rules are summarized.
     (2) The thyristor controlled series capacitor (TCSC) is adopted to suppress SSO. The basic structure and operating principles of the TCSC are studied. The electrical damping torque analysis shows in a hybrid system which includes both fixed series compensator and TCSC, disturbances may still excite torsional mode oscillations. A supplementary damping controller of the TCSC is then designed to solve this problem. The design method is based on phase compensation principle and the procedure for the syntheses of the controller is presented in detail. The effectiveness of the controller has been validated using modified IEEE SSR FBM in frequency domain and time domain simulations. The simulation results show that the proposed controller is effective to mitigate SSO.
     (3) The application of a static synchronous series compensator (SSSC) for damping subsynchronous resonance in series compensated system is examined. The modeling and basic operating principles of the SSSC are analyzed. A case study based on modified IEEE FBM is adopted to investigate the SSSC damping characteristics with varied SSSC rating. Special band-pass filters having low passband phase shift are designed. With these filters, a multimode controller design method is developed to suppress multiple unstable torsional frequencies. Simulation results based on IEEE FBM show the proposed controller can provide positive electrical damping around each torsional frequency and is effective to mitigate the torsional interaction between the electrical network and the turbine-generator shafts.
     (4) A series-connected FACTS device named gate-controlled series capacitor (GCSC) is investigated to mitigate subsynchronous oscillation. The fundamental structure and basic control method of the GCSC is firstly introduced, and the steady state characteristics of the GCSC are also analyzed. The GCSC with different asymmetric compensation structures are proposed. The ability of asymmetric structure to reduce the SSO destabilization is studied by test signal method. A single phase GCSC subsynchronous oscillation damping controller is then designed to suppress SSO and to reduce the rating and cost of the GCSC.
     (5) A new scheme to solve SSO problem with a combination of a supplementary excitation damping controller (SEDC) and an additional induction machine damping unit (1MDU) is proposed. By phase shifting and amplifying of the feedback control signal, the SEDC can provide effective damping under steady state and small disturbance operations. The IMDU is mechanically coupled to the generator shaft, acting like an active damping controller to mitigate the transient torque amplification during transients. Firstly, the design method of the SEDC is analyzed. The configuration of the IMDU is then introduced, and the influences of IMDU mechanical and electrical parameters are also discussed. Time domain simulation results based on IEEE SSR first benchmark indicate that, the SEDC may fail to damp SSO under some large disturbances, while the combination control scheme can eliminate SSO instabilities in both steady and transient states of power systems.
引文
[1]印水华.特高压大电网发展规划研究[J].电网与清洁能源,2009,25(10):1-3.
    [2]周小谦.我国“西电东送”的发展历史、规划和实施[J].电网技术,2003,27(05):1-5.
    [3]ANDERSON P M. Series compensation of power systems [M]. Encinitas, CA:PBLSH! Inc, 1996.
    [4]周孝信.电力系统可控串联电容补偿[M].北京:科学出版社,2009.
    [5]ABB.765 kV series capacitors:A world first[Z]. ABB power systems application note.
    [6]贺建国,施围,魏旭,等.阳城-三堡输电工程中串联补偿电容器组技术条件的研究[J].电瓷避雷器,2001(2):26-31+41.
    [7]张逸飞,李丽艳.中国电科院加紧研制特高压串补装置[N].国家电网报,2011.
    [8]WALKER D N, GIESECKE H. Steam turbine-generator torsional vibration interaction with the electrical network[R]. Palo Alto, California:EPRI,2005.
    [9]POURBEIK P, RAMEY D, ABI-SAMRA N, et al. Torsional interaction between electrical network phenomena and turbine-generator shafts[R]. Palo Alto, California:EPRI,2006.
    [10]文劲宇,孙海顺,程时杰.电力系统的次同步振荡问题[J].电力系统保护与控制,2008,36(12):1-4+7.
    [11]程时杰,曹一家,江全元.电力系统次同步振荡的理论与方法[M].北京:科学出版社,2009.
    [12]云南省电力投资有限公司.我国《电力工业“十二五”规划研究报告》解读[OL].[2011-2-11].http://www.ynpower.com.cn/information/1958.whtml.
    [13]国家高技术研究发展计划(863计划)先进能源技术领域智能电网关键技术研发(一期)重大项目申请指南[OL]http://www.863.gov.cn/news/1010/28/1010283765.htm.
    [14]HALL M C, HODGES D A. Experience with 500kV subsynchronous resonance and resulting turbine generator shaft damage at mohave generating station[J]. IEEE Publication 76 CH1066-PWR,1976,22-29.
    [15]IEEE SUBSYNCHRONOUS RESONANCE WORKING GROUP. Proposed terms and definitions for subsynchronous oscillations[J]. IEEE Transactions on Power Apparatus and Systems,1980,99(2):506-511.
    [16]IEEE SUBSYNCHRONOUS RESONANCE WORKING GROUP. Reader's guide to subsynchronous resonance[J]. IEEE Transactions on Power Systems,1992,7(1):150-157.
    [17]IEEE SUBSYNCHRONOUS RESONANCE WORKING GROUP. Terms, definitions and symbols for subsynchronous oscillations[J]. IEEE Transactions on Power Apparatus and Systems,1985,104(6):1326-1334.
    [18]NETO O M, MACDONALD D C. Analysis of subsynchronous resonance in a multi-machine power system using series compensation[J]. International Journal of Electrical Power & Energy Systems,2006,28(8):565-569.
    [19]KUNDUR P. Power system stability and control[M]. New York:McGraw-Hill,1994.
    [20]RAMEY D G, SISMOUR A C, KUNG G C. Important parameters in considering transient torques on turbine-generator shaft systems[J]. IEEE Transactions on Power Apparatus and Systems,1980,99(1):311-317.
    [21]IEEE SUBSYNCHRONOUS RESONANCE WORKING GROUP. First benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems,1977,96(5):1565-1572.
    [22]BUTLER J W, CONCORDIA C. Analysis of series capacitor application problems[J]. Transactions of the American Institute of Electrical Engineers,1937,56(8):975-988.
    [23]WAGNER C F. Self-excitation of induction motors with series capacitors[J]. Transactions of the American Institute of Electrical Engineers,1941,60(12):1241-1247.
    [24]RUSTEBAKKE H M, CONCORDIA C. Self-excited oscillations in a transmission system using series capacitors[J]. IEEE Transactions on Power Apparatus and Systems,1970,89(7): 1504-1512.
    [25]BONGIORNO M. On control of grid-connected voltage source converters-mitigation of voltage dips and subsynchronous resonances[Dissertation]. Sweden:Chalmers University Of Technology,2007.
    [26]ANDERSON P M, AGRAWAL B L, NESS J E V. Subsynchronous resonance in power systems[M]. Piscataway, NJ:Wiley/IEEE press,1990.
    [27]沈玲岩.串补系统次同步振荡机理的分析研究[硕士学位论文].北京:清华大学,1990.
    [28]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [29]IBRAHIM E S. Impact of fault allocation and stray capacitance on turbo-generator units connected to series compensated transmission lines[J]. International Journal of Electrical Power & Energy Systems,1997,19(2):111-118.
    [30]IEEE SUBSYNCHRONOUS RESONANCE WORKING GROUP. Second benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems,1985,104(5):1057-1066.
    [31]ACHILLES R A. Predicting shaft torque amplification[J]. IEEE Transactions on Power Systems, 1995,10(1):407-412.
    [32]陈武晖,毕天姝,杨奇逊,等.研究暂态扭矩的解析方法[J].中国电机工程学报,2010,30(07):70-76.
    [33]陈武晖,毕天姝,杨奇逊.模态叠加对次同步谐振暂态扭矩放大的影响[J].中国电机工程学报,2010,30(28):1-6.
    [34]BAHRMAN M, LARSEN E V, PIWKO R J, et al. Experience with HVDC-turbine-generator torsional interaction at Square Butte[J]. IEEE Transactions on Power Apparatus and Systems, 1980,99(3):966-975.
    [35]MORTENSEN K, LARSEN E V, PIWKO R J. Field tests and analysis of torsional interaction between the Coal Creek turbine-generators and the CU HVDC system[J]. IEEE Transactions on Power Apparatus and Systems,1981,100(1):336-344.
    [36]IEEE Std 1204-1997 IEEE guide for planning DC links terminating at AC locations having low short-circuit capacities[S].1997.
    [37]PIWKO R J, LARSEN E V. HVDC system control for damping of subsynchronous oscillations[R]. Palo Alto, California:EPRI,1982.
    [38]周长春.高压直流输电系统次同步振荡阻尼特性研究[博士学位论文].杭州:浙江大学,2004.
    [39]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社.2004.
    [40]LEE D C, BEAULIEU R E, ROGERS G J. Effects of governor characteristics on turbo-generator shaft torsionals[J]. IEEE Transactions on Power Apparatus and Systems,1985, 104(6):1254-1261.
    [41]LAMBRECHT D, K.ULIG T S, FICK H. Evaluation of the torsional impact of accumulated failure combinations on turbine generator shafts as a basis of design guidelines [C]. CIGRE, 1984, Paris.
    [42]王梅义,吴竞昌,蒙定中.大电网系统技术[M].北京:中国电力出版社,1995.
    [43]ROSTAMKOLAI N, PIWKO R J, LARSEN E V, et al. Subsynchronous interactions with static VAR compensators-concepts and practical implications[J]. IEEE Transactions on Power Systems,1990,5(4):1324-1332.
    [44]EL-SERAFI A M, NIAMAT M Y, HAQ E. Contribution of power system stabilizers to the damping of torsional oscillations of large turbo generators[J]. Electric Machines & Power Systems,1986,11(6):451-464.
    [45]BADRZADEH B, SMITH K, WILSON R. Torsional vibration of turbine generator by variable speed drives[J]. Pulse,2008(6):1-3.
    [46]IEEE SUBSYNCHRONOUS RESONANCE WORKING GROUP. Countermeasures to subsynchronous resonance problems[J]. IEEE Transactions on Power Apparatus and Systems, 1980,99(5):1810-1818.
    [47]IEEE SUBSYNCHRONOUS RESONANCE WORKING GROUP. Series capacitor controls and settings as countermeasures to subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems,1982,101(6):1281-1287.
    [48]1CHIHARA Y, KOTAKE T, WATANABE K, et al. Laboratory test and feasibility study of two countermeasures to subsynchronous resonance [J]. IEEE Transactions on Power Apparatus and Systems,1983,102(2):300-311.
    [49]HANNETT L N, DE MELLO F P. Mechanical countermeasures to subsynchronous torsional instability [in turbogenerators][J]. IEEE Transactions on Power Systems,1990,5(4): 1146-1150.
    [50]CHATELAIN J, KAWKABANI B. Subsynchronous resonance (SSR) countermeasures applied to the second benchmark model[J]. Electric Machines & Power Systems,1993,21(6):729-739.
    [51]PADIYAR K R. Analysis of subsynchronous resonance in power systems[M]. Norwell.Massachusetts:Kluwer Academic,1999.
    [52]沈玲岩.电气扰动下大型汽轮发电机组轴系扭转振动的分析与对策[博士学位论文].北京:清华大学,1994.
    [53]EDRIS A A. Subsynchronous resonance countermeasure using phase imbalance[J]. IEEE Transactions on Power Systems,1993,8(4):1438-1447.
    [54]CHUDASAMA M C, KULKARNI A M. Dynamic phasor analysis of SSR mitigation schemes based on passive phase imbalance[J]. IEEE Transactions on Power Systems,2011, IEEE Early Access:1-9.
    [55]FARMER R G, SCHWALB A L, KATZ E. Navajo project report on subsynchronous resonance analysis and solutions[J]. IEEE Transactions on Power Apparatus and Systems,1977,96(4): 1226-1232.
    [56]刘平,马凯,刘辉,等.托克托电厂阻塞滤波器模态中心频率偏移对抑制次同步谐振的影响[J].中国电力,2010,43(01):25-29.
    [57]CEN H, WANG X. Analysis of self-excitation in turbine-generators induced by static blocking filter[C]//Proceedings of 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC), March 28-31,2010, Chengdu, China:1-5.
    [58]龚乐年.抑制次同步机电共振用的几种滤波装置[J].电网技术,1991(01):66-67+16.
    [59]YAN A. Excitation control of torsional oscillations due to subsynchronous resonance[Dissertation]. Arlington:University of Texas,1977.
    [60]张帆,徐政.附加励磁阻尼控制抑制次同步谐振研究[J].电力系统自动化,2007,31(23):24-29.
    [61]谢小荣,刘世宇,张树卿,等.附加励磁阻尼控制抑制多模态SSR的机理及其关键技术[J].电力系统自动化,2007,27(21):10-14.
    [62]刘世宇,谢小荣,张东辉,等.附加励磁阻尼控制对励磁系统常规功能的影响[J].电力系统自动化,2008,32(07):6-9+62.
    [63]张远取,谢小荣,姜齐荣.应用附加励磁阻尼控制抑制HVDC引起的次同步振荡[J].电力系统保护与控制,2010,38(04):1-5.
    [64]HARLEY R G, BALDA J C. Subsynchronous resonance damping by specially controlling a parallel HVDC link[J]. Generation, Transmission and Distribution,1985,132(3):154-160.
    [65]FAIRLEY P. Flexible AC transmission:The FACTS machine[J]. IEEE spectrum,2011,48(01): 51-54.
    [66]HINGORANI N G, GYUGYI L. Understanding FACTS[M]. NY:IEEE Press,1996.
    [67]PILOTTO L A S, BIANCO A, LONG W F, et al. Impact of TCSC control methodologies on subsynchronous oscillations[J]. IEEE Transactions on Power Delivery,2003,18(1):243-252.
    [68]张帆,徐政.TCSC对发电机组次同步谐振阻尼特性影响研究[J].高电压技术,2005,31(03):68-70.
    [69]JOWDER F A R A, BOON-TECK O. Series compensation of radial power system by a combination of SSSC and dielectric capacitors [J]. IEEE Transactions on Power Delivery,2005, 20(1):458-465.
    [70]ALIZADEH PAHLAVANI M R, MOHAMMADPOUR H A. Damping of sub-synchronous resonance and low-frequency power oscillation in a series-compensated transmission line using gate-controlled series capacitor[J]. Electric Power Systems Research,2010,81(2):308-317.
    [71]GOR V, POVH D, YICHUAN L, et al. SCCL-a new type of facts based short-circuit current limiter for application in high-voltage systems[C]. CIGRE,2004, Paris:1-11.
    [72]陈刚,江道灼,吴兆麟.固态限流器抑制轴系扭振的研究[J].电工技术学报,2006,21(05):104-109.
    [73]XING K, KUSIC G L. Damping subsynchronous resonance by phase shifters[J]. IEEE Transactions on Energy Conversion,1989,4(3):344-350.
    [74]PADIYAR K R, PRABHU N. Design and performance evaluation of subsynchronous damping controller with STATCOM[J]. IEEE Transactions on Power Delivery,2006,21(3):1398-1405.
    [75]LEE Y S, WU C J. Application of superconducting magnetic energy storage unit on damping of turbogenerator subsynchronous oscillation[J]. Generation, Transmission and Distribution 1991, 138(5):419-426.
    [76]RAHIM A H M A, MOHAMMAD A M, KHAN M R. Control of subsynchronous resonant modes in a series compensated system through superconducting magnetic energy storage units[J]. IEEE Transactions on Energy Conversion,1996.11(1):175-180.
    [77]PADIYAR K R, PRABHU N. Investigation of SSR characteristics of unified power flow controller[J]. Electric Power Systems Research,2005,74(2):211-221.
    [78]HILL A T, LARSEN E V, BAKER D H. Assessment of FACTS requirements on the PSE&G system[R]. Palo Alto, California:EPRI,1996.
    [79]RAMEY D G, KIMMEL D S, DORNEY J W, et al. Dynamic Stabilizer Verification Tests at the San Juan Station[J]. IEEE Transactions on Power Apparatus and Systems,1981,100(12): 5011-5019.
    [80]KIMMEL D S, CARTER M P, BEDNAREK J H, et al. Dynamic stabilizer on-line experience[J]. IEEE Transactions on Power Apparatus and Systems,1984,103(1):72-75.
    [81]谢小荣,姜齐荣.柔性交流输电系统的原理和应用[M].北京:清华大学出版社,2006.
    [82]庞亚东,白秀娟.基于SVC抑制次同步谐振的应用研究[J].电气应用,2010,29(17):32-35.
    [83]杨文超,尤建生,李鹏,等.SSR-DS装置抑制次同步谐振与TSR保护配合的数模仿真试验研究[J].神华科技,2009(05):57-62.
    [84]郭锡玖,谢小荣,刘世宇,等.上都电厂SEDC提高次同步扭振阻尼的现场试验[J].电力系统自动化,2008,32(10):97-100.
    [85]谢小荣,郭锡玖,吴景龙,等.上都电厂串补输电系统附加励磁阻尼控制抑制次同步谐振的现场试验[J].中国电机工程学报,2010,30(01):27-32.
    [86]XIAORONG X, XIJIU G, YINGDUO H. Mitigation of Multimodal SSR Using SEDC in the Shangdu Series-Compensated Power System[J]. IEEE Transactions on Power Systems,2010, 26(1):384-391.
    [87]冯辰虎,高永峰,秦俊杰,等.托克托电厂阻塞滤波器系统二次回路设计的改进[J].电网技术,2010,34(05):180-184.
    [88]于海洋.托克托电厂600MW机组抑制次同步振荡方法研究[硕士学位论文].保定:华北电力大学,2010.
    [89]中国大唐集团公司.世界难度最大串补工程在大唐托克托发电公司投运[OL].[2011-01-26].http://www.sasac.gov.cn/n1180/n1226/n2410/12752497.html.
    [90]陈大宇,赵永林,刘全,等.上都电厂轴系次同步扭振保护系统[J].电力系统保护与控制,2010(06):122-125.
    [91]李国宝,张明,郭锡玖,等.上都电厂串补输电系统次同步谐振解决方案研究[J].中国电力,2008(05):75-78.
    [92]李立涅,洪潮.贵广二回直流输电系统次同步振荡问题分析[J].电力系统自动化,2007,31(07):90-93.
    [93]余畅,苏寅生,黄河.盘南电厂汽轮机组轴系扭振保护装置启动情况分析[J].南方电网技术,2010,04(03):92-95.
    [94]ANGQUIST L. Synchronous voltage reversal control of thyristor controlled series capacitor[Dissertation]. Stockholm:Chalmers University of Technology,2002.
    [95]余涛,童家鹏.HVDC整流站控制系统设计的频域理论分析方法[J].中国电机工程学报,2010,34(04):35-42.
    [96]BONGIORNO M, ANGQUIST L, SVENSSON J. A novel control strategy for subsynchronous resonance mitigation using SSSC[J]. IEEE Transactions on Power Delivery,2008,23(2): 1033-1041.
    [97]BONGIORNO M, SVENSSON J, ANGQUIST L. On control of static synchronous series sompensator for SSR mitigation[J]. IEEE Transactions on Power Electronics,2008,23(2): 735-743.
    [98]李志鹏,谢小荣.应用静止同步补偿器抑制次同步谐振的模态互补电流控制方法[J].中国电机工程学报,2010,30(34):22-27.
    [99]周长春,刘前进,LENNART N,等.抑制次同步谐振的TCSC主动阻尼控制[J].中国电机工程学报,2008,28(10):130-135.
    [100]张帆,徐政.直流输电次同步阻尼控制器的设计[J].电网技术,2008,32(11):13-17.
    [101]高本锋,肖湘宁,赵成勇,等.基于实时数字仿真器的SVC抑制次同步振荡的研究[J].电力系统保护与控制,2010,38(23):6-10+63.
    [102]YAN A, YAO-NAN Y. Multi-Mode Stabilization of Torsional Oscillations Using Output Feedback Excitation Control[J]. IEEE Transactions on Power Apparatus and Systems,1982, 101(5):1245-1253.
    [103]LI Q, ZHAO D, YU Y. A new pole-placement method for excitation control design to damp SSR of a nonidentical two-machine system[J]. IEEE Transactions on Power Systems,1989, 4(3):1176-1181.
    [104]谢小荣,武云生,林惊涛,等.采用遗传-模拟退火算法优化设计SVC次同步阻尼控制器[J].电力系统自动化,2009,33(19):11-14.
    [105]顾益磊,王西田,赵大伟,等.基于改进粒子群算法的附加励磁阻尼控制器设计[J].电力系统自动化,2009,33(07):11-16.
    [106]汤凡,刘天琪,李兴源.基于蚁群算法的次同步附加励磁阻尼控制器设计[J].电力系统保护与控制,2010,38(19):170-174+179.
    [107]HSU Y Y, JENG L H. Damping of subsynchronous oscillations using adaptive controllers tuned by artificial neural networks[J]. Generation, Transmission and Distribution,1995,142(4): 415-422.
    [108]SINDHU THAMPATTY K C, NANDAKUMAR M P, CHERIYAN E P. Adaptive RTRL based neurocontroller for damping subsynchronous oscillations using TCSC[J]. Engineering Applications of Artificial Intelligence,2010,24(1):60-76.
    [109]伍凌云,李兴源,龚勋,等.基于模糊免疫方法的次同步阻尼控制器设计[J].电力系统自动化,2007,31(11):12-16.
    [110]MATHUR R M, VARMA R K. Thyristor-based FACTS controllers for electrical transmission systems[M]. New York:IEEE Press and Wiley Interscience,2002.
    [111]JAYARAM KUMAR S V, GHOSH A, SACHCHIDANAND. Damping of subsynchronous resonance oscillations with TCSC and PSS and their control interaction[J]. Electric Power Systems Research,2000,54(1):29-36.
    [112]PILLAI G N, GHOSH A, JOSH1 A. Torsional interaction between an SSSC and a PSS in a series compensated power system[J]. Generation, Transmission and Distribution,2002,149(6): 653-658.
    [113]蒋平,栗楠.PSS和SVC联合抑制次同步振荡[J].电力自动化设备,2010,30(07):40-45.
    [114]徐政.复转矩系数法的适用性分析及其时域仿真实现[J].中国电机工程学报,2000,20(06):1-4.
    [115]张帆.电力系统次同步振荡抑制技术研究[博士学位论文].杭州:浙江大学,2007.
    [116]郑超,汤涌,马世英,等.基于等效仿真模型的VSC-HVDC次同步振荡阻尼特性分析[J].中国电机工程学报,2007,27(31):33-39.
    [117]蒋平,王贯义.抑制次同步谐振的并联结构PSS参数优化[J].电工技术学报.2009,24(10):122-127.
    [118]JOHANSSON N, ANGQUIST L, NEE H-P. A comparison of different frequency scanning methods for study of subsynchronous resonance[J]. IEEE Transactions on Power Systems,2010, 26(1):356-363.
    [119]姜齐荣,湘陈,天王,等.多机系统复转矩系数分析及PSS参数计算[J].电力系统及其自动化学报,2010,22(01):20-25.
    [120]周长春,徐政,王冠.多机电力系统扭振相互作用的研究综述[J].电网技术.2004,28(06):1-4.
    [121]CANAY 1 M. A novel approach to the torsional interaction and electrical damping of the synchronous machine part Ⅰ:Theory[J]. IEEE Transactions on Power Apparatus and Systems, 1982,101(10):3630-3638.
    [122]吕世荣.具有可控串联电容补偿电力系统的次同步谐振研究[博士学位论文].西安:西安交通大学,1999.
    [123]HARNEFORS L. Proof and Application of the Positive-Net-Damping Stability Criterion[J]. IEEE Transactions on Power Systems,2011,26(1):481-482.
    [124]邹伯敏.自动控制理论[M].北京:机械工业出版社,2002.
    [125]XIAO J, GOLE A M. A frequency scanning method for the identification of harmonic instabilities in HVDC systems[J]. IEEE Transactions on Power Delivery,1995,10(4): 1875-1881.
    [126]WALKER D N, ADAMS S L, PLACEK R J. Torsional vibration and fatigue of turbine-generator shafts[J]. IEEE Transactions on Power Apparatus and Systems,1981,100(11): 4373-4380.
    [127]龚乐年.浅析机组轴系扭振时的机械(模态)阻尼[J].电网技术,1995,19(08):29-33.
    [128]Manitoba HVDC Research Center.PSCAD/EMTDC user's manual[Z].
    [129]张贤达.现代信号处理(第二版)[M].北京:清华大学出版,2002.
    [130]刘国平.基于Prony法的电力系统低频振荡分析与控制[硕士学位论文].杭州:浙江大学,2004.
    [131]JENNINGS G D, HARLEY R G, LEVY D C. Subsynchronous resonance of a power station with two identical generating units[J]. Generation, Transmission and Distribution,1986,133(1): 33-43.
    [132]杨帆,王西田,徐英新,等.同型多机电力系统间扭振相互作用的等效简化研究[J].中国电机工程学报,2006,26(05):6-11.
    [133]WALKER D N, BOWLER C E J, JACKSON R L, et al. Results of subsynchronous resonance test at Mohave[J]. IEEE Transactions on Power Apparatus and Systems,1975,94(5): 1878-1889.
    [134]WALKER D N, BOWLER C E J, BAKER D H. Torsional dynamics of closely coupled turbine-generators[J]. IEEE Transactions on Power Apparatus and Systems,1978,97(4): 1458-1466.
    [135]韩彦华,李琥,施围.可控串补等值阻抗的计算方法研究[J].电工技术学报,2003,18(01):96-99.
    [136]曹路,陈珩.可控串联补偿抑制次同步谐振的机理[J].电力系统自动化,2001,25(04):25-30+36.
    [137]PIWKO R J, WEGNER C A, KINNEY S J, et al. Subsynchronous resonance performance tests of the Slatt thyristor-controlled series capacitor[J]. IEEE Transactions on Power Delivery,1996, 11(2):1112-1119.
    [138]ANGQUIST L, INGESTR M G, J NSSON H-A. Dynamical performance Of TCSC schemes[C]. CIGRE,1996, Paris.
    [139]徐政.可控串联补偿装置的稳态特性分析[J].电工电子技术.1998,32(02):32-35.
    [140]WATSON W, COULTES M E. Static exciter stabilizing signals on large generators-mechanical problems[J]. IEEE Transactions on Power Apparatus and Systems,1973,92(1):204-211.
    [141]谢小荣,杨庭志,姜齐荣,等.采用SVC抑制次同步谐振的机理分析[J].电力系统自动化,2008,32(24):1-5.
    [142]张帆,徐政.利用TCR抑制发电机次同步谐振的仿真研究[J].高电压技术,2008,34(08):1692-]697.
    [143]SEN K K. SSSC-static synchronous series compensator:theory, modeling, and application[J]. IEEE Transactions on Power Delivery,1998,13(1):241-246.
    [144]李岩松,郭家骥,刘君.UPFC暂态数学模型及其应用[J].电力系统自动化,2000,24(21):31-34+39.
    [145]赵洋.静止同步串联补偿器控制策略及抑制次同步谐振的研究[博士学位论文].北京:华北电力大学,2009.
    [146]刘黎明,康勇,陈坚,等.SSSC建模、控制策略及性能[J].电工技术学报,2006,21(09):37-43.
    [147]RIGBY B S, HARLEY R G. Resonant characteristics of inverter-based transmission line series compensators[C]//Proceedings of the 30th Annual IEEE Power Electronics Specialists Conference:Vol 1,1999, Charleston, SC, USA:412-417.
    [148]PRADHAN A C, LEHN P W. Frequency-domain analysis of the static synchronous series compensator[J]. IEEE Transactions on Power Delivery,2006,21(1):440-449.
    [149]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2010.
    [150]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [151]RAI D. Damping subsynchronous resonance using static synchronous series compensators and static synchronous compensators[Dissertation]. Canada:University of Saskatchewan,2008.
    [152]LAWSON K D, BROWN N L. Bandpass filter having low passband phase shift:United States, 4189681 [P].1980.
    [153]KARADY G G, ORTMEYER T H, PILVELAIT B R, et al. Continuously regulated series capacitor[J]. IEEE Transactions on Power Delivery,1993,8(3):1348-1355.
    [154]WATANABE E H, AREDES M, WILLCOX DE SOUZA L F, et al. Series connection of power switches for very high-power applications and zero-voltage switching[J]. IEEE Transactions on Power Electronics,2000,15(1):44-50.
    [155]WATANABE E H, DE SOUZA L F W, DA ROCHA ALVES J E. Thyristor and gate-controlled series capacitors:A comparison of components rating[J]. IEEE Transactions on Power Delivery, 2008,23(2):899-906.
    [156]DE SOUZA L F W, WATANABE E H, AREDES M. GTO controlled series capacitors: multi-module and multi-pulse arrangements[J]. IEEE Transactions on Power Delivery,2000, 15(2):725-731.
    [157]RAY S, VENAYAGAMOORTHY G K, WATANABE E H. A computational approach to optimal damping controller design for a GCSC[J]. IEEE Transactions on Power Delivery,2008, 23(3):1673-1681.
    [158]DE JESUS F D, WATANABE E H, DE SOUZA L F W, et al. SSR and power oscillation damping using gate-controlled series capacitors (GCSC)[J]. IEEE Transactions on Power Delivery.2007,22(3):1806-1812.
    [159]RAI D, RAMAKRISHNA G, FARIED S O, et al. Enhancement of power system dynamics using a phase imbalanced series compensation scheme[J]. IEEE Transactions on Power Systems, 2010,25(2):966-974.
    [160]肖湘宁,高本锋,赵成勇,等.利用单相SSSC的混合串联补偿方法[J].高电压技术,2010, 36(11):2803-2807.
    [161]EDRIS A A. Series compensation schemes reducing the potential of subsynchronous resonance[J]. IEEE Transactions on Power Systems,1990,5(1):219-226.
    [162]IRAVANI M R, EDRIS A A. Eigen analysis of series compensation schemes reducing the potential of subsynchronous resonance[J]. IEEE Transactions on Power Systems,1995,10(2): 876-883.
    [163]RAI D, RAMAKRISHNA G, FARIED S O, et al. Damping subsynchronous resonance using a STATCOM operating in a phase imbalanced mode[C]//Proceedings of 2009 IEEE Power & Energy Society General Meeting, July 26-30,2009, Calgary, AB, Canada:1-8.
    [164]刘燕,康积涛,李晨霞,等.含有STATCOM的电力系统次同步谐振研究[J].电力系统保护与控制,2008,36(20):38-40+44.
    [165]张帆,徐政.静止同步串联补偿器控制方式及特性研究[J].中国电机工程学报,2008,28(19):75-80.
    [166]GUPTA S K, KUMAR N, GUPTA A K. Controlled series compensation in coordination with double order SVS auxiliary controller and induction M/C for repressing the torsional oscillations in power systems[J]. Electric Power Systems Research,2002,62(2):93-103.
    [167]PURUSHOTHAMAN S, DE LEON F. Eliminating subsynchronous oscillations with an induction machine damping unit (IMDU)[J]. IEEE Transactions on Power Systems,2011,26(1): 225-232.
    [168]IEEE Std 421.5-2005 (Revision of IEEE Std 421.5-1992) IEEE recommended practice for excitation system models for power system stability studies[S].2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700