用户名: 密码: 验证码:
量子点的制备、成像及其在化学生物分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点(QDs)由于其独特的尺寸依赖的光物理性质,作为一种优异的荧光纳米材料,受到研究者的广泛青睐。随着量子点制备工艺、表面修饰技术的不断完善以及功能应用研究的不断拓展,基于量子点的纳米表征技术在化学生物分析等领域显示出越来越广阔的应用前景。本论文瞄准这一重要的研究方向,在对当前迅速发展的量子点进行大量文献调研的基础上,以量子点纳米颗粒作为出发点,以荧光技术作为主要分析手段,结合材料制备技术、光学成像技术、纳米分析技术等,将量子点的制备、分析检测应用以及高灵敏光学成像作为研究主线,主要开展了以下几个方面的工作:
     一、发展了以油胺-硒化氢复合物为前体的脂溶性量子点制备方法。首先利用硒的还原作用和硫酸的酸化反应,并结合油胺对于硒化氢的吸收富集作用,制备了油胺-硒化氢复合物。然后,以这种复合物作为前体,采用溶剂热合成步骤,制备了脂溶性CdSe量子点。所制备的量子点为立方晶型,荧光光谱跨越较宽,从480 nm到610 nm连续可调;荧光半峰宽较窄,均在25 nm至40 nm之间;最高量子产率达到23%,光稳定性较强。在此基础之上,还进行了量子点的壳层包被,制备了CdSe/ZnS量子点。本部分工作发展了一种无须使用三烷基膦,相对价廉和环保的脂溶性量子点制备方法,为进一步的表面修饰、功能组装以及分析检测应用奠定了基础。
     二、基于氟硼酸根离子对水溶性CdTe量子点的化学刻蚀作用,发展了一种简单、温和的量子点尺寸调控方法。在NaBF4溶液中,随着时间的延长,水溶性CdTe量子点尺寸逐渐减小,吸收光谱和荧光发射波长发生连续蓝移。量子点被刻蚀的原因可能是由于氟硼酸根离子对Cd(II)的解离以及表面氧化作用。这种量子点的刻蚀在中性水溶液中进行,条件温和,便于控制,可以得到一系列不同荧光发射波长的量子点。该方法为量子点的尺寸、光谱调控提供了一种新的手段,可以进一步应用于其它含镉化合物的刻蚀研究以及纳米器件的加工制作等领域。
     三、结合物理包埋和共价交联的方法,发展了一种量子点琼脂糖凝胶微球(AHM)的包被技术。首先,巯基乙胺修饰的量子点利用表面氨基与琼脂糖羟基的氢键相互作用,基于物理作用扩散进入琼脂糖微球中,得到量子点琼脂糖微球复合物(QDAHM),平均每个微球包被的量子点数目高达6.0×107。然后引入聚乙烯亚胺(PEI)和乙二醛,与量子点表面氨基反应形成共价网络结构,得到PEI包被的QDAHM(QDAHM/PEI)。采用该方法得到的QDAHM/PEI不仅具有较高的颗粒包被量和共价稳定性,并且pH稳定性得到提高,成功构建了量子点荧光编码微球复合物。该量子点复合物有望应用于多目标筛选以及阵列检测等领域。四、基于氟离子对量子点的分散效应,发展了一种降低量子点团聚和非特异性吸附作用的简单方法。氟离子加入巯基乙胺表面修饰的CdTe量子点溶液中,显著提高了量子点的胶体稳定性,降低了颗粒之间的团聚,这主要因为氟离子与氨基形成氢键,屏蔽了颗粒之间的氢键相互作用。并且发现,低浓度氟离子的存在,可以降低量子点对于玻片和细胞的非特异性吸附作用,并显著提高量子点的表面交联效率。该工作提供了一种简单便利的提高量子点稳定性的离子介导法,为量子点的分析检测和细胞成像提供了保障。
     五、基于量子点的可逆团聚机制,发展了一种氟离子的纳米荧光开关探针。巯基乙胺-CdTe量子点基于颗粒之间的NHN氢键作用发生团聚,荧光自淬灭;氟离子加入,形成更强的NHF氢键,诱导量子点的分散,荧光得到恢复。基于荧光的恢复作用构建了量子点的荧光开关探针,应用于水相体系氟离子的检测,检测下限可达到5.0μM,且特异性好、响应速度快。本工作不仅提供了一种简单便利的水相溶液中氟离子的检测方法,也为量子点荧光探针的设计提供了新的构建模式。
     六、基于自行搭建的单颗粒荧光成像平台,开展了不同功能化磷脂修饰的量子点性能差异的研究。首先采用磷脂二硬脂酰磷脂酰乙醇胺(DSPE)和聚乙二醇-二硬脂酰磷脂酰乙醇胺(PEG2000-DSPE)分别修饰脂溶性CdSe/ZnS量子点,将其转换为水溶性。然后采用单颗粒成像技术,比如荧光涨落光谱、单颗粒荧光强度分析、单颗粒示踪分析等,对于两种磷脂化的量子点进行了实时、动态的光物理性质的研究。对比分析结果表明DSPE-QDs分散性较差,单颗粒荧光较强,扩散系数较小,体现为多个量子点包被形式;PEG2000-DSPE-QDs则单分散性较好,扩散系数较大,体现为单个量子点包被形式。二者性能差异主要因为是磷脂分子末端聚乙二醇分子修饰的差异造成的。本工作不仅提供了一种纳米颗粒的实时、动态的单颗粒成像研究方法,并且发展了不同结构性能的磷脂化量子点。
     七、基于量子点单颗粒荧光成像和荧光共定位方法,实现了蛋白质的高灵敏检测。以凝血酶为模型,基于其两个核酸适体的识别作用构建了三明治检测体系,利用全内反射荧光显微镜,在单分子水平上基于荧光共定位方法实现了凝血酶的高灵敏检测,检测下限为0.8 pM。该方法充分利用了量子点“一元激发、多元发射”的发光特性,避免了样品分离纯化等过程,为蛋白质的高灵敏分析检测提供了新的思路。
Semiconductor quantum dots (QDs), as novel fluorescent nanomaterials, have attracted much interest due to their unique size-dependent optical properties. With the development of their synthetic techniques, surface processability and functional applications, QDs play important roles in the fields of chemical and biological analysis. Aiming at this important research field, based on a survey of a large number of documents, combining with materials preparation, optical imaging and nanometer analysis, by taking fluorescence technique as the main analytical approach, the preparation, their analytical detection and imaging of QDs as the line of this dissertation, following several works have been performed.
     1. Oleylammonium-selenide complex was exploited as a new precursor for synthesis of hydrophobic QDs. H2Se gas was firstly generated by reduction and subsequent acidation of Se powder. The gas was then introduced into oleylamine, which led to the formation of oleylammonium-selenide complex. The complex was used as precursor for preparation of hydrophobic CdSe QDs via hot-injection solvothermal synthetic procedures. The characterization results showed that the proposed method led to the formation of hexagonal wurtzite CdSe QDs with narrow fluorescence full-width at half-maximum (25 ~ 40 nm), high photoluminescence quantum yield (up to 23%), and a broad emission spectra tunable from 480 ~ 610 nm. Furthermore, core/shell CdSe/ZnS QDs were prepared. This work provides a low cost and environmentally benign technique for QDs preparation due to the absence of trialkylphosphine, and the obtained QDs with excellent properties could be further used in the fields of surface modification, nanomaterials assembly and analytical detections.
     2. A facile and mild chemical etching method was developed for resizing of CdTe QDs. Treated with BF4-, CdTe QDs gradually decreased in size and this was accompanied by corresponding blue-shifts of both the absorption and fluorescence spectra. The chemical etching process may involve both the removal of Cd dangling bonds by BF4- and the assistance of surface oxidation. The etching was performed at room temperature under neutral conditions, and different sizes of CdTe QDs could be obtained through termination of the etching reaction at different time intervals. This novel etching technology provides a means of downsizing and tailoring of the QDs and has great potential for the architecture of multifunctional nanostructures
     3. A strategy of combining physical embedding and covalent crosslinking was developed to encapsulate cysteamine-capped QDs into agarose hydrogel microbeads (AHM). Cysteamine-capped QDs were encapsulated into the pores of agarose hydrogel microbeads by virtue of hydrogen bonding between the amino groups of cysteamine and hydroxyl groups of agarose, resulting in more than 6.0×107 QDs per microbead. Polyethylenimine (PEI) and oxalaldehyde were then introduced to form a covalent cross-linked network to further stabilize the encapsulation. The resulting hybrid hydrogel microbeads exhibited high doping capacity and negligible QDs leaching. Furthermore, the microbeads possessed elevated fluorescence stability at wide pH ranges and two-color barcoded hydrogels were successfully obtained. We envision that further optimization of this method will allow high-through screen and array analysis of the hybrid hydrogel microbeads technology.
     4. A simple ions-mediated dispersing technique was developed to reduce the aggregation and non-specific adsorption of QDs. By the introduction of F- ions, the self-aggregation of cysteamine-capped QDs was disassembled, and the stability of QDs was greatly enhanced. We inferred the disaggregation was from the substitution of NHF hydrogen bonds for NHN hydrogen bonds of cysteamine-capped QDs. Meanwhile, we found in the presence of F- ions, the non-specific adsorption of QDs on the glass slides and cell was greatly decreased. Furthermore, the chemical cross-linking efficiency of QDs with biomolecules was greatly improved in the presence of F- ions. This work not only provides a new strategy for reducing the aggregation and non-specific adsorption of QDs, but also provides a guarantee for the following biomedical imaging and chemical sensing.
     5. A switchable fluorescent QD probe for F- ions was developed based on the aggregation/disaggregation mechanism. The cysteamine capped CdTe QDs undergo spontaneous self-aggregation via NHN hydrogen bonds, which results in efficient fluorescence self-quenching. In the presence of F- ions, the aggregates disassemble due to the substitution of NHF hydrogen bonds for NHN hydrogen bonds, which results in fluorescence recovery of the QDs. Thus, the fluorescence off/on process enables us to quantitate F- ions in aqueous media. This design provides a novel means for nanoscopic sensing, which has the advantage of rapid, simple, sensitive, and specific detection, with a limit of detection of 5.0μM for F- ions. This work provides a new signal transduction mechanism for QDs-based sensors and the methodology developed here may be expanded for design of other fluorescence nanoparticle sensors.
     6. A single nanoparticle imaging technique was set up to study the structure and photophysical properties of different phospholipid encapsulated QDs. Firstly, hydrophobic CdSe/ZnS QDs were phase transferred into water soluble by phospholipids derivatives, 1,2-distearoyl- sn-glycero-3- phosphor- ethanolamine (DSPE) and 1,2-distearoyl-sn- glycero-3- phosphoethanolamine- N-[methoxy(polyethylene glycol)-2000] (PEG2000- DSPE), respectively. Fluorescence fluctuation spectroscopy, fluorescence intensity statistic analysis, and single particle tracking were then executed to study the two types of phospholipid encapsulated QDs. The results showed that compared to DSPE-QDs micelles, PEG2000-DSPE-QDs micelles possessed higher monodispersity, narrower size- distribution, lower fluorescence intensity and lower diffusion coefficients. Hence, we inferred that statistically, many QDs were embedded in one DSPE-QDs micelle, while one QD was embedded in one PEG2000-DSPE-QDs micelle. The single nanoparticle imaging techniques can be further used for real time, in situ, dynamic biomedical research. In addition, the phospholipid encapsulation approach allows different ligands functionalized on the surface of QDs, to satisfy the particular requirements of the analytical applications.
     7. Fluorescence colocalization method was emplyed for sensitive protein detection. By taking the advantage of the robust fluorescence of QDs and high flexible total internal reflection fluorescence microscopy technique, fluorescence colocalization imaging of QDs at single nanoparticle level can be achieved. Thrombin employed as a protein model, we demonstrate a sandwich structure for protein detection using multicolor aptamer-functionalized QDs as nanoprobes. The presence of target protein can be determined based on colocalization measurements of the nanoassemblies. A low of detection with 0.8 pM was obtained. The fluorescence colocalization method broke the optical diffraction limit and reached nanometer resolution. Meanwhile, the method utilized the multicolor QDs, avoiding the separation and purifying process. Hence, this work provides a simple, fast procedure for sensitive protein detection at single nanoparticle level.
引文
[1] Lynn E. Nanotechnology: Science, Innovation, and Opportunity, 1 Edition, Foster Prentice Hall, 2009
    [2] http://www.zyvex.com/nanotech/feynman.html
    [3] Borisenko V E, Ossicini S. What is what in the nanoworld: A Handbook on Nanoscience and Nanotechnology, 2nd, John Wiley & Sons, Inc, 2008
    [4] Vasudevanpillai B, Sathish M, Ramakrishnapillai V, et al. Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. Biotechnology Advances, 2010, 28(2): 199-213
    [5] Manuela F F, Nikos C. Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Analytical and Bioanalytical Chemistry, 2010, 396(1): 229-240
    [6] Russ A W, Anthony J T, Ulrich J K. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Analytica Chimica Acta, 2010, 673(1): 1-25
    [7] Wang Y, Herron N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. Journal of Physical Chemistry, 1991, 95(2): 525-532
    [8] Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry, 1996, 100(31): 13226-13239
    [9] Chestnoy N, Hull H R, Brus L E. Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. Journal of Physical Chemistry, 1986, 90(15): 3393-3399
    [10] Klimov V I. Nanocrystal quantum dots: from fundamental photophysics to multicolor lasing. Los Alamos Science, 2003, 28: 214-220
    [11] Doh C L, Jeffrey M P, Istvan R, et al. Colloidal synthesis of infrared-emitting germanium nanocrystals. Journal of the American Chemical Society, 2009, 131(10): 3436-3437
    [12] Liang L, Nelson C, Daniel M. Solution-processed inorganic solar cell based on in situ synthesis and film deposition of CuInS2 nanocrystals. Journal of the American Chemical Society, 2010, 132(1): 22-23
    [13] Amane S, Sanshiro H, Sujay P, et al. Chemical reactions on surface molecules attached to silicon quantum dots. Journal of the American Chemical Society, 2010, 132(1): 248-253
    [14] Guo Q, Hugh W H, Rakesh A. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. Journal of the American Chemical Society, 2009, 131(33): 11672-11673
    [15] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933-937
    [16]彭英才.半导体量子点的电子结构.固体电子学研究进展, 1997, 17(2): 165-172
    [17] Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. Journal of Physical Chemistry, 1986, 90(112): 2555-2560
    [18] Medintz I L,Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labeling and sensing. Nature Materials, 2005, 4(6): 435-446
    [19] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013-2016
    [20] Vicente L, Ravi S. S, Cristina G, et al. Chemical vapor deposition repair of graphene oxide: a route to highly-conductive graphene monolayers. Advance Materials, 2009, 21(46): 4683-4686
    [21] Chunggaze M, McAleese J, O’Brien P, et al. Deposition of thin films of CdSe or ZnSe by MOCVD using simple air stable precursors. Chemical Communications, 1998, 77: 833-834
    [22] Hsiu S I, Sun I W. Electrodeposition behaviour of cadmium telluride from 1-ethyl-3-methylimidazolium chloride tetrafluoroborate ionic liquid. Journal of Applied Electrochemistry, 2004, 34(10): 1057-1063
    [23] Georgios N. K, Paschalis A, Grigorios I, et al. Synthesis and size control of luminescent ZnSe nanocrystals by a microemulsion-gas contacting technique. Langmuir, 2004, 20(3): 550-553
    [24] Hwang S H, Moorefield C N, Wang P, et al. Dendron-tethered and templated CdS quantum dots on single-walled carbon nanotubes. Journal of the American Chemical Society, 2006, 128(23): 7505-7509
    [25] Wu G, Zhang L, Cheng B, et al. Synthesis of Eu2O3 nanotube arrays through a facile sol-gel template approach. Journal of the American Chemical Society, 2004, 126(19): 5976-5977
    [26] Derrick W L, David J M, Madalina F, et al. Monodispersed InP quantum dots prepared by colloidal chemistry in a noncoordinating solvent. Chemistry of Materials, 2005, 17(14): 3754-3762
    [27] Breus V V, Heyes C D, Nienhaus G U. Quenching of CdSe-ZnS core-shell quantum dot luminescence by water-Soluble thiolated ligands. Journal of Physical Chemistry C, 2007, 111(50): 18589-18594
    [28] Rogach A L, Katsikas L, Kornowski A, et al. Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Berichte Der Bunsen-Gesellschaft Physical Chemistry, 1996, 100(11): 1772-1778
    [29] Gaponik N L, Talapin D V, Weller H, et al. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. Journal of Physical Chemistry B, 2002, 106(29): 7177-7185
    [30] Li W, Liu J, Sun K, et al. Highly fluorescent water soluble CdxZn1-xTe alloyed quantum dots prepared in aqueous solution: one-step synthesis and the alloy effect of Zn. Journal of Materials Chemistry, 2010, 17(20): 2133-2138
    [31] Li Y D, Liao H W, Ding Y. Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod. Inorganic Chemistry, 1999, 38(7): 1382-1387
    [32] Wei S, Lu J, Yu W C. Isostructural Cd3E2 (E = P, As) microcrystals prepared via a hydrothermal route. Crystal Growth & Design, 2006, 6(4): 849-853
    [33] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706-8715
    [34] Qu L, Peng Z. A, Peng X G. Alternative routes toward high quality CdSe nanocrystals. Nano Letters, 2001, 1(6): 333-337
    [35] Qu L H, Peng X G. Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society, 2002, 124(9): 2049-2055
    [36] Yu W W, Peng X G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angewandte Chemie International Edition, 2002, 41(13): 2368-2371
    [37] Deng Z T, Cao L, Tang F Q, et al. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis. Journal of Physical Chemistry B, 2005, 109(35): 16671-16675
    [38] Miao S D, Hickey S G, Rellinghaus B, et al. Synthesis and characterization of cadmium phosphide quantum dots emitting in the visible red to near-infrared. Journal of the American Chemical Society, 2010, 132 (16): 5613-5615
    [39] DonegáC M, Liljeroth P, Vanmaekelbergh D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small, 2005, 1(12): 1152-1162
    [40] Green M. The nature of quantum dot capping ligands. Journal of Materials Chemistry, 2010, 20(28): 5797-5809
    [41] Cumberland S L, Khalid M. H, Javier A. Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials, Chemistry of Materials, 2002, 14(4): 1576-1584
    [42] Zhou W B, Schwartz D T, Baneyx F. Single-pot biofabrication of zinc sulfide immuno-quantum dots. Journal of the American Chemical Society, 2010, 132 (13): 4731-4738
    [43] Selinsky R S, Han J H, Prez E A M, et al. Synthesis and magnetic properties of Gd doped EuS nanocrystals with enhanced curie temperatures. Journal of the American Chemical Society, 2010, 132 (45): 15997-16005
    [44] Du Y P, Xu B, Fu T, et al. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. Journal of the American Chemical Society, 2010, 132 (5): 1470-1471
    [45] Deng Z T, Schulz O, Lin S, et al. Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared. Journal of the American Chemical Society, 2010, 132 (16): 5592-5593
    [46] Chen H J, Lesnyak V, Bigall N C, et al. Self-assembly of TGA-capped CdTe nanocrystals into three-dimensional luminescent nanostructures. Chemistry of Materials, 2010, 22(7): 2309-2314
    [47] Reiss P, Protie`re M, Li L, et al. Core/Shell semiconductor nanocrystals. Small, 2009, 5(2): 154-168
    [48] Deng Z T, Yan H, Liu Y. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method. Journal of the American Chemical Society, 2009, 131(49): 17744-17745
    [49] Pradhan N, Peng X G. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. Journal of the American Chemical Society, 2007, 129(11): 3339-3347
    [50] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709): 538-544
    [51] Akamatsu K, Tsuruoka T, Nawafune H. Band gap engineering of CdTe nanocrystals through chemical surface modification. Journal of the American Chemical Society,, 2005, 127(6):1634-1635
    [52] Liu L P, Peng Q, Li Y D. An effective oxidation route to blue emission CdSe quantum dots. Inorganic Chemistry, 2008, 47(8): 3182-3187
    [53] Torimoto T, Reyes J P, Iwasaki K, et al. Preparation of novel silica-cadmiumsulfide composite nanoparticles having adjustable void space by size-selective photoetching. Journal of the American Chemical Society, 2003, 125(2): 316-317
    [54] Torimoto T, Kontani H, Shibutani Y, et al. Characterization of ultrasmall CdS nanoparticles prepared by the size-selective photoetching technique. Journal of Physical Chemistry B, 2001, 105(29): 6838-6845
    [55] Galian K R E, Guardia M, Prieto J P. Photochemical size reduction of CdSe and CdSe/ZnS semiconductor nanoparticles assisted by nπ-aromatic. Journal of Physical Chemistry B, 2009, 131 (3): 892-893
    [56] Adam S, Talapina D V, Borchert H, et al. The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals. Journal of Chemical Physics, 2005,123(8): 084706
    [57] Bernard V. Molecular Fluorescence: Principles and Applications. Wiley-VCH, 2002
    [58] Xie R G, Kolb U, Li J X, et al. Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. Journal of the American Chemical Society, 2005, 127(20): 7480-7488
    [59] Hines M A, Sionnest P G. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. Journal of Physical Chemistry, 1996, 100(2): 468-471
    [60] Talapin D V, Nelson J H, Shevchenko E V, et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Letters, 2007, 7(10): 2951-2959
    [61] Capek R K, Lambert K, Dorfs D, et al. Synthesis of extremely small CdSe and bright blue luminescent CdSe/ZnS nanoparticles by a prefocused hot-injection approach. Chemistry of Materials, 2009, 21 (8): 1743-1749
    [62] Ji H M, Cao J M, Feng J, et al. Fabrication of CuS nanocrystals with various morphologies in the presence of a nonionic surfactant. Materials Letters, 2005, 59(24-25): 3169-3172
    [63] Chatterjee A, Priyam A, Bhattacharya S C, et al. Differential growth and photoluminescence of ZnS nanocrystals with variation of surfactant molecules. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2007, 297(1-3): 258-266
    [64] Xie R G, Rutherford M, Peng X G. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. Journal of the American Chemical Society, 2009, 131(15): 5691-5697
    [65] Rogach A L, Franzl T, Klar T A, et al. Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. Journal of Physical Chemistry C, 2007, 111(140): 14628-14637
    [66] Xie C, Hao H X, Chen W, et al. Crystallization kinetics of CdSe nanocrystals synthesized via the TOP-TOPO-HDA route. Journal of Crystal Growth, 2008, 310(15): 3504-3507
    [67] Micic O I, Sprague J R, Curtis C J, et al. Synthesis and characterization of InP, GaP, and GaInP2 quantum dots. Journal of Physical Chemistry, 1995, 99(19): 7754-7759
    [68] Barbeta V B, Jardim R F, Kiyohara P K, et al. Magnetic properties of Fe3O4 nanoparticles coated with oleic and dodecanoic acids. Journal of Applied Physics, 2010, 107(7): 073913
    [69] Ji X H, Copenhaver D, Sichmeller C, et al. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals. Journal of the American Chemical Society, 2008, 130(17): 5726-5735
    [70] Punzder A, Williams A J, Zaitseva N, Galli G, et al. The effect of organic ligand binding on the growth of CdSe nanoparticles probed by Ab initio calculations. Nano Letters , 2004, 4(12): 2361-2365
    [71] Li R F, Lee J, Yang B C, et al. Amine-assisted facetted etching of CdSe nanocrystals. Journal of the American Chemical Society, 2005, 127(8): 2524-2532
    [72] Sun Z H, Oyanagi H, Nakamura H, et al. Ligand effects of amine on the initial nucleation and growth processes of CdSe nanocrystals. Journal of Physical Chemistry C, 2010, 114(22): 10126-10131
    [73] Van Sark W G J H M, Frederix P L T M, Van den H D J, et al. Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. Journal of Physical Chemistry B, 2001, 105(35): 8281-8284
    [74] Fan H Y, Chen Z, Brinker C J, et al. Synthesis of organosilane functionalized nanocrystal micelles and their self-assembly. Journal of the American Chemical Society, 2005; 127(40): 13746-13747
    [75] Zhang T T, Stilwell J L, Gerion D, et al. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Letters , 2006, 6(4): 800-808
    [76] Moon J, Choi K S, Kim B, et al. Aggregation-free process for functionalCdSe/CdS core/shell quantum dots. Journal of Physical Chemistry C, 2009, 113(17): 7114-7119
    [77] BreusV V, Heyes C D, Tron K, et al. Zwitterionic biocompatible quantum dots for wide pH stability and weak nonspecific binding to cells. ACS Nano, 2009, 3(9): 2573-2580
    [78] Ma J J, Liang J G, Han H Y. Study on the synchronous interactions between different thiol-capped CdTe quantum dots and BSA. Spectroscopy and Spectral Analysis, 2010, 30(4): 1039-1043
    [79] Boldt K, Bruns O T, Gaponik N, et al. Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers. Journal of Physical Chemistry B, 2006, 110 (5): 1959-1963
    [80] Wuister S F, DonegáC M, Meijerink A. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. Journal of Physical Chemistry B, 2004, 108 (45): 17393-17397
    [81] Carion O, Mahler B, Pons T, et al. Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nature Protocols, 2007, 2(10): 2383-2390
    [82] Howarth M, Takao K, Hayashi Y, et al. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proceedings of the National Academy of Sciences the United States of America, 2005, 102(21): 7583-7588
    [83] Babu P, Sinha S, Surolia A. Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjugate Chemistry, 2007, 18 (1): 146-151
    [84] Gupta M, Caniard A,ángeles T V, et al. Nitrilotriacetic acid-derivatized quantum dots for simple purification and site-selective fluorescent labeling of active proteins in a single step. Bioconjugate Chemistry, 2008, 19(10): 1964-1967
    [85] Medarova Z, Pham W, Farrar C, et al. Designing quantum-dot probes. Nature Medicine, 2007, 13(3): 372-377
    [86] Moore D E, Patel K. Q-CdS photoluminescence activation on Zn2+ and Cd2+ salt introduction. Langmuir, 2001, 17(8): 2541-2544
    [87] Costa-Fernandez J M, Pereiro R, Sanz-Medel A, et al. The use of luminescent quantum dots for optical sensing. Trends in Analytical Chemistry, 2006, 25(3): 207-218
    [88] Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Analytical Chemistry, 2002, 74(19): 5132-5138
    [89] Chan Y H, Chen J X, Liu Q S, et al. Ultrasensitive copper(II) detection usingplasmon-enhanced and photo-brightened luminescence of cdse quantum dots. Analytical Chemistry, 2010, 82(9): 3671-3678
    [90] Frasco M F, Chaniotakis N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors, 2009, 9(9): 7266-7286
    [91] Fernandez-Arguelles M T, Jin W J, Costa-Fernandez J M, et al. Surface- modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements. Analytica Chimica ACTA, 2005, 549(1-2): 20-25
    [92] Nazzal A Y, Qu L, Peng X, et al. Photoactivated CdSe nanocrystals asnanosensors for gases. Nano Letters , 2003, 3(6): 819-822
    [93] Freeman R, Finder T, Willner I. Multiplexed Analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate. Angewandte Chemie International Edition, 2009, 48(42): 7818 -7821
    [94] Wu P, Li Y, Yan X P. CdTe quantum dots (QDs) based kinetic discrimination of Fe2+ and Fe3+, and CdTe QDs-fenton hybrid system for sensitive photoluminescent detection of Fe2+. Analytical Chemistry, 2009, 81(15): 6252-6257
    [95] Ali E M, Zheng Y G, Yu H, et al. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Analytical Chemistry, 2007, 79(24): 9452-9458
    [96] Li H B, Zhang Y, Wang X Q, et al. Calixarene capped quantum dots as luminescent probes for Hg2+ ions. Materials Letters, 2007, 61(7): 1474-1477
    [97] Duan J L, Song L X, Zhan J H. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Reserch, 2009, 2(1): 61-68
    [98] Lakowicz J R, Gryczynski I, Gryczynski Z, et al. Luminescence spectral properties of CdS nanoparticles. Journal of Physical Chemistry B, 1999, 103(36): 7613-7620
    [99] Jin W J, Costa-Fernandez J M, Pereiro R, et al. Surface-modified CdSe quantum dots as luminescent probes for cyanide determination. Analytica Chimica ACTA, 2004, 522 (1): 1-8
    [100] Shang L, ZhangL H, Dong S J. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. Analyst, 2009, 134(1): 107-113
    [101] Zhang K, Mei Q S, Guan G J, et al. Ligand replacement-induced fluorescence switch of quantum dots for ultrasensitive detection of organophosphorothioate pesticides. Analytical Chemistry, 2010, 82 (22): 9579-9586
    [102] Constantine C A, Gatta′s-Asfura K M, Mello S V, et al. Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon. Journal of Physical Chemistry B, 2003, 107(50): 13762-13764
    [103] Yan Y, Wang S H, Liu Z W, et al. CdSe-ZnS quantum dots for selective and sensitive detection and quantification of hypochlorite. Analytical Chemistry, 2010, 82(23): 9775-9781
    [104] Banerjee S, Kar S, Perez J M, et al. Quantum dot-based off/on probe for detection of glutathione. Journal of Physical Chemistry C, 2009, 113(22): 9659-9663
    [105] Barbara P F, Meyer T J, Ratner M A. Contemporary issues in electron transfer research. Journal of Physical Chemistry, 1996, 100(31): 13148-13168
    [106] Sandros M G, Gao D, Benson D E. A modular nanoparticle-based system for reagentless small molecule biosensing. Journal of the American Chemical Society, 2005, 127(35): 12198-12199
    [107] Medintz I L, Farrell D, Susumu K, et al.Multiplex charge-transfer interactions between quantum dots and peptide-bridged ruthenium complexes. Analytical Chemistry, 2009, 81(12): 4831-4839
    [108] Ruedas-Rama M J, Hall E A H. Azamacrocycle activated quantum dot for zinc ion detection. Analytical Chemistry, 2008, 80(21): 8260-8268
    [109] Yuan J P, Guo W W, YangX R,et al. Anticancer drug- DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots. Analytical Chemistry, 2009, 81(1): 362-368
    [110] Sykora M, Petruska M A, Alstrum-Acevedo J, et al. Photoinduced charge transfer between CdSe nanocrystal quantum dots and Ru-polypyridine complexes. Journal of the American Chemical Society, 2006, 128(31): 9984-9985
    [111] Jhonsi M A, Renganathan R. Investigations on the photoinduced interaction of water soluble thioglycolic acid (TGA) capped CdTe quantum dots with certain porphyrins. Journal of Colloid and Interface Science, 2010, 344(2): 596-602
    [112] Moeno S, Nyokong T. Opposing responses elicited by positively charged phthalocyanines in the presence of CdTe quantum dots. Journal of Photochemistry and Photobiology A-Chemistry, 2009, 201(2-3): 228-236
    [113] Dorokhin D, Tomczak N, Velders A H, et al. Photoluminescence quenching of CdSe/ZnS quantum dots by molecular ferrocene and ferrocenyl thiol ligands. Journal of Physical Chemistry C, 2009, 113(43): 18676-18680
    [114] Medintz I L, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology. Physical Chemistry Chemical Physics, 2009, 11(1): 17-45
    [115] Mattoussi H, Mauro J M, Goldman E R, et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. Journal of the American Chemical Society, 2000, 122(49): 12142-12150
    [116] Medintz I L, Clapp A, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials, 2003, 2(9): 630-638
    [117] Suzuki M, Husimi Y, Komatsu H, et al. Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. Journal of the American Chemical Society, 2008, 130(17): 5720-5725
    [118] Ghadiali J E, Cohen B E, Stevens M M. Protein kinase-actuated resonance energy transfer in quantum dot-peptide conjugates. ACS Nano, 2010, 4(8): 4915-4919
    [119] Cui D X, Pan B F, Zhang H, et al. Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. Analytical Chemistry, 2008, 80(21): 7996-8001
    [120] Kondon M, Kim J, Udawatte N, et al. Origin of size-dependent energy transfer from photoexcited CdSe quantum dots to gold nanoparticles. Journal of Physical Chemistry C, 2008, 112(17): 6695-6699
    [121] Dennis A M, Bao G. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Letters, 2008, 8(5): 1439-1445
    [122] Yang L X, Chen B B, Luo S L, et al. Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO2 nanotube array through fluorescence resonance energy transfer. Environmental Science & Techology, 2010, 44 (20): 7884-7889
    [123] Goldman E R, Medintz I L, Whitley J L, et al. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. Journal of the American Chemical Society, 2005, 127(18): 6744-6751
    [124] Wang X, Guo X Q. Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst, 2009, 134(7): 1348-1354
    [125] Shi L F, Rosenzweig N, Rosenzweig Z. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activityand enzyme inhibitors. Analytical Chemistry, 2007, 79(1): 208-214
    [126] Tang B, Cao L H, Xu K H, et al. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and nanoparticles. Chemistry- A European Journal, 2008, 14(12): 3637-3644
    [127] Shi L F, De Paoli V, Rosenzweig N, et al. Synthesis and application of quantum dots FRET-based protease sensors. Journal of the American Chemical Society, 2006, 128(32): 10378-10379
    [128] Revesz E, Lai E P C, DeRosa M C. Towards a FRET-based ATP biosensor using quantum dot/aptamer-based complexes. Journal of Biomolecular Structure & Dynamics, 2007, 24(6): 645-645
    [129] Jiang G X, Susha A S, Lutich A A, et al. Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection. ACS Nano, 2009, 3(12): 4127-4131
    [130] Lu H C, Sch?ps O, Woggon U, et al. Self- assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Journal of the American Chemical Society, 130(14): 4815-4827
    [131] Huang X Y, Li L, Qian H F, et al. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angewandte Chemie International Edition, 2006, 45(31): 5140 -5143
    [132] Chen H, Lin L, Lin Z, et al. Chemiluminescence arising from the decomposition of peroxymonocarbonate and enhanced by CdTe quantum dots. Journal of Physical Chemistry A, 2010, 114(37): 10049-10058
    [133] Zhao S L, Huang Y, Liu R J, et al. A nonenzymatic chemiluminescent reaction enabling chemiluminescence resonance energy transfer to quantum dots. Chemistry- A European Journal, 2010, 16(21): 6142-6145
    [134] So M K, Xu C J, Loening A M, et al. Self-illuminating quantum dot conjugates for in vivo imaging. Nature Biotechnology, 2006, 24, 339-343
    [135] Yao H Q, Zhang Y, Xiao F, et al. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angewandte Chemie International Edition, 2007, 119(23): 4424-4427
    [136] Du J J, Yu C M, PanD C, et al. Quantum- dot-decorated robust transductable bioluminescent nanocapsules. Journal of the American Chemical Society, 2010, 132(37): 12780-12781
    [137] J. Matthew Dubach, Daniel I. Harjes, and Heather A. Clark, Ion-selective nano-optodes incorporating quantum dots, Journal of the American ChemicalSociety, 2007, 129 (27), 8418-8419
    [138] Rousserie G, Sukhanova A, Even-Desrumeaux K, et al. Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays. Critical Reviews in Oncology/Hematology, 2010, 74 (1): 1-15
    [139] Sapsford K E, Medintz I L, Golden J P, et al. Surface- immobilized self-assembled protein-based quantum dot nanoassemblies. Langmuir, 2004, 20(18): 7720-7728
    [140] S Hohng S, Ha T. Single- molecule quantum-dot fluorescence resonance energy transfer. ChemPhysChem, 2005, 6(5): 956-960
    [141] Algar W R, Krull U J. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer. Analytical Chemistry, 2010, 82(1): 400-405
    [142] Ho Y P, Kung M C, Yang S, et al. Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Letters, 2005, 5(9): 1693-1697
    [143] Agrawal A, Zhang C Y, Byassee T, et al. Counting single native biomolecules and intact viruses with color-coded nanoparticles. Analytical Chemistry, 2006, 78(4): 1061-1070
    [144] Poznyak S K, Talapin D V, Shevchenko E V, et al. Quantum dot chemiluminescence. Nano Letters, 2004, 4(4): 693-698
    [145] Wang Y, Lu J, Tang L, et al. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Analytical Chemistry, 2009, 81 (23): 9710-9715
    [146] Tittel J, Go1hde W, Koberling F, et al. Fluorescence spectroscopy on single CdS nanocrystals, Journal of Physical Chemistry B, 1997, 101(16): 3013-3016
    [147] Rogier V, Antoine M O, Michel O. Simple model for the power-law blinking of single semiconductor nanocrystals, Physical Review B, 2002, 66: 233202
    [148] Daniel E G, Joel E, Jack J, et al. Blinking and surface chemistry of single CdSe nanocrystals, Small, 2006, 2(2): 204-208
    [149] Benoit M, Piernicola S, Stéphanie B, et al. Towards non-blinking colloidal quantum dots, Nature Materials, 2008, 7: 659-664
    [150] Chen Y, Vela J, Htoon H, et al. "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. Journal of the American Chemical Society, 2008, 130: 5026-5027
    [151] Steven F L, Mark A O, Photodynamics of a single quantum dot: fluorescence activation, enhancement, intermittency, and decay, Journal of the American Chemical Society, 2007, 129 (29): 8936-8937
    [152] Inhee C, Ken T S, Moungi G B, Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy, The Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(2): 405-408
    [153] Chen X, Nazzal A, Goorskey D, et al. Polarization spectroscopy of single CdSe quantum rods, Physical Review B, 2001, 64, 245304
    [154] Krishanu R, Ramachandram B, Joseph R L. Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study, Journal of the American Chemical Society, 2006, 128: 8998-8999
    [155] Ritchie K, Kusumi A. Single-particle tracking image microscopy. Methods in Enzymology, 2003, 360: 618-634
    [156] Li, Q., Han, R., Meng, X, et al. Tracking single quantum dot and its spectrum in free solution with controllable thermal diffusion suppression. Analytical Biochemistry, 2008, 377(2): 176-181
    [157] Guasto, J. S. & Breuer, K. S. Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot-tracking. Experiments in Fluids, 2008, 45: 157-166
    [158] Sonesson A W, Elofsson U M, Callisen T H, et al. Tracking single lipase molecules on a trimyristin substrate surface using quantum dots. Langmuir, 2007, 23(16): 8352-8356
    [159] Li Z H, Wang K M, Tan W H, et al. Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution. Analytical Biochemistry, 2006,354(2):169-174
    [160]李朝辉,王柯敏,谭蔚泓等.硅壳包被的核壳型量子点荧光纳米颗粒的制备及其在细胞识别中的应用.科学通报, 2005, 50(13):1318-1322
    [161] Pinaud F, Clarke S, Sittner A, et al. Probing cellular events, one quantum dot at a time. Nature Methods, 2010, 7(4): 275-285
    [162] Courty S, Bouzigues C, Luccardini C, et al. Tracking individual proteins in living cells using single quantum dot imaging. Methods in Enzymology, 2006,414: 211-228
    [163] Groc L, Choquet D. Measurement and characteristics of neurotransmitter receptor surface trafficking. Molecular Membrane Biology, 2008, 25(4): 344-352
    [164] Dahan M, Lévi S, Luccardini C, et al. Diffusion dynamics of glycine receptorsrevealed by single-quantum dot tracking. Science, 2003, 302(5644): 442-445
    [165] Delehanty J B, Mattoussi H, Medintz I L, Delivering quantum dots into cells: strategies, progress and remaining issues. Analytical and Bioanalytical Chemistry, 2009, 393(4):1091-1105
    [166] Biju V, Itoh T, Ishikawa M. Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chemical Society Reviews, 2010, 39: 3031-3056
    [167] Ruan G, Agrawal A, Marcus A I, et al. Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. Journal of the American Chemical Society, 2007, 129(47): 14759-14766
    [168] Nabiev I, Mitchell S, Davies A, et al. Nonfunctionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Letters , 2007,7(11): 3452-3461
    [169] Ryman-Rasmussen J P, Riviere J E, Monteiro-Riviere N A, Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. Nano Letters , 2007, 7(5): 1344-1348
    [170] Zhou M, Nakatani E, Gronenberg L S, et al. Peptide-labeled quantum dots for imaging GPCRs in whole cells and as single molecules. Bioconjugate Chemistry, 2007, 18(2): 323-332
    [171] O'Connell K M S, Rolig A S, Whitesell J D, et al. Kv2.1 potassium channels are retained within dynamic cell surface microdomains that are defined by a perimeter fence. Journal of Neuroscience, 2006, 26(38): 9609-9618
    [172] Nechyporuk-Zloy V, Dieterich P, Oberleithner H,et al. Dynamics of single potassium channel proteins in the plasma membrane of migrating cells. American Journal of Physiology-Cell Physiology, 2008, 294(2): 1096-1102
    [173] Crane J M, Verkman A S. Long-range nonanomalous diffusion of quantum dot-labeled aquaporin-1 water channels in the cell plasma membrane. Biophysical Journal, 2008, 94 (2): 702-713
    [174] Echarte M M, Bruno L, rndt-Jovin D J, et al. Quantitative single particle tracking of NGF-receptor complexes: transport is bidirectional but biased by longer retrograde run lengths. FEBS Letters, 2007, 581(16): 2905-2913
    [175] Chen H, Titushkin I, Stroscio M, et al. Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophysical Journal, 2007, 92:1399-1408
    [176] Lieleg O, Lopez-Garcia M, Semmrich C, et al. Specific integrin labeling in living cells using functionalized nanocrystals. Small, 2007, 3(9):1560-1565
    [177] Haggie P M, Kim J K, Lukacs G L, et al. Tracking of quantum dot-labeled CFTR shows near immobilization by C-terminal PDZ interactions. Molecular Biology of the Cell, 2006, 17(12): 4937-4945
    [178] Ehrensperger M V, Hanus C, Vannier C, et al. Multiple association states between glycine receptors and gephyrin identified by SPT analysis. Biophysical Journal, 2007, 92(10): 3706-3718
    [179] Bats C, Groc L, Choquet D. The interaction between stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron, 2007, 53(5): 719-734
    [180] Bouzigues C, Morel M, Triller A, et al. Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11251-11256
    [181] Lidke D S, Nagy P, Heintzmann1 R, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnology, 2004, 22(2): 198-203
    [182] Pons T, Mattoussi H. Investigating biological processes at the single molecule level using luminescent quantum dots. Annals of Biomedical Engineering, 2009, 37(10): 1934-1959
    [183] Muthukrishnan G, Hutchins B M, Dr M E W, et al. Transport of semiconductor nanocrystals by kinesin molecular motors. Small, 2006, 2(5): 626-630
    [184] Nan X, Sims P A, Chen P, et al. Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. Journal of Physical Chemistry B, 2005, 109(51): 24220-24224
    [185] Courty S, Luccardini C, Bellaiche Y, et al. Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Letters , 2006, 6(7): 1491-1495
    [186] Chang Y P, Pinaud F, Antelman J, et al. Tracking bio-molecules in live cells using quantum dots. Journal of Biophotonics, 2008, 1(4): 287-298
    [187] Pelley J L, Daar A S, Saner M A. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicological Science, 2009, 112(2): 276-296
    [188] Wang C, Gao X, Su X G. In vitro and in vivo imaging with quantum dots. Analytical and Bioanalytical Chemistry, 2010, 397(4): 1397-1415
    [189] Duncan R. The dawning era of polymer therapeutics. Nature Reviews Drug Discovery, 2003, 2(5): 347-360
    [190] Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004, 22(8): 969-976
    [191] Cai W, Shin D W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Letters, 2006, 6(4): 669-676
    [192] Diagaradjane P, Orenstein-Cardona J M, Colón-Casasnovas N E, et al. Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clinical Cancer Reserch, 2008, 14(3): 731-741
    [193] Aswathy R G, Yoshida Y, Maekawa T, et al. Near-infrared quantum dots for deep tissue imaging. Analytical and Bioanalytical Chemistry, 2010, 397(4): 1417-1435
    [194] Kim S, Lim Y T, Soltesz E G, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnology, 2004, 22(1): 93-97
    [195] Rakesh K J, Stoh M. Zooming in and out with quantum dots. Nature Biotechnology, 2004, 22(8): 959-960
    [196] Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society Reviews, 2009, 38: 372-390
    [197] Ho Y P, Leong K W. Quantum dot-based theranostics. Nanoscale, 2010, 2: 60-68
    [198] Juzenas P, Chen W, Sun Y P, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Advanced Drug Dellivery Reviews, 2008, 60(15): 1600-1614
    [199] Koole R, Mulder W J M, van Schooneveld M M, et al. Magnetic quantum dots for multimodal imaging. Nanomedicine and Nanobiotechnology, 2009, 1(5): 475-491
    [200] Wu C L, Hong J Q, Guo X Q, et al. Fluorescent core-shell silica nanoparticles as tunable precursors: towards encoding and multifunctional nano-probes. Chemical Communications, 2008, 66: 750-752
    [201] Liong M, Lu J, Kovochich M, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2(5): 889-896
    [202] Ideta R, Tasaka F, Jang W D, et al. Nanotechnology- based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Letters , 2005, 5(12): 2426-2431
    [203] Chen J Y, Wang D L, Xi J F, et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters, 2007, 7(5): 1318-1322
    [204] Bakalova R, Zhelev Z, Aoki I, et al. Designing quantum-dot probes. Nature Photonics, 2007, 1: 487-489
    [205] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002, 295(5564): 2425-2427
    [206] Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology, 2001, 19(7): 631-635
    [207] Mekis I, Talapin D V, Kornowski A, et al. One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals viaorganometallic and "greener" chemical approaches. Journal of Physical Chemistry B, 2003, 107(30): 7454-7462
    [208] Dabbousi B O, Viejo J R, Mikulec F V, et al. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry B, 1997, 101(46): 9463-9475
    [209] Peng X G, Schlamp M C, Kadavanich A V, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemical Society, 1997, 119(30): 7019-7029
    [210] Peng X G. Green chemical approaches toward high-quality semiconductor nanocrystals. Chemistry-A European Journal, 2002, 8: 335-339
    [211] Peng Z A, Peng X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society, 2001, 123(1): 183-184
    [212] Jasieniak J, Bullen C, Embden J V, et al. Phosphine-free synthesis of CdSe nanocrystals. Journal of Physical Chemistry B, 2005, 109(44): 20665-20668
    [213] Pan D C, Wang Q, Jiang S C, et al. Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach. Advance Materials, 2007, 17: 176-179
    [214] Rogach A L, Kornowski A, Gao M Y. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. Journal of Physical Chemistry B, 1999, 103(16): 3065-3069
    [215]姚凤仪.无机化学丛书,第五卷,氧硫硒分族,北京,科学出版社, 1984:294-327
    [216] Sonoda N, Kondo K, Nagano K, et al. Carbon monoxide/water as a reducing agent: formation of selane from selenium. Angewandte Chemie InternationalEdition, 1980, 19:308-309
    [217] Li J, Wang Y A, Guo W, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS Core/ shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. Journal of the American Chemical Society, 2003, 125(41): 12567-12575
    [218] Yu W W, Qu L, Guo W, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 2003, 15(14): 2854-2860
    [219] Shi W L, Zeng H, Sahoo Y, et al. A general approach to binary and ternary hybrid nanocrystals. Nano Letters , 2006, 6(4): 875-881
    [220] Kudera S, Zanella M, Giannini C, et al. Sequential growth of magic-size CdSe nanocrystals. Advance Materials, 2007, 19(4): 548-552
    [221] Dai Q Q, Li D M, Chang J J, et al. Facile synthesis of magic-sized CdSe and CdTe nanocrystals with tunable existence periods. Nanotechnology, 2007, 18(40): 405603
    [222] Talapin M D V, Rogach A L, Kornowski A, et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine. Nano Letters, 2001, 1(4): 207-211
    [223] Lee S M, Cho S N, Cheon J. Anisotropic shape control of colloidal inorganic nanocrystals. Advanced Materials, 2003, 15(5): 441-444
    [224] Bryant G W, Jaskolski W. Surface effects on capped and uncapped nanocrystals, Journal of Physical Chemistry B, 2005, 109(42): 19650-19656
    [225] Matsumoto H, Sakata T, Mori H, et al. Preparation of monodisperse CdS QDs by size selective photocorrosion. Journal of Physical Chemistry, 1996, 100(32): 13781-13785
    [226] Miyake M, Torimoto T, Sakata T, et al. Photoelectrochemical characterization of nearly monodisperse CdS nanoparticles-immobilized gold electrodes. Langmuir, 1999, 15(4): 1503-1507
    [227] Talapin D V, Gaponik N, Borchert H, et al. Etching of colloidal InP nanocrystals with fluorides: photochemical nature of the process resulting in high photoluminescence efficiency. Journal of Physical Chemistry B, 2002, 106(49): 12659-12663
    [228] Bond A M, Ellis S R, Hollenkamp A F. Electrochemical generation of soluble and reactive cadmium, lead, and thallium cations in noncoordinating solvents - relative strengths of perchlorate, tetrafluoroborate, and hexafluorophosphate ligation in dichloromethane and benzene. Journal of the American ChemicalSociety, 1988, 110(16): 5293-5297
    [229] Mikuli E, Grad B, Medycki W, et al. Phase transitions and molecular motions in [Cd(H2O)6](BF4)2 studied by DSC, H1 and F19 NMR and FT-IR. Journal of Solid State Chemistry, 2004, 177(10): 3795-3804
    [230] Reger D L, Watson R P, Gardinier J R,et al. Metallacycles of iron, zinc, and cadmium assembled by polytopic bis(pyrazolyl)methane ligands and fluoride abstraction from BF4-. Inorganic Chemistry, 2006, 45(25): 10088-10097
    [231] Tomat E, Cuesta L, Lynch V M, et al. Binuclear fluoro-bridged zinc and cadmium complexes of a schiff base expanded porphyrin: fluoride abstraction from the tetrafluoroborate anion. Inorganic Chemistry, 2007, 46(16): 6224-6226
    [232] Moulder J F, Stickle W F, Sobol P E, Handbook of X-ray photoelectron spectroscopy, Perkin- Elmer Corp., Eden Prairie, MN, USA, 1992
    [233] Seah M P, Briggs D, Practical surface analysis by auger and X-ray photoelectron spectroscopy, 2nd edition, Wiley & Sons, Chichester, UK 1992
    [234] Lobo A, Borchert H, Talapin D V, et al. Surface oxidation of CdTe nanocrystals - a high resolution core-level photoelectron spectroscopy study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 286 (1-3): 1-7
    [235] Zhao Y J, Zhao X W, Tang B C, et al. Quantum-dot-tagged bioresponsive hydrogel Suspension array for multiplex label-free DNA detection. Advanced Functional Materials, 2010, 20 (6): 976-982
    [236] Yang Z, Li L, Sun Z H, et.al. Direct encoding of silica submicrospheres with cadmium telluride nanocrystals. Journal of Materials Chemistry, 2009, 19 (38): 7002-7010.
    [237] Messing R, Schmidt A M. Perspectives for the mechanical manipulation of hybrid hydrogels. Polymer Chemistry, 2011, 2 (1): 18-32.
    [238] Bong K W, Chapin S C, Doyle P S. Magnetic barcoded hydrogel microparticles for multiplexed detection. Langmuir, 2010, 26 (11): 8008-8014.
    [239] Hardison D; Deepthike H U, Senevirathna W, et. al. Temperature-sensitive microcapsules with variable optical signatures based on incorporation of quantum dots into a highly biocompatible hydrogel. Journal of Materials Chemistry, 2008, 18 (44): 5368-5375.
    [240] Liu J H, Chen G S; Guo M Y; et. al. Dual stimuli-responsive supramolecular hydrogel based on hybrid inclusion complex (HIC). Macromolecules, 2010, 43 (19): 8086-8093.
    [241] Yu Z Y, Chen L, Chen S. Uniform fluorescent photonic crystal supraballs generated from nanocrystal-loaded hydrogel microspheres, Journal of Materials Chemistry, 2010, 20 (29), 6182-6188
    [242] Bai S, Nguyen T L, Mulvaney P, et. al. Using hydrogels to accommodate hydrophobic nanoparticles in aqueous media via solvent exchange. Advanced Materials, 2010, 22 (30), 3247-3250
    [243] Gong Y J, Gao M Y, Wang D Y, et. al. Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding: Toward fluorescent microspheres with temperature-responsive properties. Chemistry of Materials, 2005, 17 (10), 2648-2653
    [244] Shen L, Pich A, Fava D, et. al. Loading quantum dots into thermo-responsive microgels by reversible transfer from organic solvents to water. Journal of Materials Chemistry, 2008, 18 (7), 763-770
    [245] Yang Y H, Tu C F, Gao M Y. A general approach for encapsulating aqueous colloidal particles into polymeric microbeads. Journal of Materials Chemistry, 2007, 17 (28), 2930-2935
    [246] Chang C Y, Peng J, Zhang L N, et. al. Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. Journal of Materials Chemistry, 2009, 19 (41), 7771-7776
    [247] Salcher A, Nikolic M S, Casado S, et. al. CdSe/CdS nanoparticles immobilized on pNIPAm-based microspheres. Journal of Materials Chemistry, 2010, 20 (7), 1367-1374
    [248] Smith A M, Duan H W, Rhyner M N, et. al. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Physical Chemistry Chemical Physics, 2006, 8 (33), 3895-3903
    [249] Zhou J F, Zhou M F, Caruso R A, Agarose template for the fabrication of macroporous metal oxide structures. Langmuir, 2006, 22 (7), 3332-3336
    [250] Rouhana L L, Jaber J A, Schlenoff J B. Aggregation-resistant water-soluble gold nanoparticles. Langmuir, 2007, 23 (26), 12799-12801
    [251] Bagwe R P, Hilliard L R, Tan W H. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir, 2006, 22 (9), 4357-4362
    [252] Wu W, Zhou T, Alexandra B, et al. Glucose-mediated assembly of phenylboronic acid modified CdTe/ZnTe/ZnS quantum dots for intracellular glucose probing, Angewandte Chemie International Edition, 2010, 49(37): 6554-6558
    [253]土桥正二著著,黄占杰,松野静代译,玻璃表面物理化学,北京:科学出版社, 1986
    [254] Khalil A M, Da' dara A A. The genotoxicand cytotoxicactivities of inorganic fluoride in cultured rat bone marrow cells. Archives of Environmental Contamination and Toxicology, 1994, 26 (1):60-63
    [255] Yan Q, Zhang Y, Li W et al, Micromolar fluoride alters ameloblast lineage cells in vitro, Journal of Dental Research, 2007, 86(4): 336-340
    [256] Mulrooney R C, Singh N, Kaur N et al. An“off-on”sensor for fluoride using luminescent CdSe/ZnS quantum dots. Chemical Communications, 2009, 686-688
    [257] Narayanan S S, Pal S K, Aggregated CdS quantum dots: host of biomolecular ligands. Journal of Physical Chemistry B, 2006, 110, 24403-24409
    [258] Mandal S, Gole A, Lala N, et al. Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds. Langmuir, 2001, 17(20), 6262-6268
    [259] Mizusawa K, Ishida Y, Takaoka Y, et al. Disassembly- driven turn-on fluorescent nanoprobes for selective protein detection. Journal of the American Chemical Society, 2010, 132(21): 7291-7293
    [260] Kim T, Noh M, Lee H, et al. Fluorescence-based detection of point mutation in DNA sequences by CdS quantum dot aggregation. Journal of Physical Chemistry B, 2009, 113(43), 14487-14490
    [261] Noha M, Kima T, Leea H, et al. Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 359, 39-44
    [262] Rocher N, Frech R. Hydrogen bonding and cation coordination effects in primary and secondary amines dissolved in carbon tetrachloride. Journal of Physical Chemistry A, 2007, 111(14): 2662-2669
    [263] Koole R, Liljeroth P, Donega′C M, et al. Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules. Journal of the American Chemical Society, 2006, 128(32): 10436-10441
    [264] Crooker S A, Hollingsworth J A, Tretiak S, et al. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Physical Review Letters, 2002, 89(18): 186802
    [265] Wu M Y, Mukherjee P, Lamont D N et al. Electron transfer and fluorescence quenching of nanoparticle assemblies. Journal of Physical Chemistry C, 2010, 114(13), 5751-5759
    [266] Achermann M, Petruska M A, Crooker S A, et al. Picosecond energy transfer in quantum dot langmuir-blodgett nanoassemblies. Journal of Physical Chemistry B, 2003, 107(50): 13782-13787
    [267] Camargo J A. Fluoride toxicity to aquatic organisms: a review. Chemosphere, 2003, 50(3): 251-264
    [268] Ayoob S, Gupta A K. Fluoride in drinking water: a review on the status and stress effects. Critical Reviews in Enviromental Science and Technology, 2006, 36(6): 433-487
    [269] Badr I H A, Meyerhoff M E. Highly selective optical fluoride ion sensor with submicromolar detection limit based on aluminum(III) octaethylporphyrin in thin polymeric film. Journal of the American Chemical Society, 2005, 127(15): 5318-5319
    [270] Frant M S, Jr J W R. Electrode for sensing fluoride ion activity in solution. Science, 1966, 154(3756): 1553-1555
    [271] Badr I H A, Meyerhoff M E. Fluoride- selective optical sensor based on aluminum (III)- octaethylporphyrin in thin polymeric film: further characterization and practical application. Analytical Chemistry, 2005, 77(20): 6719-6728
    [272] Edgar R, McKinstry M, Hwang J, et al. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13): 4841-4845
    [273] Song E Q, Zhang Z L, Luo Q Y, et al. Tumor cell targeting using folate-conjugated fluorescent quantum dots and receptor- mediated endocytosis. Clinical Chemistry, 2009, 55(5): 955-963
    [274] Smith A M, Duan H W, Rhyner M N, et al. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Physical Chemistry Chemical Physics, 2006, 8(33): 3895-3903
    [275] Fan H Y, Leve E W, Scullin C, et al. Surfactant- assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Letters, 2005, 5(4): 645-648
    [276] Schroeder J E, Shweky I, Shmeeda H, et al. Folate- mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. Journal of Controlled Release, 2007, 124(1): 28-34
    [277] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298(5599): 1759-1762
    [278] Ducong F, Pons T, Pestourie C, et al. Fluorine18- labeled phospholipidquantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. Bioconjugate Chemistry, 2008, 19 (9): 1921-1926
    [279] Sasaki D Y, Perroud T D, Yoo D, et al. Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA somin eunice lee. Journal of the American Chemical Society, 2009, 131 (39): 14066-14074
    [280] Howes P, Green M, Levitt J, et al. Phospholipid encapsulated semiconducting polymer nanoparticles: their use in cell imaging and protein attachment. Journal of the American Chemical Society, 2010, 132 (11): 3989-3996
    [281] Wang L S, Wu L C, Lu S Y, et al. Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. ACS Nano, 2010, 4 (8): 4371-4379
    [282] Saxton M J. Single-particle tracking: the distribution of diffusion coefficients. Biophysical Journal, 1997, 72(4): 1744-1753
    [283] Xu C S, Kim H, Yang H, et al. Multiparameter fluorescence spectroscopy of single quantum dot-dye FRET hybrids. Journal of the American Chemical Society, 2007, 129(36): 11008-11009
    [284] Saxton M J, Jacobson K. Single-particle tracking: applications to membrane dynamics. Annual Review of Biophysics and Biomolecular Structure, 1997, 26: 373-399
    [285] Cheng Y, Muller J D, Berland K M, et al. Fluorescence fluctuation spectroscopy. Methods, 1999, 19: 234-252
    [286] Mashanov G I, Tacon D, Knight A E, et al. Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods, 2003, 29(2): 142-152
    [287] Kuno M, Fromm D P, Hamann H F, et al. Nonexponential“blinking’’kinetics of single CdSe quantum dots: a universal power law behavior. Journal of Chemical Physics, 2000, 112(7): 3117-3120
    [288] Su X L, Li Y B. Quantum dot biolabeling coupled with immunomagnetic separation for detection of escherichia coli O157:H7. Analytical Chemistry, 2004, 76 (16): 4806-4810
    [289]丁劲松,杨敏,陈琼.聚乙二醇衍生化磷脂与脂质体立体稳定性.中国医药工业杂志, 2004, 35(1): 55-58
    [290] Josh A, Connie W C, Shimon W, et al. Nanometer distance measurements between multicolor quantum dots, Nano Letters, 2009, 9(5): 2199-2205
    [291] Zinchuk, V. and Zinchuk, O. Quantitative colocalization analysis of confocal fluorescence microscopy images. Current Protocols in Cell Biology,39:4.19.1-4.19.16. John Wiley & Sons, Inc. 2008
    [292] Bolte, S. and Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy, 2006, 224: 213-232
    [293] Comeau, J. W. D., Costantino, S. and Wiseman, P. W. A guide to accurate fluorescence microscopy colocalization measurements. Biophysical Journal, 2006, 91: 4611-4622
    [294] Lacoste T D, Michalet X, Pinaud F, et al. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(17): 9461-9466
    [295] Agrawal A, Deo R, Wang G D, et al. Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3298-3303
    [296] http://probes.invitrogen.com/media/pis/mp19000.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700