用户名: 密码: 验证码:
基于开关磁阻电动机的风力机模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在风力发电系统研发过程中,需要使用风力机模拟器驱动发电机,以测试发电机和并网装置在不同风速条件下的响应性能。研发精确、经济的风力机特性模拟技术,对于推动风力发电机技术的开发和应用具有十分重要的意义。
     实验室环境下的风力机模拟器都是由伺服电动机制成的,其对电动机的要求是:具备宽广的调速范围、良好的动态转速和转矩特性、较高的运行效率和可靠性,并且易于控制。目前,风力模拟器采用的电动机类型有直流电动机、异步电动机或者永磁同步电动机。直流电动机带有电刷和滑环,维护量大,可靠性较差,不适合应用于大功率风力机的模拟。异步电动机矢量控制复杂,控制精度受变化的转子参数影响较大,并且低速运行时电机出力小,容易振荡和不稳定。而永磁同步电动机的制造成本则比较高,且存在退磁问题。
     开关磁阻电动机(Switched Reluctance motor,简称SRM)是近年来开发成功的新型电动机,其优点是:调速范围宽,运行效率高;电机转子结构简单坚固,功率变换器无直通隐患,可靠性高;低速时出力大,有良好的转矩/转动惯量比;控制方式灵活,通过合理的控制,可以实现与直流电动机类似的转矩-转速特性。这些优势使得SRM很适合用于风力机模拟器,但目前还没有SRM用于风力机模拟器的研究报道。
     本文研究使用SRM的风力机特性模拟技术。对转速调节模拟方法及其模拟误差模型、基于模糊PI调节器的SRM转速控制法、SRM的直接转矩控制方法进行了较为深入、全面的探讨,并开发了实用的使用SRM的风力机模拟器。主要内容有:
     1.对目前国内外的风力机特性模拟的研究现状进行了分析总结。探讨了SRM应用于风力机特性模拟的可能性,并提出了SRM相对于其它风力机模拟系统的优势。
     2.提出一种在软件模拟器中数值求解风力机系统微分方程,控制伺服电动机实时调速跟踪的风力机模拟技术。在时域上建立转速调节模拟风力机特性的误差模型,分析模拟步长和转速对风力机特性模拟误差的影响,提出在风力机软件模拟器中以四阶龙格库塔方法实时求解系统微分方程,以降低模拟误差。
     3.设计了SRM模糊PI调节器,克服SRM双凸极结构和饱和非线性带来的建模困难,进行转速的动态平滑调节。以开关磁阻电动机准线性模型为基础,将SRD(Switched Reluctance motor Drive,开关磁阻电动机调速系统)整定成典型Ⅱ型系统以确定模拟步长。转速偏差大时模糊调节器工作,转速偏差小时PI调节器作用,以消除稳态偏差。进行了风力机模拟系统单步长转速模拟的数字仿真,结果表明模糊PI调节器相比常规PID调节器具备更好的转速跟踪性能。
     4.研究了一种基于SRM直接转矩控制(Direct Torque control, DTC)的风力机转矩模拟技术。依据风力机和模拟系统的机械方程,推导出转矩调节模拟风力机的转动惯量补偿方法,以实现风力机动态模拟。实时软件模拟器中执行风力机模型,并以转矩指令控制SRM实时跟踪输出参考转矩,SRM采用直接转矩控制策略调节转矩。
     5.开发了一种转矩磁链双滞环控制的开关磁阻电动机DTC算法。基于SRM近似转矩模型和试验测定的磁化及转矩特性数据,采用转矩磁链双滞环控制策略,直接控制SRM的转矩,实现使用SRM的风力机特性转矩调节模拟。SRM双滞环控制借鉴异步电机的直接转矩控制策略,对SRM磁链矢量实时空间定位,根据参考磁链和转矩幅值,选择控制电压矢量。采用双位式砰砰控制,原理简单,鲁棒性强。Simulink仿真结果验证了转矩磁链双滞环控制的SRM转矩跟踪的有效性,相比SRM的电流斩波控制,SRM直接转矩控制显著减小了转矩脉动。
     6.分别建立了风力机与风力机模拟系统小信号线性化模型,对风力机特性的转速调节模拟方案与转矩调节模拟方案在频域上进行研究分析,建立模拟误差的频域特性模型,结合输入风速的Van der Hoven模型功率谱特性,比较两种模拟方案的频域动态误差特性。
     7.建立了开关磁阻电动机驱动直流发电机的风电系统模拟试验平台,设计了一套基于10kW开关磁阻电动机的风力机模拟器。转速调节模拟试验中,上位机软件根据风速输入和传感器的负载转矩值进行风力机特性模拟计算,通过串口向电机控制器传送转速指令,由模糊PI控制器进行实时转速调节。在风力机特性的转矩模拟试验中,测量了开关磁阻电动机的磁链-电流-位置角特性数据,并通过三次样条函数插值,对电流i积分和对位置角9的微分运算,获取SRM的转矩-电流-位置角特性表格,用于开关磁阻电动机DTC控制。以14kW直流发电机为风力机模拟器负载,采用直接转速控制策略,调节直流发电机励磁,对风力机模拟器进行最大风能跟踪测试。转速曲线和负载转矩数据分析表明,所开发的风力机模拟器实现了对风力机转矩-转速特性和转动惯量的模拟。
     本文对基于开关磁阻电动机的风力机特性模拟技术进行深入研究。分别采用基于SRD模糊PI控制的转速调节方案和基于SRM直接转矩控制的转矩调节方案对风力机特性进行模拟。基于开关磁阻电动机的风力机模拟器结构可靠稳定,调速范围宽,低速动态性能好,为实验室环境下的风力发电机的研发测试提供了一种有效的模拟手段。
In the research and development of the wind generation system under the laboratory condition, it is necessary and important to simulate the wind turbine. As the wind mill equipment is expensive and inconvenient, a motor drive is usually used to emulate the wind turbine characteristics. It drives the generator in the wind generation experiments, in order to develop maxmimum power tracking algorithm and test the grid integration equipment performance. For this reason, the wind turbine simulator (WTS) is very important in wind generation studies.
     The present wind turbine simulators are mostly based on Direct-Current(DC) motor、Asynchronous motor or Permanent Magnet Synchronous Motor(PMSM). The DC motor is not reliable enough for the maintenance of its brushes and slip rings. It is also unsuitable for the simulation of large capacity wind turbines. Asynchronous motor is complex to implement good torque characteristics and the vector control is influenced by the time-varying rotor coefficients. In addition, its low speed output is small, thus results in the vibrations and unstability. The PMSM is costly in the machine material and is also not suitable in simulaion of the large capacity wind turbines. As the development of the wind generation technology, the servo motor used in wind turbine simulator is ought to be durable、reliable and modulated well in the a wide speed range.
     The switched reluctance motor (SRM) is solid and reliable due to the simple structure of the rotor: brushless and windingless, thus overcomes the drawbacks of DC motor. Its converter is more reliable than the asynchronous motor. Its torque output is large in low speed scope, potentially better than the asynchronous motor in an overall speed range. Also the motor is much cheeper than the PMSM. In addition, it has several control items, adaptive to flexible control and could acquire the mechenical performance as good as the DC motor through approriate control. All these priorities make the SRM a good choice in wind turbine simulation. However, there have been few researches on the wind turbine simulator adopting switched reluctance motor. At present, most of the wind turbine simulators are implemented by the way of torque control, which is hard and complex to realize. It is necessary to make a thorough study in the WTS and explore some new schemes to simplify the WTS structure in the wind generation studies.
     This paper focuses mainly on the control of the switched reluctance motor to simulate the wind turbine, and has done all-around study, from simulation to experiment, from theory to field practice. The detailed research work is as follows:
     1. This paper summerized and analyzed the present technology of wind turbine simulation, explored the possibility of the wind turbine simulation based on the switched reluctance motor. The advantages of SRM based WTS is also presented.
     2. The paper proposes an WTS:The system differential equation is solved in every time stamp to acquire the reference rotational speed the real turbine will arrive at the next time point. The speed commands are sent instantly to SRM controller, which regulate the SRM to transit to the reference speeds. A simulation error model is established to measure the WTS adopting speed regulation scheme. The wind turbine simulation error in function of the simulation step and feedback rotational speed is studied through MATLAB numerical analysis. The 4th Runge-Kutta method is adopted in the solving equation work to reduce the simulation error.
     3. A fuzzy logic algorithm combined with PI controller is designed to implement the speed regulation scheme based on switched reluctance motor. Because the SRM is highly nonlinear due to the double salient structure and saturated magnetic circuit, as well as completely dependent on switches in normal work, the accurate model is hard to obtain. The WTS in the speed regulation scheme can be realized in the form of fuzzy logic of the chopped current control of SRM. A PI control scheme is added to the fuzzy algorithm in order to eliminate the steady error. The SRM tracking system is set to typical II system to determine the simulation step and the simulation error is measured by accounting the numerical results. Through digital simulation of the WTS in a single step in MATLAB/Simulink environment, the fuzzy PI controller is proved to have a better speed tracking performance than the normal PID controller.
     4. A wind turbine simulator based on the DTC (Direct torque control) of switched reluctance motor is proposed. In order to emulate the wind turbine dynamically, a turbine inertial compensation method is deduced according to the system mechanical equations and applied to the proposed WTS. The wind turbine model is implemented in the real-time software simulator and the reference torque is acquired and sent to motor controller, which make the SRM track the reference torque in the DTC manner.
     5. Based on the approximate torque model, the magnetization and torque characteristic data, a dual hysteris loop control method is conducted to implement the DTC of SRM, in purpose of simulating the wind turbine in a torque control scheme. Both the torque and flux amplitudes are controlled in respective target hysteris loops, thus the direct torque control of SRM is carried out. Nowadays the high property control of SRM torque mainly incudes:torque sharing function(TSF)、sliding mode variable structure control、iterative learning and neural network control.The methods are always complex, in need of large amount of off-line computation. The proposed direct torque control algrithm is based on control of dual hysteris loops of flux and torque, which borrows the DTC scheme of the asynchronous motor, and has a double on-off regulator. It locates the flux space vector, calculates the amplitude of the flux and motor torque, then choose the voltage space vector to decrease or increase the amplitude. Consequently, the flux and torque amplitudes are constrained in hysteris bands. The control structure is simple and robust and effective in the torque ripple reduction of SRM. The turbine model combined with the DTC tracking system of SRM is simulated in the MATLAB/Simulink environment. In constant wind, the simulation results show that the dual-hysterisis torque tracking system has good accordance with the real wind turbine characteristics and indicates a much less torque pulsation than the conventional chopped current hysterisis control.
     6. The wind turbine linearized model and the WTS linearized models both in speed control scheme and torque control scheme is deduced to compare the speed control scheme with the torque control scheme in frequency characterics. A simulation error model is established in frequency domain to evaluate simulation error for the two schemes. With respect to the power spectral characteristics of Van der Hoven modle for wind speed, the simulation error for both schemes is analized and compared. In conclusion, the torque control scheme of wind turbine simulator indicates a better tracking performance in high frequency simulation occation than the speed control scheme, while in the low-medium frequency scope the two schemes have the close simulation error.
     7. A test rig for the wind turbine simulator based on SRM is built. It is composed of a 10kW SRD (Switched Reluctance motor Drive) and a 14kW DC generator acting as the the load. Firstly, the fuzzy-PI controller of SRD is designed. In the experiments of WTS adopting the speed control scheme, the upper machine software implements the wind turbine model and sends the reference speeds to the SRD controller through RS232 port. The fuzzy-PI controller regulates the SRM according to the track the received speeds. The experimental results suggest that the fuzzy-PI controller of SRD is capable of speed tracking in WTS adopting the speed control scheme. In the experiments for the WTS based on DTC of SRM, The flux-current-position angle characteristics are measured and the flux-current-position angle characteristics are deduced by integrating the current i and differentiating the position angelθ。The charateristics are stored as data forms in the program and used to calculate the current fluxes and torques. The control program is made up of two parts:the wind turbine model implementation and the DTC algrithm of SRM torque track. The experimental results indicate that the WTS can perform the wind turbine characteristic under constant wind velocity with variable load. In the MPPT (Maximum Power Tracking point) test, the WTS characteristic also has a good identity with the simulated wind turbine.
     The thesis makes intensive study on the wind turbine simulator based on switched reluctance motor. The speed control scheme in WTS adopting the fuzzy PI control of SRM is put forward, as well as the direct torque control scheme of SRM in torque control scheme of WTS. The speed control scheme is simple, reliable and has a good stability. The torque control scheme of WTS is comparatively complex while the simulation error in high frequency domain is smaller than the speed control scheme. In conclusion, the torque control scheme of WTS is an ideal method. The wind turbine simulator based on switched reluctance motor indicates a reliable merit, high range speed regulation and good performance in low speed range. It is an effective servo-motor for the development of wind generation systems. The proposed WTS based on switched reluctance motor has provided a practical instrument for the wind generation study and it exhibits a prospect in large quantity and direct drive wind generation developments. Due to the intrinsic torque pulsation and heavy nonlinearity of switched reluctance motor, it is hard to modulate the torque and speed accurately. The torque pulsation minimization study is ought to be conducted to ensure and improve the performance of the wind turbine simulator in future work.
引文
[1]NOAA Earth System Research Laboratory, R/GMD,325 Broadway, Boulder, CO "THE NOAA ANNUAL GREENHOUSE GAS INDEX (AGGI)" [EB].
    [2]J.T.Houghton, Y.Ding, D.J.Griggs. et al.climate change 2011:The scentific basis [R]:69-70.
    [3]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2006:1-2,97-98,156-158.
    [4]卞松江.变速恒频风力发电关键技术研究[D].杭州:浙江大学出版社,2003:2-3.
    [5]贾要勤.风力发电实验用模拟风力机[J].太阳能学报,2004,25(6):735-739.
    [6]刘其辉,贺益康,赵仁德.基于直流电动机的风力机特性模拟[J].中国电机工程学报,2006,26(7):134-139.
    [7]Md.Arifujjaman, M.t.Iqbal,John E.Quaicoe, Emulation of a small wind turbine system with a separately-excited dc machine[J]. Journal of Electrical and Electronics Engineering,2008, 8(1):569-579.
    [8]Seung-Ho Song, Byoung-Chang Jeong, Hye-In Lee, et al. Emulation of output characteristics of rotor blades using a hardware-in-loop wind turbine simulator[R]. Applied Power Electronics Conference and Exposition,2005:1791-1796.
    [9]Dale S.L.,Dolan P.W., Lehn.Real-time wind turbine emulator suitable for power quality and dynamic control studies[D].Thesis (M.A.Sc.), University of Toronto,2005:1-6.
    [10]S.M.Chan, R.L.Cresap, D.H.Curtice. Wind turbine cluster model[J], IEEE Transactions on Power Appratus and Systems,1984,103:1692-1698.
    [11]T.Thiringer,J.-ADahlberg, Periodic pulsations from a three-bladed wind turbine[J]. IEEE Transactions on Energy Conversion,2001,16:128-133.
    [12]P.Sorensen, A.D.; Hansen, P.A.C.; Rosas. Wind models for simulation of power fluctuations from wind farms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002,90:1381-1402.
    [13]D.A.Spera. Wind Turbine Technology[M], NewYork, NY, ASME Press,1994:23-46.
    [14]R.Teodorescu, F.Iov, F.Blaabjerg, Flexible development and test system for a 11kW wind turbine[C],34th Annual Power Electronics Specialists Conference, Acapulco, NM.United states.2003,1:67-72.
    [15]B.Rabelo, W.Hofmann, M.Gluck. Emulation of the static and dynamica behavior of a wind turbine with a DC Machine[C].35th IEEE Power Electronics Specialists Conference. Aachen, Germany.2004:2107-2112.
    [16]刘建,李建林,周谦.一种简单易行的风力机模拟器[J].电气传动.2007,37(10):3-6.
    [17]Farret F.A., Gules R., Marian J. Micro-turbine simulator based on speed and torque of a DC motor to drive actually loaded generators[C]. Proceedings of the IEEE International Caracas Conference on Devices, Circuits and Systems, ICCDCS. Caracas, Venezuela. 1995:89-93.
    [18]Pena Ruben, CardenasRoberto, Blasco Ramon. A cage induction generator using back to back PWM converters for variable speed grid connected wind energy system[C]. IECON Proceedings(Industrial Electronics Conference), Denver, CO, United states.2001,2: 1376-1381.
    [19]Cardenas Roberto, Pena Ruben. Sensorless vector control of induction machines for variable-speed wind energy applications. IEEE Transactions on Energy Conversion[J], 2004,19(1):196-205.
    [20]Battaiotto,P.E.; Mantz, R.J.;Puleston,P.F. A wind turbine emulator based on a dual DSP processor system[J].Control Engineering Practice,1996.4(9):1261-1266.
    [21]Kim Hyeyng-Gyun, lee Dong-Chong, Seok Jul-Ki. et al. Stand-alone wind power generation system using vector-controlled cage type Iduction generators[C].ICEMS,2003,6(1): 289-292.
    [22]Chinchilla, M.; Arnaltes, S.; Rodriguez-Amenedo, J.L. Laboratory set-up for wind turbine emulation[C]. IEEE, ICIT, Hammamet, finisia.2004:553-557.
    [23]Yun,Dong-Jin; Han,Byung-Moon; Cha,Han-Ju. et al. Development of PMSG wind power system model using wind turbine simulator and matrix converter[J]. Transactions of the Korean Institute of Electrical Engineers.2009,58(6):1130-1137.
    [24]Chang,L.; Doraiswami,R.; Boutot,T.; Kojabadi,H. Development of a wind turbine simulator for wind energy conversion systems[C], CCECE 2000-Canadian Conference on Electrical and Computer Engineering, Nova Scotia, NS, Can.2000,1:550-554.
    [25]吴捷,许燕灏.基于异步电动机的风力机风轮动态模拟方法[J].华南理工大学学报(自然科学版),2006,33(6):46-49.
    [26]Kojabadi,H.M.; Liuchen Chang; Boutot,T. Development of a novel wind turbine simulator for wind energy conversion systems using an inverter-controlled induction motor[J], IEEE Transaction on Energy Conversion,2004,19(3):547-552.
    [27]汤蕴璆,史乃.电机学[M].北京:机械工业出版社,1999.4:319-322.
    [28]Ogawa,K; Yamamura,N.; Ishda,M. Study for small size wind power generating system using switched reluctance generator[C].2006 IEEE International Conference on Industrial Technology. Mumbai, India.2006:1510-1515.
    [29]Neammanee, Bunlung; Sirisumrannuku, Somporn; Chatratana, Somchai. Development of a wind turbine simulator for wind generator testing[J]. International Energy Journal.2007, 8(1):21-28.
    [30]Xu Ke; Hu Minqiang; Yan Rong Yan; Du W. Wind turbine simulator using PMSM[C].42nd International Universities Power Engineering Conference, Brighton, Unitedkingdom.2007: 732-737.
    [31]Hu,Weihao; Wang,Yue; Song,Xianwen; Wang,Zhaoan. Development of wind turbine simulator for wind energy conversion systems based on permanent magnet synchronous motor[C]. ICEMS 2008, Wuhan, China.2008:2322-2326.
    [32]Moore,Ian; Ekanayake,Janaka. Design and development of a hardware based wind turbine simulator. UPEC 2010, Cardiff, United kingdom.2010:1-5.
    [33]刘广忱,王生铁,刘彦超.采用直流电动机和调速系统的风力机模拟器设计[J].高电压技术,2010,36(3):805-809.
    [34]陈彬,宋平岗,何鑫.基于直接转矩控制的风力机模拟器研究[J].防爆电机.2007,42(4):18-21.
    [35]刘彦超,基于直流电动机的风力机模拟器研究[D].内蒙古工业大学硕士学位论文.2009.
    [36]贾要勤,曹秉刚,杨仲庆.风力机模拟平台的MPPT快速响应控制方法[J].太阳能学报.2004,25(3):364-370.
    [37]李建林;高志刚;付勋波;李政珉Vacon变频器在风力机模拟器中的应用[J].变频器世界.2007(5):92-94.
    [38]Cheng,Fangshun; Zhou,Bo; Zhang,Le. Wind Turbine Simulator Based on DSEM. IPEMC '09.Wuhan, China.2009[C]:2291-2294.
    [39]Jordi Zaragoza, Josep Pou, Antoni Arias, et al. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system[J]. Renewable Energy, 2011,36(5):1421-1430.
    [40]Janetzke, David C. Use of the west-1 wind turbine simulator to predict blade fatigue load distribution [J]. NASA Technical Memorandum,1983.
    [41]No, T.S.; Kim, J.-E.; Moon, J.H.Modeling, control, and simulation of dual rotor wind turbine generator system[J].Renewable Energy.2009,34(10):2124-2132
    [42]Kojabadi, Hossein Madadi; Chang, Liuchen. A novel steady state wind turbine simulator using an inverter controlled induction motor[J]. Wind Engineering.2004,28(4):433-443.
    [43]杨赞,程明,张建忠.基于直流电动机的风力机特性动态模拟器研究[J].太阳能学报,2009,30(9):1271-1275.
    [44]耿华,周伟松,杨耕.变桨距风电系统功率控制的逆系统鲁棒方法[J].清华大学学报(自然科学版),2010,50(5):718-723.
    [45]Foley,Joseph T.; Gutowski,Timothy G. TurbSim:Reliability-based wind turbine simulator[C]. IEEE International Symposium on Electronics and the Environment. San Francisco, CA, United states.2008,4562872.
    [46]Monfared, Mohammad; Madadi Kojabadi, Hossein; Rastegar, Hasan. Static and dynamic wind turbine simulator using a converter controlled dc motor [J]. Renewable Energy,2008, 33(5):906-913.
    [47]Zimmerie,Dan; Pacific,Oliver; Howard,Nathan. Performance characterization of a wind turbine simulator for grid connected and islanded wind turbine operation[C]. Proceedings of the Energy Sustainability Conference 2007.Long Beach, CA, United states,2007: 1093-1100.
    [48]Liu, Guangchen; Wang, Shengtie; Zhang, Jike. Design and realization of DC motor and drives based simulator for small wind turbine[C].2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China.2010.
    [49]Park,Joon-Young; Lee,Jae-Kyung; Oh,Ki-Yong. et al. Design of simulator for 3MW wind turbine and its condition monitoring system[C]. International MultiConference of Engineers and Computer Scientists 2010. Kowloon, Hongkong.2010:930-933.
    [50]Bourlis, Dimitrios; Bleijs, J.A.M.Gain scheduled controller with wind speed estimation via Kalman filtering for a stall regulated variable speed wind turbine [J]. Proceedings of the 44th International Universities Power Engineering Conference, Glasgow, United Kingdom, 2009:5429362.
    [51]Liu, Chuang; Ling, Zhibin; Cai, Xu. Control of offshore wind turbine simulators for real time using layering models[C].1st World Non-Grid-Connected Wind Power and Energy Conference, Nanjing, China,2009:425-429.
    [52]Seman, Slavomir; Iov,F.; Niiranen,J.; Arkkio,A. Comparison of simulators for variable-speed wind turbine transient analysis[J]. International Journal of Energy Research.2006, 30(9):713-728.
    [53]Han,B.; Lee,H.; Yoon,D. Hardware simulator development for PMSG wind power system[C]. 2009 IEEE Power and Energy Society General Meeting, Calgary, AB, Canada.2009.
    [54]Seo,Young-Ger; Ko,Jong-Sun; Hong,Soon-Chan; Choi,Nam-Sup. Development of simulator for DFIG-based wind turbine using carrier modulated matrix converter [J]. Proceedings of the 4th IASTED Asian Conference on Power and Energy Systems, Langkawi, Malaysia. 2008:334-340.
    [55]Ahshan, R.; Iqbal, M.T.; Mann, George K. I. Performance of a controller for small grid connected wind turbines[C].2007 IEEE Canada Electrical Power Conference, Montreal, QC, Canada.2007.
    [56]Seo, Young-Ger; Kim, Young-Chan; Ko,Jong-Sun,et al. Development of simulator for DFIG-based wind turbine[C].7th Internatonal Conference on Power Electronics, Daegu, Korea.2007.
    [57]Diop,A.D.; Nichita,C.; Belhache,J.J.et al. Error evaluation for models of real time wind turbine simulators[J]. Wind Engineering,24(3):203-221.
    [58]王宏华.开关型磁阻电动机调速控制技术[M].北京:机械工业出版社,1999:66-67,140-142.
    [59]阮毅,陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2009.8:67-75.
    [60]Zhao jin, Bose Bimal K. Evaluation of membership functions for fuzzy logic controlled induction motor drive[J]. lnductrial Electonics Society,2002. IECON'02. The 28th Annual Conference of the IEEE. Nov.2002, (1):229-234.
    [61]王立新,模糊系统与模糊控制教程[M],北京:清华大学出版社,2003.
    [62]尹春辉,詹琼华,孙建波.开关磁阻电机驱动系统模糊控制器的设计与仿真[J].微电机,2006,39(5):1-5.
    [63]张志远.采用模糊控制技术的开关磁阻电机调速系统[J].微特电机,2004,32(1):21-23.
    [64]王勉华,梁媛媛.开关磁阻电机直接转矩模糊PI控制器设计[J].电气传动,2010,40(1):51-54.
    [65]Stephenson J M, Corda J. Computation of torque and current in doubly-salient reluctance motors from nonlinear magnetization data[J].1EE Proceedings-B,1979,126(5):393-396.
    [66]Dennis G M, Matthew V, James S T. Variable reluctance motor characterization[J]. IEEE Transactions on Industrial Electronics,1989,36(1):56-63.
    [67]Pulle D W J. New data base for switched reluctance drive simulation[J]. IEE Proceedings-B, 1991,138(6):331-337.
    [68]Rehman S U, Taylor D G. Piecewise modeling and optimal commutation of switched reluctance motors[C]. Proceedings of the IEEE International Symposium on Industrial Electronics,1995,1:266-271.
    [69]Xue X D, Cheng K WE, Ho S L. Simulation of switched reluctance motor drives two-dimensional bicubic spline[J]. IEEE Transactions on Energy Conversion,2002,17(4): 471-477.
    [70]Ilic'-Spong M, Marino R, Peresada S, et al. Feedback linearizing control of switched reluctance motors[J]. IEEE Trans. Automation Control,1987,32(5):371-379.
    [71]Torrey D A, Lang J H. Modeling a nonlinear variable-reluctance motor drive[J]. IEE Proceedings-Electric Power Applications,1990,137(5):314-326.
    [72]Chan W M, Weldon W F. Development of a simple nonlinear switched reluctance motor model using measured flux linkage data and curve fit[C]. IEEE Industry Applications Society Annual Meeting, Louisiana US,1997,5-9.October:318-325.
    [73]Elmas C, Sagiroglu S, Colak I, et al. Nonlinear modeling of a switched reluctance drive based on neural networks[C]. Proceedings of Fifth International Conference on Power Electronics and Variable-Speed Drives, London UK,1994,26-28. October:7-12.
    [74]纪良文,蒋静坪,何峰,等.基于径向基函数神经网络的开关磁阻电动机建模[J].电工技术学报,2001,16(4):7-11.
    [75]Daldaban F, Ustkoyuncu N, Guney K. Phase inductance estimation for switched reluctance motor using adaptive neuro-fuzzy inference system[J]. Energy Conversion and Management,2006,47:485-493.
    [76]Miller T J E, McGilp M. Nonlinear theory of the switched reluctance motor for rapid computer-aided design[J]. IEE Proceedings of Electric Power Applications,1990,137 Pt. B(6):337-347.
    [77]吴建华.开关磁阻电动机稳态性能的一种快速非线性仿真法[J].电工技术学报,1997,12(3):6-11.
    [78]Miller T J E, Glinka M, McGilp M, et al. Ultra-fast model of the switched reluctance motor[C]. Thirty-Third IEEE IAS Annual Meeting, St. Louis Mo,USA,12-15. October 1998,1:319-326.
    [79]Kim, Gyeong-Hun; Kim, Young-Ju; Park, Minwon.et al. RTDS-based real time simulations of grid-connected wind turbine generator systems[J].2010 43rd Winter Simulation Conference,Baltimore, MD, United states.2010:3283-3294.
    [80]Allen, Matthew S; Sracic, Michae W.; Chauhan, Shashank. Output-only modal analysis of linear time-periodic systems with application to wind turbine simulation data[J].Mechanical Systems and Signal Processing.2011,25(4):1174-1191.
    [81]Iulian Munteanu, Antoneta Iuliana Bratcu, Maria Andreica, et al. A new method of real-time physical simulation of prime movers used in energy conversion chains[J]. Simulation Modelling Practice and Theory,2010,18(9):1342-1354.
    [82]Ahmet Duran sahin. Progress and recent trends in wind energy [J]. Progress in Energy and Combustion Science.2004,30(5):501-543.
    [83]王宏华.开关型磁阻电动机调速控制技术[M].北京:机械工业出版社,1999:66-67,140-142.
    [84]郑洪涛,蒋静坪.开关磁阻电动机高性能转矩控制策略研究[J].电工技术学报,2009,20(9):25-28.
    [85]Sayeed Mir, Malik E Rlbuluk, Iqbal Husain. Torque-ripple Minimization in Switched Reluctance Motors Using Adaptive Fuzzy Control [J]. IEEE Transactions on Industry Applications,1999,35(2):461-468.
    [86]Luis O A P Henriques, Luis G B Rolim, Walter I Suemitsu, et al. Torque Ripple Minimization in a Switched Reluctance Drive by Neuro-fuzzy Compensation[J]. IEEE Transactions on magnetics,2000,36(5):3592-3594.
    [87]Reay D S, Green TC, Williams B W. Application of Associative Memory Neural Networks to the Control of a Switched Reluctance Motor[J]. IECON,1993,1:200-206.
    [88]Panda S K, Dash P K. Application of Nonlinear Control to Switched Reluctance Motors:a Feedback Linear Approach. IEE Proceedings of Electric Power Applications,1995, 143:371-379.
    [89]周素莹,林辉.减小开关磁阻电动机转矩脉动的控制策略综述[J].电气传动,2008,38(3):11-17.
    [90]Cheok, Adrian David; Yusuke Fukuda. A New Torque and Flux Control Method for Switched Reluctance Motor Drives. IEEE Transactions on Power Electronics, July 2002, 7(4):543-557.
    [91]N.H. Lipman, Overview of Wind/Diesel Systems,1st World Renewable Energy Congress, September, Reading, Uk, Proc. Vol.3,1990, pp:1547-1569.
    [92]吴建华,开关磁阻电动机的设计与应用[M].北京:机械工业出版社,2000.
    [93]李俊卿,李和明.开关磁阻电动机发展综述.华北电力大学学报.2002,29(1):1-5.
    [94]Charles P.; Barry W.A unipolar converter for a switched reluctance motor[J].IEEE Transactions on Inductry Applications,1990,26(2):222-228.
    [95]Hao Chen, Fengfeng Zhuang,Yang Zhao. Frequenched Spectrum Analysis of the current for A Switched Reluctance Motor Drive[J]. IEEE Electrical Machines and Systems,2005, 12(2):543-547.
    [96]Barnes M.; Pollock C.Selecting Power Electronic Converter for Single Phase Switched Reluctance Motors [J]. IEE Conf.on Power Electronics and Variable Speed Drives, No.456, 1998, pp:527-531.
    [97]曹澜.带滤波电容的整流电路的功率因数和谐波分析[J].船电技术,2001,(2):27-28.
    [98]龚晨,杨向宇,孙明.一种新的开关磁阻电动机功率变换器[J].机电工程技术,2004,33(4):23-25.
    [99]黄俊,王兆安.电力电子变流技术[M].机械工业出版社,2002.
    [100]单晓庆,胡平旺.EXB841对IGBT的过流保护[J].电力电子技术,1998,(3):85-86.
    [101]孙佃升,白连平.一种基于EXB841的IGBT驱动与保护电路设计[J].微电机,2007,40(4):98-100.
    [102]艾武,吴保全,曹家勇.SRM间接位置检测技术综述[J].中小型电机,2004,31(2):48-54.
    [103]张莲.陈鸿雁.开关磁阻电动机调速系统为主检测技术评述[J].重庆工学院报,2002,16(3):65-68.
    [104]詹琼华,王双宏,肖楚成.开关磁阻电动机电容式位置检测技术[J].电工技术学 报,1999,14(3):1-5.
    [105]刘闯,刘迪吉,朱学忠.一种无位置传感器的开关磁阻发电机控制策略的研究[J].中国电机工程学报,2002,22(6):71-74.
    [106]周素莹,林辉.无位置传感器的开关磁阻电动机转子位置检测技术[J].电气传动,2006,36(2):8-17.
    [107]王旭东,孙奕黄.无位置传感器开关磁阻电动机位置的检测与预报[J].中国电机工程学报,2002,7:5-8.
    [108]付光杰,全星慧等.基于DSP的开关磁阻电动机调速系统设计[J].电机与控制应用,2007,34(11):12-14.
    [109]陈峥,齐蓉.基于数字信号处理器的开关磁阻电动机调速系统设计[J].电机与控制应用,2005,32(7):46-49.
    [110]周春.基于DSP的开关磁阻电动机调速系统实验平台设计[D].浙江大学硕士论文,2004.
    [111]沈仪,樊印海.基于DSP的开关磁阻电动机数字控制系统设计[J].机械工程与自动化,2006,4:100-102.
    [112]Developing an SRM drive system using the TMS320LF240[G]. TEXAS INSTRUMENTS, 1998.3.
    [113]李继生,段秉龙,李文刚.基于DSP的开关磁阻电动机控制系统研究[J].机电工程技术,2005,36(10):52-54.
    [114]Lawrenson P.J. TMS320LF/LC240xA DSP controllers system and peripherals reference guide[G].TI Incorporated,2001.
    [115]李人厚.智能控制理论和方法[M].西安:西安电子科技大学出版社,1999.
    [116]龚晟,孙明.开关磁阻电动机PID控制参数的整定方法[J].机床电器,2004,1:9-11.
    [117]贺颖莉,王艳,殷天明.开关磁阻电动机的模糊自整定PID控制的实现[J].机械与电子,2004,11:30-32.
    [118]Anca D. Hansen, Poul Sorensen, Florin lov, et al. Control of variable speed wind turbines with Doubly-Fed induction generators[J]. Wind Eng.,2004,28(4):411-432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700