用户名: 密码: 验证码:
两种体系中的15-羟基十五烷酸甲酯酶催化合成环十五内酯及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环十五内酯属于大环内酯香料的一种,它在香水、精细化工品、食品等领域有广泛应用。中国广西特产植物蒜头果的油脂中含有50%的二十四碳-15-烯酸,它是合成麝香类香料—环十五内酯的理想原料。很多化学方法已经成功合成了环十五内酯,但能耗大,反应条件苛刻等缺点阻碍了其工业化生产。脂肪酶作为一种生物催化剂,在温和的条件下具有高效、高选择性及高特异性的催化作用,被广泛应用于有机合成、精细化工及食品加工等领域,有关脂肪酶催化合成大环内酯方面的研究已有几十年,但酶催化合成环十五内酯的研究一直未受到关注。
     本文以自行筛选到的微生物产脂肪酶,催化蒜头果为原料制得15-羟基十五烷酸甲酯合成环十五内酯。主要开展了五个方面的研究:(1)脂肪酶菌株的筛选及正交法优化发酵条件;(2)将粗脂肪酶纯化为层析纯的酶;(3)酶催化动力学参数的求取及动力学方程的推导;(4)有机溶剂体系与水/有机溶剂两相体系中酶催化反应的对比及反应条件的优化;(5)两种体系中酶催化反应历程的推断。
     实验筛选到10株高产脂肪酶菌株,其中经紫外诱变后的菌株Candida sp.GXU08(简称GXU08)对15—羟基十五烷酸甲酯转化为环十五内酯具有良好的催化性能。通过正交试验,得到菌株最佳培养基配方及发酵条件为:蔗糖0.5%,淀粉0.5%,蛋白胨1.5%,K2HPO40.05%,MgSO40.15%,(NH4)2SO41%,茶油1.5%,菜籽油1.5%,pH=8.5,发酵时间48 h,其中发酵时间、蛋白胨、茶油和pH值对发酵液酶活的影响较显著。该优化条件下所得发酵液的酶活为27.53 U·mL-1,是优化前的3.74倍。
     实验分别采用硫酸铵分级沉淀、CM-阳离子纤维素柱层析、Sephacryl-S400凝胶层析及Sephadex-G100凝胶层析分离纯化GXUO8脂肪酶,纯化后只出现一个蛋白峰,得到了层析纯的酶,且分离出的脂肪酶具有较高的内酯化能力,可为今后研究酶学性质及动力学参数奠定基础。
     发酵液经40%~70%的(NH4)2SO4分级沉淀粗分离后,酶比活力为14.50 U·mg-1,纯化倍数为1.27,酶活回收率为89.25%;经CM-离子交换层析分离后,出现了3个较明显的蛋白峰,酶比活力为49.50 U.mg-1,纯化倍数为4.33,酶活回收率为70.49%;经Sephacryl-S400凝胶层析分离后,出现了2个明显的蛋白峰,酶比活力提高到154.50 U·mg-1,纯化倍数为13.48,酶活回收率为53.28%;经Sephadex-G100凝胶层析纯化后只出现1个蛋白峰,酶比活力提高到344.97 U·mg-1,纯化倍数为30.10,酶活回收率为41.75%。
     推导出GXU08脂肪酶催化反应的动力学方程为:ν=(?)(其中v的单位是mol·L-1min-1,[S]的单位是mmol·L-1),计算得出米氏常数Km=1.86 mmol·L-1,最大反应速度Vmax=2.413×10-6 mol.L-1·min-1验证结果表明:实际反应速度可以较好的与米氏模型相吻合,表明该酶催化反应符合推导出的动力学方程。
     探讨了有机溶剂体系中的酶催化反应,得到最佳反应条件为:浓度为8 mmol。·L-1的底物,于40℃,180r·min-1, pH=6.5,酶活为1600 U酶粉的作用下,在环己烷中反应72 h,环十五内酯的生成量最大。实验证明:溶剂的介电常数越大,单位酶活生成环十五内酯的质量越小,反之亦然。实验结果表明:酶在疏水介质环己烷中表现出最佳催化能力,且GXU08脂肪酶对15—羟基十五烷酸甲酯具有很好的专一性。
     首次将超声波振荡应用于有机溶剂体系和水/有机溶剂两相体系的酶催化合成环十五内酯的反应中,取得了较好的催化效果。两相体系的最适反应条件为:0.5 mL,2.0 g·mL-1的脂肪酶酶液,在超声波震荡下均匀分散于pH=7.0的8 mmol·L-1 -15羟基十五烷酸甲酯的环已烷溶液中,于40℃,180 r·min-1的摇床中反应72 h,其单位酶活所得环十五内酯的质量最大为50.284×10-5mg.U-1,而优化条件下的纯有机溶剂体系中仅为29.02×105mg.U-1,前者为后者的1.733倍。
     研究还发现,两相体系中分别将脂肪酶和反应体系重复使用一次,均可较大地提高环十五内酯的产量。且在相同的反应条件下,酶液比酶粉具有更高的催化合成环十五内酯的能力。故可直接使用一定浓度的经硫酸铵沉淀后的酶液代替酶粉催化合成环十五内酯,既可省却冷冻干燥的过程,又可提高环十五内酯的产量。
     此外,实验得出有机相中的酶催化反应为:
     表明15-羟基十五烷酸甲酯在该体系中是直接关环生成环十五内酯。两相体系中的酶催化反应为:
     表明15-羟基十五烷酸甲酯在该体系中是先水解为15-羟基十五烷酸,15-羟基十五烷酸再关环生成环十五内酯。
Cyclopentadecanolide belongs to a kind of macrocycle musk, it is widely used in fields of perfume, fine chemicals, and food etc.. About 50% tetracosenoic acid was found in malana oleifera chum oil-a special plant in Guangxi provience, China. The acid is an ideal material to synthesize cyclopentadecanolide. Although a lot of chemical synthesis methods for cyclopentadecanolide have been reported successfully, such harsh conditions as high temperature and high pressure proved to have restricted its industrialization. As a biocatalyst, lipase was widely used in organic synthesis, fine chemical and food processing fields for their high efficiency, high selectivity and high specification in mild conditions. In recent decades years, more and more researches have turned to concentrate on the technology of enzyme catalysis in macrolide, while biological method for systhesis of cyclopentadecanolide has not received much attention.
     One kind of screened lipase was used to catalyze the synthesis of cyclopentadecanolide from methyl 15-hydroxy-pentadecanate,which was made from material of malana oleifera chum. The research mainly concluded the following five aspects:(1)Screening the strains and optimizing the fermentation conditions. (2) Seperating and purifying the lipase to a level of chromatography purity. (3) Caculating dynamics parameter and derivating dynamics equation. (4)Comparing the lipase-catalyzed reaction between organic system and biphasic system and optimizing reaction conditins. (5) Derivating reaction process during two systems.
     After uv-mutation,Candida sp.GXU08 out of ten lipase-produced strains was obtained to have high orienting lactonization abilities to synthesize cyclopentadecanolide. The fermentation conditions of Candida sp.GXU08 lipase were optimized through orthogonal experiments. It showed that:The compositions of optimal fermentation medium were sucrose 0.5%,starch0.5%, peptone 1.5%, K2HPO40.05%, MgSO40.15%, (NH4)2SO41%, camellia oil 1.5%, rapeseed oil 1.5%, pH=8.5,fermentation time 48h. And the fermentation time, peptone, camellia oil and pH had dramatical effect on lipase activity of fermentation. Under the optimal fermentation condition, the lipase activity would reach 27.53 U·mL-1, which was 3.74 times of the original culture medium.
     After (NH4)2SO4 fractionation precipitation, CM positive ion cellulose chromography, Sephacryl-S400 gel-chromography and Sephadex-G100 gel-chromography,the lipase was seperated and purified to a level of chromography purity with one protein peak and had high catalytic ability,which would help to the study of lipase character and dynamics parameter in the future.
     It was found that the specific activity of lipase was 14.50 U·mg-1 ,the purification fold was 1.27, and the recycle yield of liapse activity was 89.25% after (NH4)2SO4 fractionation precipitation. Three obvious protein peaks were found after CM ion-exchange cellulose chromography, and the specific activity of lipase was 49.50 U·mg-1,the purification fold was 4.33, the recycle yield of liapse activity was 70.49%. Two obvious protein peaks were found after Sephacryl-S400 gel-chromography, and the specific activity of lipase was improved to 154.50 U·mg-1,the purification fold was 13.48, and the recycle yield of liapse activity was 53.28%. Only one protein peak was found after Sephadex-G100 gel-chromography, and the specific activity of lipase achieved 344.97 U·mg-1,the purification fold was 30.10, and the recycle yield of liapse activity was 41.75%.
     The dynamics equation of catalytic reaction from GXU08 lipase was derivated as the following:v=(2.413x10-6[S]/1.86+[S] (the units of v and [S] were mol.L-1min-1 and mmol.L-1), It was caculated that the Michaelis-Menten constant Km was 1.86 mmol.L-1 and the maximal reaction velocity Vmaxwas 2.413×10-6 mol·-1.min-1. The result showed that real velocity met with the Michaelis-Menten model well. So the catalytic reaction accorded with the derivated dynamics equation.
     The catalytic reaction of GXU08 lipase in organic system was studied. The quality of cyclopentadecanolide would be the largest under the optimal reation conditions:Csubstrate= 8 mmol·L-1, T=40℃,ω=180 r·nin-1, pH=6.5, lipase activity=1600 U and t=72 h. It also showed that the larger the dielectric constant was, the smaller the quality of cyclopentadecanolide made by unit lipase was in organic solvent, so did the contrary. The lipase showed best catalytic capability in hydrophobic media of cyclohexane and had good speciality to methyl 15-hydroxy-pentadecanate.
     Ultrasonic technology was firstly used both in organic system and water/organic solvent biphasic system during the lipase catalytic reaction to systhesize cyclopentadecanolide and received good catalytic effect. The largest quality of cyclopentadecanolide would be 50.284×10-5 mg.U-1 under the optimal reation conditions:Csubstrate= 8 mmol.L-1, T=40℃,ω=180 r·min-1,pH=7.0,lipase concentration 2.0 g·mL-1,0.5 mL and t=72 h if the reaction was operated in cyclohexane. While the largest quality of cyclopentadecanolide in organic system was only 29.02×10-5 mg.U-1. The former was 1.733 times of that of the latter.
     It was found that the quality of cyclopentadecanolide would greatly increase if the lipase solution or reaction system was reused once. What's more,the quality of cyclopentadecanolide in biphasic system was always higher than that in organic system. So the lipase powder could be replaced by lipase solution to catalyze the synthesis of cyclopentadecanolide, which would save the process of freeze drying and improve the quality of cyclopentadecanolide.
     The lipase catalytic reaction in organic system was obtained through the experiment as following:
     It verified that methyl 15-hydroxy-pentadecanate would directly cyclize into cyclopentadecanolide in organic system.
     While the reaction in biphasic system was:
     It showed that methyl 15-hydroxy-pentadecanate would hydrolysis into hydroxypentadecanoic acid firstly, and then hydroxypentadecanoic acid directly cyclized into cyclopentadecanolide.
引文
[1]西南林学院,云南省林业厅.云南省树木图志(中)[M].昆明:云南科技出版社,1990.5-6
    [2]刘盂军.中国野生果树[M].北京:中国农业出版社,1998.7-8
    [3]刘钦权.蒜头果石山造林初报[J].云南林业科技,1984,(2):28-30
    [4]潘晓芳.蒜头果育苗情况初报[J].广西农业生物科学,1999,1(3):237-238
    [5]周永红,李伟光,易封萍,等.气相色谱-质谱法测定蒜头果油中的脂肪酸[J].色谱,2001,19(2):147-148
    [6]陈煜强,刘幼君.香料产品开发与应用[M].上海:上海科技出版社,1994.23-26
    [7]伍春魁.蒜头果营林特性的调查研究[J].河池林业科技,1981,(1):3-6
    [8]马柏林,梁淑芳,赵德义,等.含神经酸植物的研究[J].西北植物学报,2004,24(12):2362-2365
    [9]云南植物研究所.云南经济植物[M].昆明:云南人民出版社,1972.81-84
    [10]云南植物研究所.中国油脂植物手册[M].昆明:云南人民出版社,1973.45-49
    [11]宁德鲁.蒜头果的综合开发利用[J].中国野生植物资源,2003,23(6):24-27
    [12]熊德元,刘雄民,李伟光,等.结晶法分离蒜头果油中神经酸溶剂选择研究[J].广西大学学报,2004,29(1):85-88
    [13]潘晓芳,黎向东.蒜头果他感作用的初步研究[J].广西植物,2003,23(30):271-275
    [14]李用华,朱亮峰,欧乞针.蒜头果油合成麝香酮简报[J].云南植物研究,1983,(5):238-240
    [15]陈金风.广西蒜头果属及青皮木属木材解剖研究[J].广西植物,1994,14(4):373-375
    [16]朱廷彬.中国润滑脂工业的现状及发展[J].石油炼制化工,1996,(7):25-30
    [17]王立升,周永红,刘雄民,等.蒜头果中混合脂肪酸的综合开发利用[J].广西大学学报(自然科学版).1999,24(1):39-41
    [18]卞金辉,刘雄民,李伟光,等.蒜头果油合成1,15-十五碳二酸二甲酯的研究[J].化工技术与开发,2007,36(1):6-10
    [19]中国油脂植物编写委员会.中国油脂植物[M].北京:科学出版社,1987.88-89
    [20]熊德元,刘雄民,李伟光,等.结晶法分离蒜头果油中神经酸溶剂选择研究[J].广西大学学报(自然科学版).2004,29(1):85-88
    [21]杨金来,赖芳,李伟光,等.蒜头果油制备15-羟基十五烷酸甲酯的研究[J].应用化工,2007,36(11):1049-1052
    [22]李全,刘复初.麝香酮的合成进展[J].合成化学,1998,6(1):19-28
    [23]范成有.香料及其应用[M].北京:化学工业出版社,1990.259-266
    [24]夏铮南,王文君.香料与香精[M].北京:中国物资出版社,1998.315-319
    [25]何坚,孙保国.香料化学与工艺学[M].北京:化学工业出版社,1999.561-563
    [26]Crae W. M., A synthesis of exaltolide 1,15-pentadecanolide[J]. Tetrahedron,1964, 20(7):1773-1780
    [27]唐健.内酯类麝香和二酯类麝香合成技术的发展[J].北京日化,2002,66(1):26-29
    [28]张青山,霍怀民.巨环麝香十五碳内酯的合成综述[J].华北工学院学报,1995,16(4):339-344
    [29]姚素南,杨志国,佘志刚,等.以菜油为原料合成大环麝香化合物[J].南昌大学学报,1994,16(2):77-81
    [30]Yoshizo K., Akira I.,Shinsuke H.,Cyclizations via organopalladium intermediates, macrolide formation[J]. J.Am.Chem.Soc.,1977,21:3867-3868
    [31]Makoto K., Yuji N., Kazuaki I., Stereospecific cyclization of vinyl ether alcohols[J]. J. Org. Chem.,1990,55:5814-5815
    [32]孙建梅,陆洪芳,南家莲,等.利用蓖麻油发展精细化学品[J].天津化工,2002,(7):19-21
    [33]Alois F., Klaus L., Conformatiomally unbiased macrocyclization reactions by ring closing metathesis[J]. J.Org.Chem.,1996,61:3942-3943
    [34]刘雄民,李伟光,李飘英.一种从蒜头果油制取环十五内酯的方法[P].中国:CN01132701.4,2002.05.22
    [35]孙宏丹,孟秀香,贾莉等.微生物脂肪酶及其相关研究进展[J].大连医科大学学报,2001,3(4):292-295
    [36]Yahya A R, Anderson W A. Ester synthesis in lipase-catalyzed teactions [J]. Enzyme Microb Technol,1998,23:438-450
    [37]Karl-Erich Jaeger, Bernd Schneidinger, Frank Rosenau, etal. Bacterial lipases for biotechnological applications[J]. Journal of molecular catalysis B:enzymatic 1997,3: 3-12
    [38]彭立风,谭天伟.脂肪酶催化棕榈油甘油解反应合成单甘酯生物工程进展[J].北京化工大学学报:自然科学版,1998,25(2):6-10
    [39]肖春玲.微生物脂肪酸的研究与应用[J].微生物学杂志,1997,17(4):56-59
    [40]Eri K, Hiroyuki A, Naoki S, et al. Isolationand analysis of lipase overproducing mutants of Serratia marcescens[J]. Biosci and Bioeng,2001,91(4):409-415
    [41]Fickers P, Fudal F, Nicaud J M, et al. Selection of new overproducing derivatives for the improvement of extra-cellular lipase production by the nonconventional yeas Yarrowia lipolytica[J]. J Biotechnol,2005,115(4):379-386
    [42]刘书来.脂肪酶催化的研究进展[J].化工科技市场.2003,126(4):16-20
    [43]郭铮,张根旺.脂肪酶的结构特征和化学修饰[J].中国油脂,2003,28(7):5-10
    [44]Victor M, Balcao A. Bioreactors with immobilized lipases:state of the ar[J]. Enzyme and Microbial Technology,1996,18:392-416
    [45]Cleasby A, Garman E, Egrnond M R, et al. Crystalization and preliminary X-ray study of a lipase from Pseudomonas glumae[J].Mol Biol,1992,224:281-282
    [46]NobleM E M, Cleasby A, Johnson LN. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate [J]. FEBS Lett,1993,331:123-128
    [47]Brady L, Brzozowski A M, Derewenda Z S, et al. Aserine protease triad forms the catalytic center of a triacylglycerol lipase[J]. Nature,1990,243:760-770
    [48]Petrsen S B. Lipases and esterases:Some evolutionary and protein engineering aspects. In:Engineering of Lipases[M]. Kluwer Acdemic Publishers, Dordrecht, 1996.125-142
    [49]Secundo F, Carrea G, Tarabiono C, et al.The lid is a structural and functional determinant of lipase activity and selectivity [J]. J Mol Catal B:Enzym 2006,39(1): 166-170
    [50]Benzonana G, Desnuelle P. Biochimica et Biophysica Acta[M].1965.105-121
    [51]Luigi M, Luigia M, Margherita P, et al. Role of the N terminus in enzyme activity, stability an spcificity in thermophilic esteases belonging to the HSL family [J]. J Mol Biol,2005,345(3):501-512
    [52]潘冰峰,李祖义.应用生物法合成内酯化合物[J].生物工程进展,1999,9(2):52-55
    [53]Silversteint R. M. proceeding ACS Symposium Acree[M]. T.E..Ed,W. de Gruyter and Co. Ber Lin.1985.121-140
    [54]Welsh FW, Murray, et al. Crit. Rev Biotechnol[M].1989.105-169
    [55]彭立凤.有机介质中脂肪酶催化反应在有机合成中的应用[J].生物工程进展,1999,19(5):61-66
    [56]Zaks, A. Klibanov, A. M. Enzymatic catalysis in organic media at 100 ℃[J]. Science, 1984,224:1249-1253.
    [57]Zaks, A. Klibanov, A. M. Enzymatic-catalyzed processes in organic solvents[J]. Proc. Natl. Acad. Soc,USA.1985,82:3192-3196
    [58]Altreuter, D H, Dordick J S,Clark D S.Optimization of ion-paired lipase for non-aqueous media:acylation of doxorrubicin based on surface models of fatty acid esterification[J].Enzyme and Micro Technol.2002,31:10-19
    [59]Makita, A., Nihira,T. Yamada, Y. Lipase catalyzed synthesis of macrocyclic lactones in organic solvents[J]. Tetrahedron Lett,1987,28(7):805-808
    [60]Kodera, Y., Furukawa, M., Yokoi, M., Kuno, H., Matsushita H. Inada, Y, Lactone synthesis from 16-hydroxyhexadecanoic acid ethyl ester in organic solvents catalysed with polyethylene glycol-modified lipase[J]. J. Biotechnol,1993,31(2): 19-224
    [61]Rees, G. D., Robinson, B. H. and Stephenson, G. R. Macrocyclic lactone synthesis by lipases in water-in-oil microemulsions[J]. Biochim. Biophys. Acta,1995,1257: 239-248
    [62]Davis Benjamin G Boyer Biviane. Biocatalysis and enzymes in organic synthesis[J]. Natural product reports,2001,18:618-640
    [63]Pandey Ashok, Benjamin Sailas, Soccol CarlosR, etal. The realm of microbial lipases in biotechnology[J]. Biotechnol Appl Bio-chem.1999,29:191-131.
    [64]Miller C, Austin H, Posorske L.et al. JAOCS[J].1988,65(6):927-932
    [65]Langrand G, Rondot N, Traiantap Hylides C, et al. Short chain flavour esters synthesis by microbiol lipases [J]. Biotechnology Letters,1990,12(8):581-586
    [66]Shieh C J, Casimir C Akoh, Lisa N Yee. Optimized enzymatic synthesis of geranyl butyrate with lipase A Y from Candida rugosa [J]. Biotechnology and Bioengineering,1996,51(2):371-374
    [67]Gandolfi R, Converti A, Pirozzi D, et al. Efficient and selective microbial esterification with dry mycelium of Rhizopus oryzae [J]. J Biotechnol,2001, 92(1):6-21
    [68]Jaeger Karl-Erich, Eggert Thorsten. Lipases for bioteehnology [J]. Current opinion in biotechnology,2002,13(4):390-397
    [69]Dickey Drive, Atlanta Georgia.Improving the catalytic activity of Candida antarctica lipase B by circular permutation [J]. J Am Chem Soc,2005,127(39):13466-13467
    [70]Gatfield I., Ann N. Y. The enzymic synthesis of esters in nonaqueous systems[J]. Acad. Sci.,1984,434:164-167
    [71]Guo Z, Sih C.Enzymic synthesis of macrocyclic lactones[J].J.Am.Chim.Soc, 1988,110(6):1999-2001
    [72]Chen C.,Chen Q.,Biochemical study of chinese rhubarb.XIX.localization of inhibition of anthraquinone derivatives on the mitochondrial respiratony chain[J].Yaoxue Xuebao.1987,22(1):12-18
    [73]潘冰峰,徐金旺,李祖义.脂肪酶催化合成内酯化合物的研究[J].生物化学与生物物理学报.1998,130(4):339-342
    [74]汪秋安,吴淑青.脂酶催化及其在香料合成中的应用[J].香料香精化妆品,1999,(4):31-35
    [75]Langrand G, Rondot N, Triantap Hylides C, et al. Shoa chain flavour esters synthesis by mierobiol lipases[J]. Bioteehnology Letters,1990,12(8):581-586
    [76]Shieh C J, Casimir C Akoh, Lisa N Yee. Optimized enzymatic synthesis of geranyl butyrate with lipase AY from Candida rugosa[J]. Bioteehnology and Bioengineering, 1996,51(2):371-374
    [77]Kwon D Y, Hong Y J, Yoon S H. Enantiomeric synthesis of (S)-2-methylbutanoic acid methyl ester, apple flavor, using lipases in organic solvent[J]. J.Ac Food Chem, 2000,48(2):524-530
    [78]Shieh C J, Chang S W. Optimized synthesis of lipase-catalyzed hexyl acetate in n-hexane by response surface methodology[J]. J A c Food Chem,2001,49(3): 1203-1207
    [79]Gandolfi R, Converti A, Pirozzi D, et al. Efficient and selective mi crobial esterification wi th dry mycelium of Rhizopus oryzae[J]. J Biotechnol,2001,92(1): 6-21
    [80]Lee C H, Parkin K L. Effect of water activity an d immobilization on fatty acid selectivity for esterification reactions mediated by lipases[J]. Biotechnol Bioeng, 2001,75(2):219-227
    [81]刘光烨,卢世珩,黄德英,等.红曲霉胞外脂酶催化己酸乙酯合成研究[J].生物工程学报,1995,11(3):288-290
    [82]张军,徐家立.固定假丝酵母1619脂肪酶催化油酸油醇酯的合成[J].生物工程学报,1995,11(4):325-331
    [83]徐岩,章克昌,王亚非.微生物脂肪酶在正庚烷中合成短链芳香酯的研究[J].生物工程学报,1998,14(2):214-219
    [84]孔明,杨博,姚汝华.脂肪酶催化合成单甘酯的研究进展[J].中国油脂,2003,28(7):11-14
    [85]徐大刚,肖禄生,蔡扬,等.用脂肪酶非水相生物催化合成己酸乙酯的研究[J].精细化工,2004,21(4):279-281,300
    [86]赵天涛,高静,张丽杰,等.有机相中脂肪酶催化合成乳酸乙酯[J].催化学报,2006,27(6):537-540
    [87]辛嘉英,郑妍,吴小梅,等.无溶剂体系脂肪酶催化制阿魏酸双油酸甘油酯[J].精细化工,2007,24(2):172-177
    [88]张凯,李伟,陈华勇,等.无溶剂体系脂肪酶催化合成1,3-丙二醇单酯[J].中 国油脂,2010,35(8):28-31
    [89]李伟,张凯,李宏永,等.无溶剂体系固定化脂肪酶催化合成1(2)-丙二醇月桂酸单酯[J].中国油脂,2010,35(12):44-47
    [90]刘颖.脂肪酶催化转酯化生产生物柴油的研究进展[J].中国科技信息,2010,22:21-22
    [91]王建龙,谢文磊.固定化脂肪酶催化酯交换制备生物柴油的研究进展[J].四川化工,2010,4:23-26
    [92]张伦,张无敌,尹芳,等.酶催化制备生物柴油的研究进展[J].湖北农业科学,2010,49(5):1229-1231,1256
    [93]李俊奎,王芳,谭天伟,等.固定化脂肪酶催化小桐子毛油合成生物柴油[J].北京化工大学学报:自然科学版,2010,37(2):100-103
    [94]吕丹,杜伟,刘德华.游离脂肪酶NS81006催化含酸油脂制备生物柴油的应用研究[J].高校化学工程学报,2010,24(1);82-86
    [95]潘湘波,梁静娟,刘雄民,等.15-羟基十五烷酸的脂肪酶催化合成环十五内酯[J].应用化学,2004,21(8):850-852
    [96]沈芳,梁静娟,刘雄民,等.脂肪酶催化ωω-羟基十五烷酸甲酯合成环十五内酯[J].应用化学,2007,24(1):63-67
    [97]黄宏妙,沈芳,刘雄民,等.脂肪酶催化合成环十五内脂的酸碱效应[J].化学世界,2006,47(8):497-495
    [98]吴梦瑶,崔励.非水溶剂下酶催化制备大环麝香环十五内酯[J].大连工业大学学报,2009,28(6):455-457
    [1]杨金来.蒜头果油制备15-羟基十五烷酸甲酯及其环十五内酯的研究[D].南宁:广西大学,2008.18-20
    [2]郭杰炎,蔡武城.微生物酶[M].北京:科学出版社,1965.255-259
    [3]谭珍连,梁静娟,庞宗文,等.原生质体紫外诱变选育白地霉GXU08脂肪酶高产菌株[J].生物技术,2007,17(2):42-44
    [4]缪静,杨在东,冯志彬.碳源对γ-聚谷氨酸发酵的影响[J].中国酿造,2010,(3):70-72
    [5]刘婷,张天斌,林元山.产中性蛋白酶菌株的筛选及其发酵条件的优化[J].2009,(5):102-104,107
    [6]孙爱萍,谌晓华,贾伟,等.毕赤酵母摇瓶产木聚糖酶发酵条件的优化[J].江西化工,2009,(1):69-71
    [7]韦红群,邓建珍,曹建华,等.黑曲霉产菊粉酶发酵条件的研究[J].食品工业科技,2008,29(11):171-172,175
    [8]刘万云,方美娟,许鹏翔,等.产胞外布雷菲德菌素A青霉发酵条件的研究[J].微生物学通报,2005,32(6):52-57
    [1]方立.超临界萃取技术及其应用[J].化学推进剂与高分子材料,2009,7(4):34-36
    [2]Kalbfuss B, Wolff M, Morenweiser R, etal. Purification of cell culture derived human influenza a virus by size-exclusion and anion-exchange chromatography[J]. Biotechnology and bioengineering,2007,96(5):932-944
    [3]黄莉莉,蔡怀鸿,洪爱华.毛细管区带电泳法分离四种蛋白质的研究[J].现代仪器,2008,6:68-69
    [4]胡光辉,曹学丽.螺旋槽圆盘柱高速逆流色谱及其在多肽和蛋白分离中的应用[J].生物工程学报,2009,25(4):618-625
    [5]张维农.置换色谱理论研究进展[J].武汉工业学院学报,2005,24(1):60-65
    [6]许林妹,彭远宝CTAB反微团萃取大豆蛋白[J].中国粮油学报,2005,20(3):48-50
    [7]Mateo C, Cone's E, Guisan J M, et al. One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunetional chelate-epoxy suppoiis [J]. Biotechnology and Bioengineering,2001,76(3):269-276
    [8]Hee P, Hoeben M A, vander R G, et al. Strategy for selection of methods for separation of bioparticles from panicle mixtures[J]. Biotechnology and Bioengineering,2006, 94(4):689-709
    [9]何海波,张维农,达世禄,等.天然磷脂的色谱法分离纯化研究进展[J].分析科学学报,2004,20(1):97-102
    [10]郭勇.酶工程[M].北京:科学出版社,2004.125-126
    [11]袁勤生,赵健,王维育.应用酶学[M].上海:华东理工大学出版社,1994.22-24
    [12]Johnson Jan-Christer, Lars Ryden.2nd ed., Protein purification:principles, high-resolution, methods, and applications[M]. New York:John Wiley & sons, Inc. 1998.135-138
    [13]陈国仁,林琳.E83V对扩展青霉脂肪酶最适作用温度的影响[J].微生物学通报,2005,32(1):85-89
    [14]Bourg-Ga-os S, Razafindramboa N, Pavia A A. Large-scale preparation of 3-hexen-1--yl acetate using candida antarctica immobilized lipase in hexane[J]. Biotechnol Bioeng,1998,59(4):498-500
    [15]Maria S C, Jose V S G. Lipase-catalyzed synthesis of chiral amides:a systematic study of the variables that COIl-trol the synthesis[J]. Tetrahedron,1998,54:2877-2892
    [16]Deng L, Nie K L,Wang F,et al. Studies Oil production of biodiesel by esterifieation of fatty acids by a lipase preparation from Candida sp.99-125[J]. Chin J Chem Eng,2005,13(4):529-534
    [17]黄家岭,乙引,张习敏,等.细菌A007菌株脂肪酶的纯化及性质研究[J].安徽农业大学学报,2010,37(1):170-173
    [18]徐岩,李建波,王栋.解脂假丝酵母脂肪酶的纯化及性质研究[J].无锡轻工大学学报,2001,20(3):257-260
    [19]兰立新,肖怀秋.微生物脂肪酶生物学特性及分离纯化研究进展[J].江苏调味副食,2009,26(5):1-5
    [20]Bradford M M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of potein-dye binding[J]. Anal Biochem, 1976,72(2):248-254
    [21]邹存媛,郑永杰,卢鹤,等.凝胶过滤法分离纯化大豆蛋白肽[J].齐齐哈尔大学化学与化学工程学报,2006,22(1):59-61
    [1]Yee P Y. Bushm A D Kinetics Studies on Immobilized Lipaze Esterification of Oleic Acid and Octanol[J]. J Chem Tech Biotechnol,1996,65:239-248
    [2]Ramamurtlu S, McCurdy A R Lipase-catalyzed Esterificatilon of Oleic Acid and Methanol in Hexane-A Kinetic Study[J]. J Am Oil Chem Soc,1994,71(9):927-930
    [3]颜思旭,蔡红玉.酶催化动力学原理与方法[M].福建:厦门大学出版社,1897.9-12
    [4]周晓云.酶学原理与酶工程[M].北京:中国轻工业出版社,2005.57-60
    [5]Z. D. Knezevic, S. S. Siler-Marinkovic, L. V. Mojovic. Kinetics of lipase-catalyzed hydrolysis of palm oil in lecithin/isooctane reversed micelles [J]. Appl Microbiol Biotechnol,1998,49:267-271
    [6]盛梅,朱海鸥,戚俊.脂肪酶催化酯化反应动力学[J].江苏石油化工学院学报,2000,12(3):27-29
    [7]施炜.庚烷中微生物脂肪酶催化酯化反应动力学的研究[J].无锡轻工大学学报,1998,17(3):50-53
    [8]王学伟,常杰,吕鹏梅,等.固定化脂肪酶催化制备生物柴油[J].石油化工,2005,34(9):855-858
    [9]韩明汉,陈和,王金福,等.生物柴油制备技术的研究进展[J].石油化工,2006,35(12):1119-1124
    [10]Wang Li, Du Wei, Liu Dehua, et al. Lipase-Catalyzed Biodiesel Production from Soybean Oil Deodorizer Distillate with Absorbent Present in tert-Butanol System[J]. J Mol Catal B:Enzym,2006,43(12):29-32
    [11]罗文,袁振宏,谭天伟,等.酶促合成生物柴油反应动力学[J].石油化工,2007,36(12):1277-1281
    [12]徐静,徐晓明,高素君,等.酶法制备生物柴油的酯交换反应动力学[J].厦门大学学报(自然科学版),2009,48(2):232-235
    [13]李昌珠,肖志红,刘汝宽,等.生物柴油催化剂固定化酶的性能评价及其动力学分析[J].中南林业科技大学学报(自然科学版),2008,28(4):136-139
    [14]袁勤生,赵健.酶与酶工程[M].上海:华东理工大学出版社,2005.22-28
    [15]赵裕蓉,张鹏译.酶催化动力学方法与应用[M].北京:化学工业出版社,2007.152-156
    [1]宋欣.微生物酶转化技术[M].北京:化学工业出版社,2004.138-183
    [2]艾俊哲.梅平非水介质中的酶催化反应[J].化学通报,2002,(11):752-757
    [3]邹国林,朱汝蟠.酶学[M].武汉:武汉大学出版社,1995.196-198
    [4]祖国仁,王运吉.几种脂肪酶作用pH与温度比较研究[J].大连轻工业学院学报,1996,15(4):22-25
    [5]熊振平.酶工程[M].北京:化学工业出版社,1989.15-19
    [6]杨本宏,吴克,刘斌,等.非水溶剂中Rhizopus arrhizus脂肪酶催化合成三种酯的最佳条件[J].中国生物化学与分子生物学报,2003,19(5):572-575
    [7]彭仁,魏东芝.耐有机溶剂脂肪酶的研究进展[J].生物技术,2008,18(5):92-95
    [8]朗道,栗弗席兹著.连续媒质电动力学(上)[M].北京:人民教育出版社,1956.66-67
    [9]兰立新,肖怀秋.微生物脂肪酶应用研究进展[J].安徽农业科学,2010,14:7547-7548,7561
    [10]周晓云.酶学原理与酶工程[M].北京:中国轻工业出版社,2005.36-38
    [1]吴薛明,何冰芳.耐有机溶剂极端微生物及酶类与天然产物的生物转化[J].中国天然药物,2007,5(4):245-250
    [2]Volfson E N,Sarney D B,Law B A.Enhancement of Subtilisin-catalysed interesterification in organic solvents by ultrasound irradiation[J]. Enzynle Microb Technol,1991,13(2):123-126
    [3]冯若,赵逸云,李化茂,等.超声在生物技术中应用的研究进展[J].生物化学与生物物理展,1994,21(6):500-503
    [4]宗敏华,剂耘,尹顺义.反应介质对脂肪酶稳定性的影响[J].生物化学杂志,1995,11(6):721-725
    [5]宗敏华,杜伟,李慧青,等.超声辐照对有机相脂肪酶催化酯化反应的促进[J].华南理工大学学报(自然科学版),2000,28(3):101-104
    [6]叶蕴华,谢海波,田桂玲.非水溶剂中酶反应研究进展[J].化学通报,1994,10:5-9
    [7]Suzuki Y, Doukyu N, Aono R. Lithocholic acid side-chain cleavage to produce 17-keto or 22-aldehyde steroids by Pseudomonas putida strain ST-491 grown in the presence of an organic solvent. diphenyl ether[J]. Biosci Biotechnol Biochem,1998,62:2182-2188
    [8]袁勤生,赵健.酶与酶工程[M].上海:华东理工大学出版社,2005.22-28
    [9]袁勤生.现代酶学[M].上海:华东理工大学出版社,2001.83-84
    [10]潘湘波,梁静娟.15—羟基十五烷酸的酶催化合成环十五内酯[J].应用化学,2004,21(8):850-852

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700