用户名: 密码: 验证码:
稀土添加剂的类型对α-sialon陶瓷组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用两步热压烧结法制备了不同稀土单一掺杂以及复合掺杂的α-sialon陶瓷。系统研究了α-sialon陶瓷的微观组织和力学性能的关系,揭示了长棒状α-sialon晶粒的形核和长大方式及自增韧机制。通过氧化试验,分析了稀土氧化物类型和含量对材料氧化性能的影响并探讨了氧化机理。
     研究发现,小尺寸Yb~(3+)、Y~(3+)和Dy~(3+)稳定的α-sialon陶瓷只有单一的α-sialon相,而大尺寸稀土体系还含有少量晶间相M'(R2Si3-xAlxO~(3+)xN4-x)、甚至β-sialon和21R-AlN多型体。随着稀土离子尺寸增大,陶瓷中长棒状晶粒增多,长径比增大;断裂韧性升高,硬度略有下降。
     选用高熔点Sc_2O_3为稳定剂制备的sialon陶瓷主要由β-sialon相组成,并含有少量12H-AlN多型体。12H'吸收大量Sc进入到它的结构中,为减少晶间相提供了一条有效途径。Sc-sialon陶瓷硬度较低,只有16 GPa;等轴晶粒形貌使得材料的强度和韧性偏低,只有541 MPa和3.8 MPa?m1/2。但以高熔点Lu2O3为稳定剂的α-sialon陶瓷则完全由α-sialon相构成,兼有少量晶间相J'(Lu4Si2-xAlxO7+xN2-x),其硬度很高,都在21 GPa以上。随着Lu2O3含量增加,晶间相增多,长棒状晶粒数目增多,长径比增大,强度和韧性升高,硬度略有下降;当过量Lu2O3含量超过4 wt.%时,晶粒径向尺寸明显变小,长度略有降低;过量Lu2O3含量为4 wt.%时,材料具有最高的韧性和强度,分别为4.7 MPa?m1/2和620.2 MPa。热处理使得Lu-α-sialon晶粒各向异性长大明显,晶间相分布趋向于三角晶界处,其固溶度增大,而α-sialon的固溶度减小,韧性和强度进一步升高。
     首次将两种小尺寸稀土离子Sc~(3+)和Lu~(3+)复合掺杂制备α-sialon陶瓷,成功使得不能单独进入α-sialon结构的Sc~(3+)稳定存在于α-sialon中。材料主要由α-sialon相构成,兼有少量β-sialon、J'和含Sc的12H'相。材料具有高硬度、高韧性和抗弯强度,分别为20.4 GPa、5.2 MPa?m1/2和652 MPa。
     HREM分析表明,单一掺杂的α-sialon陶瓷中,α-sialon和晶间相之间没有非晶层,但在α-sialon相之间则存在厚度1 nm左右的非晶层,即使热处理也不能完全消除;但在复合掺杂的ScLu-α-sialon中,α-sialon相之间以及和β-sialon相之间的界面都不存在非晶层。
     (S)TEM分析表明,不同稀土体系α-sialon晶粒形核长大机制均是以α-Si3N4作为优先形核位置外延生长,且初始析出的α-sialon较之后沉淀析出的固溶度高,core、shell之间点阵连续,晶体结构和晶体学取向相同,由于成份及晶格常数的差异,界面存在错配位错及应变引起的衬度变化。棱柱面界面反应控制生长和基面(001)的扩散控制生长促使α-sialon晶粒各向异性长大并形成长棒状晶粒。
     长棒状α-sialon晶粒的形成成功实现了α-sialon陶瓷的自增韧机制。通过长棒状晶粒的解离和拔出以及裂纹沿长棒状晶粒的偏转和桥接大大提高了陶瓷的断裂韧性,同时长棒状晶粒也促进了材料的强化。
     Lu-和ScLu-α-sialon陶瓷都具有很高的高温强度,1400oC下仍达550 MPa以上,且抗氧化性能好,氧化层致密,1300oC下其氧化速率常数K≈2.5×10-6 - 4.2×10-6 mg2/(cm4?s),较Y-α-sialon陶瓷低一个数量级。氧化反应及元素扩散共同作用使得氧化层下方形成一个稀土元素消耗区,它与氧化层和基体连接紧密。
α-Sialons stabilized with different rare-earth cations or multi-cations were prepared by a two-step hot sintering. The relationship between microstructure and properties was systematically investigated. The nucleation and growth mode of elongatedα-sialon grains, as well as the self-toughening mechanism was revealed. The effect of type of rare-earth oxides on the oxidation behavior of materials was studied and the oxidation mechanism was also discussed.
     The experimental results show that Yb-, Y- and Dy-α-sialon ceramics consist of onlyα-sialon phase, while a few M'(R2Si3-xAlxO~(3+)xN4-x), evenβ-sialon and 21R-AlN polytypoid are also found in large cation doped ceramics. With the increase of ionic radius, more elongated grains form and the aspect ratio tends to increase. The toughness increases, but the hardness decreases slightly.
     Sc_2O_3 with high melting point was incorporated into sialon ceramic. Onlyβ-sialon as main crystalline phase exists together with a small amount of 12H-AlN polytypoid. The formation of scandium containing AlN-polytypoid can provide a valid way to reduce the amount of grain boundary phase. The Sc-sialon exhibits a typically low hardness of 16 GPa due to itsβ-sialon phase assemblage. Moreover, the equiaxed morphology ofβ-sialon grains, which is discovered for the first time, also results in a relatively lower fracture toughness and strength, 541 MPa and 3.8 MPa?m1/2, respectively. Whereas, sialon ceramics doped with high melting point Lu2O3 mainly consist ofα-sialon phase with a few intergranular phase J'(Lu4Si2-xAlxO7+xN2-x). Lu-α-sialons possess very high hardness of over 21 GPa. With increasing the Lu2O3 content, the amount of intergranular phase increases, and the number and aspect ratio of elongatedα-sialon grains increase, too. When the extra content of Lu2O3 goes beyond 4wt%, the radial size ofα-sialon grains decreases obviously and the length decreases slightly. Lu-α-sialons exhibit an enhanced toughness and strength with the peak value of 4.7 MPa?m1/2 and 620.2 MPa for the material containing 4 wt% extra Lu2O3. The post-heat treatment results in an anisotropic growth of Lu-α-sialon grains and a decreased solubility of Lu~(3+). The intergranular phases tend to distribute at the triple-grain pockets and the solubility of Lu~(3+) increases. The toughness and strength are further improved.
     It is originally demonstrated that mixed cation scandium/lutetium dopedα-sialon was prepared. The addition of Lu2O3 in the composition promotes the Sc~(3+) to enter theα-sialon structure, and leads the producedα-sialon with elongated-grain morphology. The ScLu-α-sialon mainly consists ofα-sialon phase with small quantity ofβ-sialon, 12H' and J'. It possesses a high hardness, toughness and flexural strength with the values of 20.4 GPa, 5.2 MPa?m1/2 and 652.5 MPa, respectively.
     HREM analysis shows that no amorphous layer at theα-sialon/intergranular phase interface exists, but there is only a ~1 nm amorphous layer betweenα- andα-sialon grains which cannot be eliminated completely even after heat treatment in single-cation dopedα-sialon ceramics. In multi-cation ScLu-α-sialon, there is no amorphous layer atα/α-sialon andα/β-sialon interfaces.
     (S)TEM analyses indicate thatα-sialon always nucleates on initial unsolvedα-Si3N4 and then grows epitaxially on it. And the initial precipitation on theα-Si3N4 particle is rich in rare-earth and Al than the subsequent precipitation.
     This mechanism of heterogeneous nucleation and growth is applicable for majority of Re-α-sialon systems. HREM analysis shows that the core and shell have the same structure and crystallographic orientation, and the interface is coherent. The misfit dislocations and the contrast variation caused by the misfit strain are observed due to the difference in compositions and lattice constants. The anisotropic growth ofα-sialon grains are mainly resulted from the different growth mechanisms between the prisms and the base surface. The interfacial reaction controlled kinetics on the prisms and diffusion-controlled kinetics on the base surface (001) are believed to take effect, respectively. The formation of elongatedα-sialon grains facilitates self-toughening mechanism successfully, such as pullout of elongated grains and deflection and bridging of crack. The toughness is greatly enhanced as well as the strength. The high temperature strength of Lu- and ScLu-α-sialon ceramics are very high and can reach over 550 MPa even at 1400 oC. They possess very good oxidation resistance, with thinner dense oxidation layer and parabolic rate constants K≈2.5×10-6 - 4.2×10-6 mg2/(cm4?s) at 1300oC, which is one order of magnitude lower than that of Y-α-sialon. One rare-earth depleted zone forms beneath the oxidation layer due to the oxidation reactions and the outward diffusion of cations into the scale. The rare-earth depleted layer contacts closely with the oxidation layer and theα-sialon matrix.
引文
1周玉.陶瓷材料学.科学出版社, 1995: 315-378
    2 R.W.卡恩, P.哈森, E.J.克雷默.材料科学与技术丛书,VIII,陶瓷的结构与性能. M.V.斯温主编. 1998: 110-111
    3 G..G..Deeley, J.M.Herbert and N.C.Moore. Dense Silicon Nitride. Powder Metall. 1961, 8: 145-151
    4 G..Petzow and M.Herrmann. Silicon nitride ceramics. High Performance Non-Oxide Ceramics II: Structure and Bonding. Springer-Verlag Berlin Heidelberg, 2002, 102: 47-167
    5 K.H.Jack and W.I.Wilson. Ceramics Based on the Si-Al-O-N and Related Systems. Nature: Phy. Sci.. 1972, 238: 28-29
    6 S.Hampshire, H.K.Park, D.P.Thompson and K.H.Jack.α-SiAlON Ceramics. Nature. 1978, 274: 880-882
    7 F.F.Lange. Frature Toughness of Si3N4 as a Function of the Initialα-Phase Content. J. Am. Ceram. Soc.. 1979, 62(7-8): 428-430
    8 F.F.Lange. Relations between Strength, Fracture Energy and Microstructure of Hot-Pressed Si3N4. J. Am. Ceram. Soc.. 1973, 56(10): 518-522
    9 T.Ekstroem and M.Nygren. SiAlON Ceramics. J. Am. Ceram. Soc.. 1992, 75(2): 259-276
    10 G.Z.Cao.α-Sialon Ceramics: A Review. Chem. Mater.. 1991, 3: 242-252
    11 H.Wang, Y.B.Cheng, B.C.Muddle, L.Gao and T.S.Yen. Preferred orientation in hot-pressed Ca-α-SiAlON ceramics. J. Mater. Sci. Lett.. 1996, 15(16): 1447-49
    12 Z.J.Shen, T.Ekstrom and M. Nygren. Ytterbium-Stabilizedα-sialon Ceramics. Journal of Physics D: Applied Physics. 1996, 29(3): 893-904
    13 I.W.Chen and A.Rosenflanz. A Tough SiAlON Ceramic Based onα-Si3N4 with a Whisker-like Microstructure. Nature. 1997, 389(6652): 701-704
    14 M.Zenotchkine, R.Shuba and I.W.Chen. Effect of Heating Schedule on the Microstructure and Fracture Toughness ofα-SiAlON ? Cause and Solution. J. Am. Ceram. Soc.. 2002, 85(7): 1882-1884
    15 C.A.Wood, H.Zhao and Y.B.Cheng. Microstructural Development of Calciumα-SiAlON Ceramics with Elongated Grains. J. Am. Ceram. Soc.. 1999, 82(2):421-428
    16 I.H.Shin and D.J.Kim. Growth of Elongated Grains inα-SiAlON Ceramics. Mater. Lett.. 2001, 47(6): 329-333
    17 Z.J.Shen, H.Peng, P.Pettersson and M.Nygren. Self-Reinforcedα-SiAlON Ceramics with Improved Damage Tolerance Developed by a New Processing Strategy. J. Am. Ceram. Soc.. 2002, 85(11): 2876-2878
    18 P.L.Wang, W.Y.Sun and T.S.Yen. Sintering and Formation Behavior of R-α'-Sialons (R=Nd, Sm, Gd, Dy, Er and Yb). European Journal of Solid State and Inorganic Chemistry, 1994. 31(2): 93-104
    19 F.Ye, M.J.Hoffmann, S.Holzer, Y.Zhou and M.Iwasa. Effect of the Amount of Additives and Post-Heat Treatment on the Microstructure and Mechanical Properties of Yttrium-α-Sialon Ceramics. J. Am. Ceram. Soc.. 2003, 86(12): 2136-42
    20 D.Hardie and K.H.Jack. Crystal Structure of Silicon Nitride. Nature. 1957, 180: 332-333
    21 F.L.Riley. Silicon Nitride and Related Materials. J. Am. Ceram. Soc.. 2000, 83(2): 245-265
    22 D.R.Messier, F.L.Riley and R.J.Brook. Theα/βSilicon Nitride Phase Transformation. J. Mater. Sci.. 1978, 13: 1199
    23 Y.Oyama and O.Kamigaito. Solid Solubility of Some Oxides in Si3N4. Jpn. J. Appl. Phys.. 1971, 10: 1637-1642
    24 T.Ekstr?m, P.O.Kall, M.Nygren and P.O.Olsson. Dense Single-Phaseβ-Sialon Ceramics by Glass-Encapsulated Hot Isostatic Pressing. J. Mater. Sci.. 1989, 24: 1853-1861
    25 M.Mitomo and G..Petzow. Recent Progress in Silicon Nitride and Silicon Carbide Ceramics. Mrs Bulletin. 1995, 2: 19-41
    26 M.H.Lewis, G.L.Ward and C.Jasper. Sintering Additive Chenistry in Controlling Microstructure and Properties of Nitrogen Ceramics. Ceram. Powder Sci.. 1988, 2: 1019-1033
    27 W.H.Zhu, P.L.Wang, W.Y.Sun and D.S.Yan. Formation of Na-α'-Sialon and O'-Sialon. J. Mater. Sci. Lett.. 1994, 13(20): 1510-1512
    28 Z.B.Yu, D.P.Thompson and A.R.Bhatti. In Situ Growth of Elongatedα-Sialon Grains in Li-α-Sialon Ceramics. J. Eur. Ceram. Soc.. 2001, 21(13): 2423-2434
    29 Z.H.Xie, M.Hoffman and Y.B.Cheng. Microstructural Tailoring and Characterization of a Calciumα-SiAlON Composition. J. Am. Ceram. Soc.. 2002, 85(4): 812-818
    30 P.L.Wang, C.Zhang, W.Y.Sun and D.S.Yan. Characteristics of Ca-α-Sialon ? Phase Formation, Microstructure and Mechanical Properties. J. Eur. Ceram. Soc.. 1999, 19(5): 553-560
    31 Y.W.Li, P.L.Wang, W.W.Chen, Y.B.Cheng and D.S.Yan. Grain Growth ofα-SiAlON in the Calcium-Doped System. J. Am. Ceram. Soc.. 2002, 85(10): 2545-2549
    32 Z.B.Yu, D.P.Thompson and A.R.Bhatti. Self-Reinforcement in Li-α-sialon ceramics. J. Mater. Sci.. 2001, 36(14): 3343-3353
    33 Z.J.Shen, H.Peng and M.Nygren. Rapid Densification and Deformation of Li-Doped Sialon Ceramics. J. Am. Ceram. Soc.. 2004, 87(4): 727-729
    34 G.H.Liu, K.X.Chen, H.P.Zhou, C.Pereira, S.Quaresma and J.M.F.Ferreira. Preparation of Y-SiAlON Rod-like Crystals and Whiskers by Combustion Synthesis. Mater. Lett.. 2005, 59(29-30): 3955-3958
    35 C.Zhang, K.Komeya, J.Tatami and T.Meguro. Inhomogeneous Grain Growth and Elongation of Dy-αSialon Ceramics at Temperatures above 1800 oC. J. Eur. Ceram. Soc.. 2000, 20(7): 939-944
    36 C.Santos, K.Strecker, S.Ribeiro, J.V.C.de Souza, O.M.M.Silva and C.R.M.da Silva.α-SiAlON Ceramics with Elongated Grain Morphology Using an Alternative Sintering Additive. Mater. Lett.. 2004, 58(11): 1792-1796
    37 J.Kim, A.Rosenflanz and I-W.Chen. Microstructure Control of In-Situ- Toughenedα-SiAlON Ceramics. J. Am. Ceram. Soc.. 2000, 83(7): 1819-21
    38 J.X.Jiang, B.Zhu, P.L.Wang, W.W.Chen, D.S.Yan, H.R.Zhuang and Y.B.Cheng. Phase Assemblages of Prα-Sialon Derived from SHS-Ed Powders and TEM Study On the Nucleation of Prαa-Sialon. J. Am. Ceram. Soc.. 2005, 88(4): 950-953
    39 Z.K.Huang, T.Y.Tien and T.S.Yen. Subsolidus Phase Relationships in Si3N4-AlN-Rare-Earth Oxide Systems. J. Am. Ceram. Soc.. 1986, 69(10): C241-242
    40 Z.Huang, W.Sun and D.Yan. Phase Relations of the Si3N4-AlN-CaO System. J. Mater. Sci. Lett.. 1985, 3: 255-259
    41 W.Y.Sun, T.Y.Tien and T.S.Yen. Solubility Limits ofα-Sialon Solid Solutions in the System Si,Al,Y/N,O. J. Am. Ceram. Soc.. 1991, 74: 2547-50
    42 D.P.Thompson. The Crystal Chemistry of Nitrogen Ceramics. Mater. Sci. Forum. 1989, 47: 21-42
    43王佩玲,张炯,贾迎新,孙维莹. AlN-多型体陶瓷的研究II, AlN-多型体的力学性能和显微结构.无机材料学报. 2000, 15(4): 756-760
    44 P.L.Wang, W.Y.Sun, and D.S.Yan. Mechanical Properties of AlN-Polytypoids - 15R, 12H and 21R. Mater. Sci. Eng. A– Struct.. 1999, 272(2): 351-356
    45 K.Komeya and A.Tsuge. Formation of AlN Polytypoid Ceramics and Some of Their Properties. J. Ceram. Soc. Japan. 1981. 89(11): 615-620
    46 L.J.Gauckler, H.L.Lukas and G.Petzow. Contribution to the Phase Diagram Si3N4 -SiO2-AlN-Al2O3. J. Am. Ceram. Soc.. 1975, 58: 346
    47 I.K.Naik, L.J.Gauckler and T.Y.Tien. Solid Liquid Equilibria in the System Si3N4 -AlN - Al2O3-SiO2. J. Am. Ceram. Soc.. 1978, 61(7-8): 332-335
    48 W.Y.Sun, T.Y.Tien and T.S.Yen. Subsolidus Phase Relationships in Part of the System Si,Al,Y/N,O: the System Si3N4-AlN-YN-Al2O3-Y2O3. J. Am. Ceram. Soc.. 1991, 74: 2753-2758
    49 G.Z.Cao, Z.K.Huang, X.R.Fu and D.S.Yan. Phase Equilibrium Studies in Si2N2O-Containing Systems: II, Phase Relations in the Si2N2O-Al2O3-La2O3 and Si2N2O-Al2O3-CaO Systems. Int. J. High-Technol. Ceram.. 1985, 1: 119
    50 D.P.Thompson. Phase Relationships in Y-Si-Al-O-N Ceramics, In Tailoring Multiphase and Composite Ceramics, edited by R.E.Tressler, G.L.Messing, C.G.Iantano, R.E.Newnham. Plenum Press, New York, 1986: 72-79
    51 L.O.Nordberg, Z.J.Shen, M.Nygren and T.Ekstrom. On the Extension of theα-Sialon Solid Solution Range and Anisotropic Grain Growth in Sm-Dopedα-Sialon Ceramics. J. Eur. Ceram. Soc.. 1997, 17(4): 575-580
    52 A.Rosenflanz.α'-Sialon: Phase Stability, Phase Transformations and Microstructural Evolutions. Ph.D. Dissertation in the University of Michigan. 1997
    53 Z.J.Shen and M.Nygren. On the Extension of theα-sialon Phase Area in Yttrium and Rare-Earth Doped Systems. J. Eur. Ceram. Soc.. 1997, 17(13): 1639-1645
    54 Z.J.Shen, T.Ekstrom and M.Nygren. Homogeneity Region and Thermal Stability of Neodymium-Dopedα-sialon Ceramics. J. Am. Ceram. Soc.. 1996, 79(3):721-732
    55 A.Rosenflanz and I.W.Chen. Phase Relationships and Stability ofα'-SiAlON. J. Am. Ceram. Soc.. 1999, 82(4): 1025-1036
    56 W.D.Kingery. Densification during Sintering in the Presence of a Liquid Phase: I, Theory. J. Appl. Phys.. 1959, 30(3): 301-306
    57 T.Ekstrom. Effect of Compositions, Phase Content and Microstructure on the Performance of Yttrium Si-Al-O-N Ceramics. Mater. Sci. Eng. A-Struct.. 1989, 109: 341-349
    58 M.Menon and I-W.Chen. Reaction Densification ofα'-Sialon: I, Wetting Behavior and Acid-Base Reactions. J. Am. Ceram. Soc.. 1995, 78(3): 545-552
    59 M.Menon and I-W.Chen. Reaction Densification ofα'-Sialon: II, Densification Behavior. J. Am. Ceram. Soc.. 1995, 78(3): 553-559
    60 H.Knoch and G.E.Gazza. On theαtoβPhase Transformation and Grain Growth during Hot-Pressing of Si3N4 Containing MgO. Ceram. Int.. 1980, 6(2): 51-56
    61 S.L.Hwang and I-W.Chen. Reaction Hot-Pressing ofα'-Sialon andβ'-Sialon Ceramics. J. Am. Ceram. Soc.. 1994, 77(1): 165-171
    62 G.H.Liu, K.X.Chen, H.Zhou, J.Guo, C.Pereira and J.M.F.Ferreira. Low-Temperature Preparation of In Situ Toughened Ybα-SiAlON Ceramics by Spark Plasma Sintering (SPS) with Addition of Combustion Synthesized Seed Crystals. Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing. 2005, 402(1-2): 242-249
    63 G.H.Liu, K.X.Chen, H.P.Zhou and J.M.F.Ferreira. Study on Phase Transformation and Microstructure Development of Ybα-SiAlON Ceramics Prepared by Pressureless Sintering, in Pricm 5: The Fifth Pacific Rim International Conference on Advanced Materials and Processing, Pts 1-5. Materials Science Forum. 2005, 475-479: 1271-1274
    64 H.Mandal, R.Oberacker, M.J.Hoffmann and D.P.Thompsom.α-SiAlON Ceramics Densified with Mixed Oxide Sintering Additives, in Nitrides and Oxynitrides. Mater. Sci. Forum. 2000, 325-3: 207-212
    65 H.Peng, Z.Shen and M.Nygren. Fabrication of Li-Doped Sialon Ceramics by Spark Plasma Sintering, in Euro Ceramics VIII, Pts 1-3. Key Eng. Mater.. 2004, 264-268: 885-888
    66 W.Ta, Y.B.Cheng, B.Muddle, C.Hwewett and M.Trigg. Pressureless sintering ofcalciumα-sialons, in Nitrides and Oxynitrides. Mater. Sci. Forum. 2000, 325-3: 199-205
    67 J.W.T.Van Rutten, H.T.Hintzen and R.Metselaar. Phase Formation of Ca-α-Sialon by Reaction Sintering. J. Eur. Ceram. Soc.. 1996, 16(9): 995-999
    68 S.Bandyopadhyay, M.J.Hoffmann and G.Petzow. Effect of Different Rare Earth Cations on the Densification Behaviour of Oxygen Richα-SiAlON Composition. Ceram. Int.. 1999, 25(3): 207-213
    69 F.Ye, M.Jwasa, C.Su and S.Chen. Self-Reinforced Y-α-Sialon Ceramics with Barium Aluminosilicate as an Additive. J. Mater. Res.. 2003, 18(10): 2446-2450
    70 G.H.Liu, K.X.Chen, H.P.Zhou, K.G.Ren, X.S.Ning, C.Pereira and J.M.F.Ferreira. Phase Transformation and Microstructure Development of In Situ Toughened Ybα-SiAlON Ceramics Prepared by Two-Step Hot-Pressing. Mater. Chem. Phys. 2006, 98(1): 159-164
    71 Y.Kaga, M.I,Jones, K.Hirao and S.Kanzaki. Fabrication of Elongatedα-SiAlON via a Reaction-Bonding Process. J. Am. Ceram. Soc.. 2004, 87(5): 956-959
    72 G.Z.Cao, R.Metselaar and G.Ziegler. Preparation and Properties ofα'- andα' +β'-sialon ceramics. Mater. Forum. 1992. 16(4): 299-305
    73 Y.Ukyo, A.Suda, H.Masaki and K.Niihara. Sintering Reactions of Mixtures of Y-α'-SiAlON andα-Si3N4, in Novel Synthesis and Processing of Ceramics. Key Eng. Mater.. 1999, 159-1: 221-227
    74 G.H.Liu, K.X.Chen, H.P.Zhou, X.S.Ning, C.Pereira and J.M.F.Ferreira. Pressureless Sintering of In-Situ Toughened Ybα-SiAION Ceramics by Adding Seed Crystals Prepared by Combustion Synthesis. J. Mater. Sci.. 2006, 41(6): 1791-1796
    75 G.H.Liu, K.X.Chen, H.P.Zhou, K.G.Ren, J.J.Tian and X.S.Ning. Effect of Seed Addition with Combustion Synthesized Powder on Pressureless Sintering of Yα-SiAlON. Rare Metal Mat. Eng.. 2005, 34(6): 994-997
    76 X.Xu, M.Oliveira and J.M.F. Ferreira.α-SiAlON Ceramics Obtained by Slip Casting and Pressureless Sintering. J. Am. Ceram. Soc.. 2003, 86(2): 366-368
    77 D.Salamon, P.Sajgalik, Z.Lences and J.Krest'an. The Influence of La2O3 and Nd2O3 Addition on Aspect Ratio of Y-α-sialon Seeds. Mater. Lett.. 2005, 59(26): 3201-3204
    78 W.W.Chen, W.Y.Sun, P.L.Wang, Y.W.Li, Y.B.Cheng and D.S.Yan. Control ofMicrostructures inα-SiAlON Ceramics. J. Am. Ceram. Soc.. 2002, 85(1): 276-278
    79 T.Ekstrom, H.Herbertsson, M.James and I.Fleck. Nd2O3-Doped Sialons with ZrO2 ZrN Additions Formed By Sintering and Hot Isostatic Pressing. J. Am. Ceram. Soc.. 1994, 77(12): 3087-3092
    80 P.O.Kall and T.Ekstrom. Phase Composition and Mechanical Properties of HIP-Sintered Y/Nd-Sialon Ceramics. Proceedings of the Riso International Symposium on Metallurgy and Materials Science. Publ by Riso Natl Lab, Roskilde, Den, 1990: 383
    81 H.Peng, Z.J.Shen and M.Nygren. SPS Processing and Superplastic Deformation of Silicon Nitride Based Ceramics, in Advanced Si-Based Ceramics and Composites. Key Eng. Mater.. 2005, 287: 146-155
    82 M.I.Jones, K.Hirao, H.Hyuga, Y.Yamauchi, Z.J.Shen and M.Nygren. Wear Properties of Self-Reinforcedα-Sialon Ceramics Produced by Spark Plasma Sintering. Wear. 2004, 257(3-4): 292-296
    83 F.F.Xu, S.L.Wen, L.-O.Nordberg and T.Ekstrom. Nucleation and growth of the elongatedα'-SiAlON. J. Eur. Ceram. Soc.. 1997, 17(13): 1631-1638
    84 M.Kraemer, D.Wittmuss, H.Kuppers, M.J.Hoffmann and G.Petzow. Relations between Crystal Structure and Growth Morphology ofβ-Si3N4. J.Cryst.Growth. 1994, 140: 157-166
    85 H.Gleiter. Theory of Grain Boundary Migration Rate. Acta Materialia. 1979, 27(4): 693-698
    86 H.Emoto and M.Mitomo. Control and Characterization of Abnormally Grown Grains in Silicon Nitride Ceramics. J. Eur. Ceram. Soc.. 1997, 17(6): 797-804
    87 K.R.Lai and T.Y.Tien. Kinetics ofβ-Si3N4 Grain Growth in Si3N4 Ceramics Sintered under High Nitrogen Pressure. J. Am. Ceram. Soc., 1993, 76: 91-96
    88 T.Ikegami. Microstructural Development during Intermediate- and Final stage Sintering. Acta Materialia. 1987, 35(3): 667-675
    89 S.M.Han and S.J.L.Kang. Kinetics ofβ-Si3N4 Grain-Growth in Si3N4 Ceramics Sintered under High-Nitrogen Pressure - Comment. J. Am. Ceram. Soc.. 1993, 76(12): 3178-3179
    90 M.Kitayama, K.Hirao, M.Toriyama and S.Kanzaki. Modeling and Simulation of Grain Growth in Si3N4 - I. Anisotropic Ostwald Ripening. Acta Materialia. 1998,46(18): 6541-6550
    91 M.Kitayama, K.Hirao, M.Toriyama and S.Kanzaki. Modeling and Simulation of Grain Growth in Si3N4 - II. Theα-βtransformation. Acta Materialia. 1998, 46(18): 6551-6557
    92 M.Kitayama, K.Hirao, M.Toriyama and S.Kanzaki. Experimental Evidence for the Anisotropic Ostwald Ripening ofβ-silicon nitride. J. Am. Ceram. Soc.. 1999, 82(10): 2931-2933
    93 S.L.Hwang and I-W.Chen. Nucleation and Growth ofβ'-Sialon. J. Am. Ceram. Soc.. 1994, 77(7): 1719-1728
    94 S.L.Hwang and I-W.Chen. Nucleation and Growth ofα'-Sialon onα-Si3N4. J. Am. Ceram. Soc.. 1994, 77(7): 1711-1718
    95 T.Ekstrom, L.K.L.Falk and Z.J.Shen. Duplexα,β-Sialon Ceramics Stabilized by Dysprosium and Samarium. J. Am. Ceram. Soc.. 1997, 80(2): 301-312
    96 E.Y.Sun, P.F.Becher, K.P.Plucknett, C.H.Hsueh, K.B.Alexander and S.B.Waters. Microstructural Design of Silicon Nitride with Improved Fracture Toughness: II, Effects of Yttria and Alumina Additives. J. Am. Ceram. Soc.. 1998, 81(11): 2831-2840
    97 Y.W.Li, P.L.Wang, W.W.Chen, J.W.Feng, D.S.Yan and Y.B.Cheng. TEM Observation on Nucleation of Caα-Sialon. Chinese Science Bulletin. 2001, 46(3): 216-219
    98 M.Zenotchkine, R.Shuba and I-W.Chen. Effect of Seeding on the Microstructure and Mechanical Properties ofα-Sialon: III, Comparison of Modifying Cations. J. Am. Ceram. Soc.. 2003, 86(7): 1168-1175
    99 R.Shuba and I-W.Chen. Effect of Seeding on the Microstructure and Mechanical Properties ofα-SiAION: II, Ca-α-SiAION. J. Am. Ceram. Soc.. 2002, 85(5): 1260-1267
    100 M.Zenotchkine, R.Shuba, J-S.Kim and I-W.Chen. Effect of Seeding on the Microstructure and Mechanical Properties ofα-Sialon: I, Y-Sialon. J. Am. Ceram. Soc.. 2002, 85(5): 1254-1259
    101 M.Mitomo, C.M.Wang, F.F.Xu, N.hirosaki and Y.Bando. Effect of Seed Addition on the Formation ofα-SiAlONs, in Siaions. Key Eng. Mater.. 2003, 237: 79-86
    102 H.D.Kim, B.D.Han, D.S.Park, B.Y.Lee and P.F.Becher. Novel Two-Step Sintering Process to Obtain a Bimodal Microstructure in Silicon Nitride. J. Am.Ceram. Soc.. 2002, 85(1): 245-252
    103 M.Kraemer, M.J.Hoffmann and G.Petzow. Grain Growth Kinetics of Si3N4 duringα/β-Transformation. Acta Metallurgica & Materialia. 1993, 41(10): 2939
    104 M.Kraemer, M.J.Hoffmann and G.Petzow. Grain Growth Kinetics of Silicon Nitride Dispersed in an Oxynitride Glass. J. Am. Ceram. Soc.. 1993, 76(11): 2778-84
    105 M.A.Einarsrud and M.Mitomo. Mechanism of Grain Growth ofβ-SiAlON. J. Am. Ceram. Soc.. 1993, 76(6): 1624-26
    106 D.D.Lee, S.L.Kang and D.N.Yoon. Mechanism of Grain Growth andα-βTransformation druing Liquid-Phase Sintering ofβ-SiAlON. J. Am. Ceram. Soc.. 1988, 71(9): 803-06
    107 C.M.Hwang and T.Y.Tien. Microstructural Development in Silicon Nitride Ceramics. Mater. Sci. Forum. 1989, 47: 84-109
    108 K.R.lai and T.Y.Tien. Kientics ofβ-Si3N4 Grain Growth in Si3N4 Ceramics Sintered under High Nitrogen Pressure. J. Am. Ceram. Soc.. 1993, 76(1): 91-96
    109 K.R.lai. Grain Growth ofβ-Si3N4 in Silicon Nitride Ceramics. Ph.D. Dissertation, University of Michigan, 1992: 7
    110 G.S.Painter, P.F.Becher, W.A.Shelton, R.L.Satet and M.J.Hoffmann. First-Principles Study of Rare-Earth Effects on Grain Growth and Microstructure inβ-Si3N4 ceramics. Phys. Rev. B. 2004, 70(14): 144108-1 - 144108-4
    111 I.Tanaka, K.Tatsumi, F.Oba and H.Adachi. First-Principles Calculations of Silicon Nitrides and SiAlONs. Key Eng. Mater.. 2003, 247: 149
    112 C.M.Fang and R.Metselaar. Site Preferences inβ-Sialon from First-Principles Calculations. J. Mater. Chem.. 2003, 13(2): 335-337
    113 Y.Okamoto, N.Hirosaki, Y.Akimune and M.Mitomo. Influence ofαtoβPhase Transformation on Grain Growth Rate of Silicon Nitride. J. Ceram. Soc.Jpn. 1997, 105(6): 476-478
    114 H.Peng, Z.J.Shen and M.Nygren. Formation of in Situ Reinforced Microstructures inα-sialon ceramics: Part II. In the Presence of a Liquid Phase. J. Mater. Res.. 2002. 17(5): 1136-1142
    115 Q.W.Huang, P.L.Wang, Y.B.Cheng and D.S.Yan. Effect of Additives and Sintering Time on Morphology ofα'-Sialon Single Crystal Particles. Mechanics and Material Engineering for Science and Experiments. Zhangjiajie, Changsha,China. Science Press, 2003: 577
    116 H.Peng, Z.J.Shen and M.Nygren. Reaction Sequences Occurring in Dense Li-Doped Sialon Ceramics: Influence of Temperature and Holding Time. J. Mater. Chem.. 2003, 13(9): 2285-2289
    117 M.Zenotchkine, R.Shuba and I.W.Chen. Liquid-Phase Growth of Small Crystals for Seedingα-Sialon Ceramics. J. Am. Ceram. Soc.. 2004, 87(6): 1040-1046
    118 S.Kurama, M.Herrmann and H.Mandal. The Effect of Processing Conditions, Amount of Additives and Composition on the Microstructures and Mechanical Properties ofα-Sialon Ceramics. J. Eur. Ceram. Soc.. 2002, 22(1): 109-119
    119 S.Kurama, M.Herrmann and H.Mandal. Improvement of Elongatedα-Sialon Ceramics by Variation of the Processing Conditions and Amounts of Additives, in Euro Ceramics VII, Pt 1-3. K. Eng. Mater.. 2002, 206-2: 1009-1012
    120 M.I.Jones, H.Hyuga, K.Hirao and Y.Yamauchi. Highly transparent Lu-α-SiAlON. J. Am. Ceram. Soc.. 2004, 87(4): 714-716
    121 Z.J.Shen, L.O.Nordberg, T.Ekstr?m and M.Nygren.α-Sialon Grains with High Aspect Ratio - Utopia or Reality? Engineering Ceramics' 96: Higher Reliability through Processing. ed. G.N.Babini. Kluwer Academic Publishers, Netherlands, 1997: 169-178
    122李雅文.具有长颗粒形貌的α-Sialon陶瓷材料的研究.中国科学院上海硅酸盐研究所博士学位论文. 2000: 32
    123 H.Peng. Spark Plasma Sintering of Si3N4-Based Ceramics - Sintering Mechanism-Tailoring Microstructure - Evaluating Properties. Ph.D. Dissertation, Stockholm University, 2004
    124 M.Herrmann, I.Schulz, C.Schubert, W.Hermel, I.Zalite and G.Ziegler. Ultrafine Si3N4 Material with Low Coefficients of Friction and Wear Rates. Cfi-Ceramic Forum International. 1998, 75(4): 38-45
    125 M.Mitomo and S.Uenosono. Microstructural Development during Gas-Pressure Sintering ofα-silicon nitride. J. Am. Ceram. Soc.. 1992, 75(1): 103
    126 X.L.Su, P.L.Wang, W.W.Chen, Y.B.Cheng and D.S.Yan. Effect of Processing on Microstructure and Optical Properties of Dy-α-sialon. Mater. Lett.. 2004, 58(26): 3340-3344
    127 A.Rosenflanz. Glass-Reduced SiAlONs with Improved Creep and Oxidation Resistance. J. Am. Ceram. Soc.. 2002, 85(9): 2379-2381
    128 Y.Bando, M.Mitomo and K.Kurashima. An Inhomogeneous Grain Boundary Composition in Silicon Nitride Ceramics as Revealed By 300 kw Field Emission Analytical Electron Microscopy. J. Mater. Synthesis and Processing. 1998, 6: 359-365
    129 W.Y.Sun, D.S.Yan, L.Gao, H.Mandal, K.Liddell and D.P.Thompson. Subsolidus Phase-Relationships in the Systems Ln2O3-Si3N4-AlN-Al2O3 (Ln = Nd, Sm). J. Eur. Ceram. Soc.. 1995, 15(4): 349-355
    130 W.Y.Sun, D. S.Yan, L.Gao, H.Mandal and D.P.Thompson. Subsolidus Phase Relationships in the System Dy2O3-Si3N4-AlN-Al2O3. J. Eur. Ceram. Soc.. 1996, 16(11): 1277-1282
    131 A.Kaiser, R.Telle, M.Herrmann, H.R.Richter and W.Hermel. Subsolidus Phase Relationships of theβ-sialon Solid Solution in the Oxygen-Rich Part of the Nd-Si-Al-O-N System. Zeitschrift Fur Metallkunde, 2001. 92(10): 1163-1169
    132 D.S.Yan and W.Y.Sun. Phase Relationships and Materials Design in the Ln-Si-Al-O-N System. Science in China Series B - Chemistry. 2000, 43(3): 225-232
    133 H.J.Kleebe, M.K.Cinibulk, R.M.Cannon and M.Ruhle. Statistical Analysis of the Intergranular Film Thickness in Silicon Nitride Ceramics. J. Am. Ceram. Soc.. 1993, 76(8): 1969-77
    134 H.J.Kleebe. Structure and Chemistry of Interfaces in Si3N4 Ceramics Studied by Transmission Electron Microscopy. J. Ceram. Soc. Jpn. 1997, 105(6): 453-475
    135 H.Gu, X.Q.Pan, R.M.Cannon and M.Ruhle. Dopant Distribution in Grain-Boundary Films in Calcia-Doped Silicon Nitride Ceramics. J. Am. Ceram. Soc.. 1998, 81(12): 3125-3135
    136 C.M.Wang, M.Mitomo, T.Nishimura and Y.Bando. Grain Boundary Film Thicknesses in Superplastically Deformed Silicon Nitride. J. Am. Ceram. Soc.. 1997, 80(5): 1213-1221
    137 D.R.Clarke. On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials. J. Am. Ceram. Soc.. 1987, 70: 15-22
    138 M.Bobeth, D.R.Clarke and W.Pompe. A Diffuse Interface Description of Intergranular Films in Polycrystalline Ceramics. J. Am. Ceram. Soc.. 1999, 82(6): 1537-1546
    139 M.Yoshiya, I.Tanaka and H.Adachi. Atomic Structure and Chemical Bondings ofIntergranular Glassy Film in Si3N4-SiO2 Ceramics, in Engineering Ceramics: Multifunctional Properties - New Perspectives. Key Eng. Mater.. 2000, 175-1: 107-118
    140 H.D.Ackler and Y.M.Chaing. Improvement of Cutting Performance of Silicon Nitride Tool by Adherent Coating of Thick Diamond Film. J. Am. Ceram. Soc.. 1997, 80(1): 189-196
    141 V.A.Izhevskiy, L.A.Genova, J.C.Bressiani and F.Aldinger. Progress in SiAlON ceramics. J. Eur. Ceram. Soc.. 2000, 20(13): 2275-2295
    142 N.Hirosaki, Y.Yamamoto, T.Nishimura, M.Mitomo, J.Takahashi, H.Yamane and M.Shimada. Phase Relationships in the Si3N4-SiO2-Lu2O3 system. J. Am. Ceram. Soc.. 2002, 85(11): 2861-2863
    143 Y.B.Cheng and D.P.Thompson. Aluminum-Containing Nitrogen Melilite Phases. J. Am. Ceram. Soc.. 1994, 77(1): 143-148
    144 Z.K.Huang and I.W.Chen. Rare-Earth Melilite Solid Solution and Its Phase Relations with Neighboring Phases. J. Am. Ceram. Soc..1996, 79(8): 2091-2097
    145 D.Y.Chen, B.L.Zhang, H.R.Zhuang and W.L.Li. Effects of Seeding withβ-Si3N4 Rod Crystals on Mechanical Properties of Silicon Nitride Ceramics. J. Inorg. Mater.. 2003, 18(5): 1139-1142
    146 P.F.Becher, E.Y.Sun, K.P.Plucknett and K.B.Alexander. Microstructural Design of Silicon Nitride with Improved Fracture Toughness: I, Effects of Grain Shape and Size. J. Am. Ceram. Soc.. 1998, 81(11): 2821-2830
    147 H.Miao, L.Qi and G.Cui. Silicon Nitride Ceramic Cutting-Tools and their Applications. Key Eng. Mater.. 1996, 114: 135-172
    148 D.Shermann and D.Brandon. Mechanical Properties and Their Relation to Microstructure. Handbook of Ceramic Hard Materials. edited by R.Riedel. Wiley-VCH, Weinheim, 2000: 66
    149 S.Q.Guo, N.Hirosaki, Y.Yamamoto, T.Nishimura and M.Mitomo. Fracture Toughness of Hot-Pressed Lu2Si2O7-Si3N4 and Lu4Si2O7N2-Si3N4 Ceramics and Correlation to Microstructure and Grain-Boundary Phases. Ceram. Int.. 2004, 30(5): 635-641
    150 X.G.Tong, J.B.Li, X.Z.Yang, H.Lin, G.F.Guo and M.S.He. Mechanical Property and Oxidation Behavior of Self-Reinforced Si3N4 Doped With Re2O3 (Re = Yb, Lu). J. Am. Ceram. Soc.. 2006, 89(5): 1730-1732
    151 H.Mandal and N.J.Hoffmann. Hard and toughα-SiAlON ceramics, in Nitrides and Oxynitrides. Mater. Sci. Forum. 2000, 325-3: 219-224
    152 Z.J.Shen, H.Peng and M.Nygren. Formation of In-Situ Reinforced Microstructure inα-Sialon Ceramics, I: Stoichiometric Oxygen-Rich Compositions. J. Mater. Res.. 2002, 17(2): 336-342
    153 A.J.Pyzik and D.F.Carroll. Technology of Self-Reinforced Silicon-Nitride. Annual Review of Materials Science. 1994, 24: 189-214
    154 P.F.Becher, S.L.Hwang, H.T.Lin and T.N.Ticgs. Microsturctural Contributions to the Fracture Resistance of Silicon Nitride Ceramics. Tailoring of Mechanical Properties of Si3N4 Ceramics, edited by M.J.Hoffmann and G.,Petzow. Kluwer Academic Publishers, 1994, NATO ASI Ser E 276: 87
    155 H.J.Kleebe, G.Pezzotti and G.Ziegler. Microstructure and Fracture Toughness of Si3N4 Ceramics: Combined Roles of Grain Morphology and Secondary Phase Chemistry. J. Am. Ceram. Soc.. 1999, 82(7): 1857-1867
    156 R.W.Trice and J.W.Halloran. Mode I Fracture Toughness of a Small-Grained Silicon Nitride: Orientation, Temperature, and Crack Length Effects. J. Am. Ceram. Soc.. 1999, 82(10): 2633-2640
    157 M.Zenotchkine, R.Shuba, J.S.Kim and I.W.Chen. R-curve Behavior of In Situ Toughenedα-SiAlON ceramics. J. Am. Ceram. Soc.. 2001, 84(4): 884-886
    158 G.F.Guo, J.B.Li, X.X.Yang and H.Lin. Direct Measurement of Residual Stresses and Their Effects on the Microstructure and Mechanical Properties of Heat-Treated Si3N4 Ceramics. Acta Materialia. 2006, 54(9): 2311-2316
    159 P.F.Becher, G.S.Painter, E.Y.Sun, C.H.Hsueh and M.J.Lance. The Importance of Amorphous Intergranular Films in Self-Reinforced Si3N4 Ceramics. Acta Materialia. 2000, 48(18-19): 4493-4499
    160 R.F.Silva and J.M.Vieira. Hot Hardness of Si3N4-Based Materials. J. Mater. Sci.. 1995, 30: 5531-5536
    161 H.J.Choi, J.G.Lee and Y.W.Kim. Oxidation Behavior of Hot-Pressed Si3N4 with Re2O3 (Re = Y, Yb, Er, La). J. Eur. Ceram. Soc.. 1999, 19(16): 2757-2762
    162 H.Park, H.E.Kim and K.Niihara. Microstructural Evolution and Mechanical Properties of Si3N4 with Yb2O3 as a Sintering Additive. J. Am. Ceram. Soc.. 1997, 80(3): 750-756
    163 N.Kondo, M.Ishizaki and T.Ohji. Fabrication of Silicon Nitride with LutetiaAdditive. Silicates Industries, 2004, 69(7-8): 183-186
    164 S.Q.Guo, N.Hirosaki, Y.Yamamoto, T.Nishimura and M.Mitomo. Improvement of Hight-Temperature Strength of Hot-Pressed Sintering Silicon Nitride with Lu2O3 Addition. Scripta Materialia, 2001, 45: 867-874
    165 N.Kondo, M.Asayama, Y.Suzuki and T.Ohji. High-Temperature Strength of Sinter-Forged Silicon Nitride with Lutetia Additive. J. Am. Ceram. Soc.. 2003, 86(8): 1430-1432
    166 J.L.Huang, Z.H.Shih, H.H.Lu and C.Y.Chen. The Effects of Post Heat-Treatment on the Microstructure and Fracture Behaviors of Yb2O3-Doped Si3N4. Mater. Chem. Phys.. 2000, 63(2): 116-121
    167 H.Gu, C.Lu, H.Wang and W.Zhang. Mechanical Properties of Al2O3-SiC-C Castables for Iron Trough Strengthened by in-situ Synthesized SiAlON. Naihuo Cailiao/Refractories. 2004, 38(3): 160
    168 N.Miyahara, Y.Mutoh, T.Oikawa and K.Yabuta. Strength and Fracture Toughness of Siaion at Elevated Temperatures. A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A. Publ by JSME, Tokyo, Jpn, 1993, 59(567): 2546
    169 B.P.Paranosenkov, O.P.Podvigina, I.L.Shkarupa and A.P.Sosulina. Ceramics Based onα-sialon. Refract. Ind. Ceram.. 1998, 39(5-6): 198-200
    170 H.Klemm, M. Herrmann, T.Reich, C.Schubert, L.Frassek, G.Wotting, E.Gugel and G.Nietfeld. High-Temperature Properties of Mixedα'/β'-Sialon Materials. J. Am. Ceram. Soc.. 1998, 81(5): 1141-1148.
    171 Z.J.Shen, T.Ekstrom and M.Nygren. Temperature Stability of Samarium-Dopedα-Sialon Ceramics. J. Eur. Ceram. Soc.. 1996, 16(1): 43-53
    172 R.P.Zhao and Y.B.Cheng. Decomposition of Smα-SiAlON Phases during Post-Sintering Heat Treatment. J. Eur. Ceram. Soc.. 1996, 16(9): 1001-1008
    173 M.Mitomo and A.Ishida. Stability ofα-Sialons in Low Temperature Annealing. J. Eur. Ceram. Soc.. 1999,19(1): 7-15
    174 A.J.Seeber and Y.B.Cheng.α' Phase Stability in Nd-Li-Sialon Systems. J. Eur. Ceram. Soc.. 2003, 23(7): 1083-1092
    175 A.J.Seeber and Y.B.Cheng, Thermal Stability of Mixed-Cationα-Sialon Ceramics. Mater. Sci. Eng. A-Struct.. 2003, 339(1-2): 115-123
    176 L.O.Nordberg, M.Nygren, P.O.K?ll and Z.J.Shen. Stability and Oxidation Properties of RE-α-Sialon Ceramics (RE=Y, Nd, Sm, Yb). J. Am. Ceram. Soc..1998, 81(6): 1461-1470
    177 N.Camuscu, D.P.Thompson and H.Mandal. Effect of Starting Composition, Type of Rare Earth Sintering Additive and Amount of Liquid Phase onαβSialon Transformation. J. Eur. Ceram. Soc.. 1997, 17(4): 599-613
    178 G.Petzow and M.Hoffmann. Grain Growth Studies in Si3N4-Ceramics. Mater. Sci.Forum, 1993. 113-115: 91-102
    179 M.J.Hoffman, G.A.Schneider and G.Petzow. The Potential of Silicon Nitride for Thermal Shock Applications. NATO ASI Series, Series E: Applied Sciences. 1993, 241: 49-58
    180 J.B.Wachtman. Mechanical Properties of Ceramics. Wiley, New York, 1996
    181 H.Mandal, N.Camuscu and D.P.Thompson. Comparison of the Effectiveness of Rare-Earth Sintering Additives on the High-Temperature Stability ofα-Sialon Ceramics. J. Mater. Sci.. 1995, 30(23): 5901-5909
    182 F.Ye, M.J.Hoffmann, S.Holzer and M. Iwasa. Microstructural Development of Y-α/β-Sialons after Post Heat-Treatment and its Effect on Mechanical Properties. Ceram. Int.. 2004, 30(2): 229-238
    183 Z.J.Shen, T.Ekstrom and M.Nygren. Reactions Occurring in Post Heat-Treatedα/βSialons: On the Thermal Stability ofα-Sialon. J. Eur. Ceram. Soc.. 1996, 16(8): 873-883
    184 Q.Liu, L.Gao, D.S.Yan and D.P.Thompson. Thermal Stability and Mechanical Performance of Multiply Heat-Treatedα-Sialon Ceramics Densified with Rare Earth Oxides. J. Mater. Sci.. 2000, 35(9): 2229-2233
    185 J.Yu, H.Du, R.Shuba and I.-W.Chen. Dopant-Dependent Oxidation Behavior ofα-Sialon Ceramics. J. Mater. Sci., 2004. 39(15): 4855-4860
    186 C.Zhang, W.Y.Sun and D.S.Yan, Optimizing Mechanical Properties and Thermal Stability of Ln-α-β-Sialon by Using Duplex Ln Elements (Dy and Sm). J. Eur. Ceram. Soc.. 1999, 19(1): 33-39
    187 P.L.Wang, J.H.Zhang, J.B.He and D.S.Yan. Formation Behavior and Microstructure of Multi-Cationα-Sialons Containing Neodymium and Ytterbium or Yttrium. J. Eur. Ceram. Soc.. 2000, 20(12): 1987-1995
    188 R.J.Xie, M.Mitomo, K.Uheda, F.F.Xu and Y.Akimune. Preparation and Luminescence Spectra of Calcium- and Rare-Earth (R= Eu, Tb and Pr)-Codopedα-Sialon Ceramics. J. Am. Ceram. Soc.. 2002, 85(5): 1229-1234
    189 J.X.Jiang, P.L.Wang, W.B.He, W.W.Chen, H. R.Zhuang, Y.B.Cheng and D.S.Yan. Self-Propagating High-Temperature Synthesis ofα-Sialon Doped by RE (RE=Eu,Pr,Ce) and Codoped by RE and Yttrium. J. Am. Ceram. Soc.. 2004, 87(4): 703-705
    190 S.Kurama, G.Cigdemir, H.Mandal and M.Herrmann. Sr2+-Mg2+-Doped SiAlON Ceramics. J. Am. Ceram. Soc.. 2006, 89(2): 714-716
    191 P.L.Wang, Y.W.Li and D.S.Yan. Effect of Dual Elements (Ca, Mg) and (Ca, La) on Cell Dimensions of Multi-Cationα-Sialons. J. Eur. Ceram. Soc.. 2000, 20(9): 1333-1337
    192 Y.W.Li, P.L.Wang, W.W.Chen, Y.B.Cheng and D.S.Yan. Formation Behavior, Microstructure and Mechanical Properties of Multi-Cationα-Sialons Containing Calcium and Neodymium. J. Eur. Ceram. Soc.. 2001, 21(9): 1273-1278
    193 A.Rosenflanz and I.W.Chen. Kinetics of Phase Transformations in Sialon Ceramics: I. Effects of Cation Size, Composition and Temperature. J. Eur. Ceram. Soc.. 1999, 19(13-14): 2325-2335
    194 J.E.Shelby and J.Kohli. Rare-Earth Aluminosilicate Glasses. J. Am. Ceram. Soc.. 1990,73(1): 39-42
    195 P.L.Wang, C.Zhang, W.Y.Sun and D.S.Yan. Formation Behavior of Multi-Cationα-Sialons Containing Calcium and Magnesium. Mater. Lett.. 1999, 38(3): 178-185
    196 H.J.Kleebe, W.Braue, H.Schmidt and G.Pezzotti. Transmission Electron Microscopy of Microstructures in Ceramics Materials. J. Eur. Ceram. Soc.. 1996, 16: 339-351
    197 D.P.Thompson, P.Korgul and A.Hendry. The Structural Characterization of Sialon Polytypoids. Progress in Nitrogen Ceramics, ed. F.L.Riley and M.Nijhoff. The Hague, The Netherlands, 1983: 61-74
    198 M.I.Jones, H.Hyuga, K.Hirao and Y.Yamauchi. Wear Properties under Dry Sliding of Lu-αSialons with in Situ Reinforced Microstructures. J. Eur. Ceram. Soc.. 2004, 24(13): 3581-3589
    199 Y.D.Yu, I.L.Tangen, T.Grande, R.Hoier and M.A.Einarsrud. HRTEM Investigation of New AlN Polytypoids in the High-AlN Region of the AlN-Al2O3-Y3O3 System. J. Am. Ceram. Soc.. 2004, 87(2): 275-78
    200 H.Miyazaki, M.I.Jones and K.Hirao. Concentration Gradient of Solute Ionswithinα-Sialon Grains. Mater. Lett.. 2005, 59(1): 44-47
    201 D.Turnbull and R.VonneGat. Effect of Lattice Disregistry on Crystallization of Metal. Engineering Chemistry. 1952, 44: 1292-1295
    202 B.L.Bramfitt. Planar Lattice Disregistry Theory and its Application on Heterogistry Nuclei of Metal. Met. Trams.. 1970, 1: 1987-1990
    203 R.M.German. Liquid Phase Sintering. Plenum Press, New York, 1985: 127-155
    204 M.Kitayama, K.Hirao, M.Toriyama and S.Kanzaki. Comment on“Morphology of Silicon Nitride Growth from a Liquid Phase”. J.Am.Ceram.Soc.. 2000, 83(3): 675-76
    205 M.K.Cinibulk and G.Thomas. Strength and Creep Behavior of Rare-Earth Disilicate-Silicon Nitride Ceramics, J. Am. Ceram. Soc., 1992, 75: 2050-2055
    206 M.K.Cinibulk, G.Thomas. Oxidation Behavior of Rare-Earth Disilicate-Silicon Nitride Ceramics. J. Am. Ceram. Soc.. 1992, 75(8): 2044-2049
    207 P.F.Becher, S.B.Waters, C.G.Westmoreland and L.Riester. Compositional Effects on the Properties of Si-Al-RE-Based Oxynitride Glasses (RE= La, Nd, Gd, Y, or Lu). J. Am. Ceram. Soc.. 2002, 85(4): 897-902
    208 Z.J.Shen, P.O.Kall and M.Nygren, Effects of Phase Equilibrium on the Oxidation Behavior of Rare-Earth-Dopedα-Sialon Ceramics. J. Mater. Res.. 1999, 14(4): 1462-1470.
    209 J.H.Zhang, P.L.Wang, J.Zhang and D.S.Yan. Study on Oxidation Behavior of (Nd,Y)- and (Nd,Yb)-α-Sialon. J. Mater. Sci.. 2002. 37(7): 1407-1412
    210 S.Q.Guo, N.Hirosaki, T.Nishimura, Y.Yamamoto and M.Mitomo. Hot-Pressed Silicon Nitride Ceramics with Lu2O3 Additives: Oxidation and its Effect on Strength. J. Am. Ceram. Soc.. 2003, 23(3): 537-545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700