用户名: 密码: 验证码:
轴流旋风分离器数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴向导叶直流旋风分离器(轴流旋风分离器)是一种利用气粒两相流体旋转运动产生的惯性离心力对颗粒进行分离的装置,其主要优点有阻力低、处理气量大、体积小、工艺布局合理、可靠性高等。轴流旋风分离器虽然结构比较简单,但其内部流动为三维强旋湍流运动,并伴随着两相之间的分离,涉及到两相之间的吸附、静电等许多复杂的相互作用,因此在其内部流动机理研究方面遇到很大困难,人们尚未完全掌握旋风分离器内部的流场规律及颗粒分离机理。
     本文结合轴流旋风分离器的结构特点,利用数值模拟与实验研究相结合的方法对轴流旋风分离器的流场特性进行详细研究,获得轴流旋风分离器的综合特性,较为全面地掌握旋风分离器的内部流动规律,得到了较为完整的轴流旋风分离器的颗粒分离效率特性。本文主要进行了以下几个方面内容的研究:
     1.轴流旋风分离器的阻力特性实验研究,设计轴流旋风分离器并制作实验模型,搭建单管轴流旋风分离器阻力测量风洞实验平台,对轴流旋风分离器整体及主要部件阻力特性进行详细研究,获得了详细的旋风分离器整体及各主要部件的阻力特性,为选择数值模拟方法及验证计算结果提供依据。
     2.轴流旋风分离器外筒壁面压力分布特性实验研究,制作轴流旋风分离器壁面压力测量模型,利用高精度压力测试仪器进行全面详细的壁面压力分布特性测量,利用参数量纲化方法进行结果处理,获得轴流旋风分离器外壁面的无量纲压力分布特性,并为验证数值计算方法提供基础。
     3.轴流旋风分离器的颗粒分离效率特性实验研究,设计定量加料装置,进行不同物性固体颗粒的分离效率实验,分别进行不同气流速度条件下,轴流旋风分离器对多种固体颗粒的分离效率测试实验,相同速度条件下,不同直径颗粒的分离效率实验,以获得较为完整的轴流旋风分离器的颗粒分离效率特性。
     4.根据实验结果选择合理的计算模型,对所研究的轴流旋风分离器流域内气流流动进行较为全面的数值模拟,并对旋风分离器内流场特征参数进行分析处理,获得内流场特征参数的分布规律,此外借助数值模拟获得了轴流旋风分离器的阻力特性,并与实验结果进行比较。
     5.利用数值模拟方法获取了轴流旋风分离器内主要流场参数无量纲数值分布特性,并获得了轴流旋风分离器内流场回流边界特性,同时获得了旋流特征参数在分离器内部的分布规律,绘制了旋风分离器内流场特征参数分布图谱。
     6.分析轴流旋风分离器内部能耗机理,并提出运行压力、温度对轴流旋风分离器阻力影响的准则公式,并借助数值模拟方法进行验证。
     7.进行轴流旋风分离器两相流数值模拟,获得轴流旋风分离器对不同颗粒物的分离效率特性,并与实验数据进行比较,获得了准确的计算边界条件设定方法。
Axial flow cyclone separator with guide blades (ACS) is a kind of device to separate particles from air flow through centrifugal force generated by the rotary motion of two-phase flow. Low resistance, large mass flow throughout, small volume and reasonable process layout are its advantages. ACS's interflow is strong rotational turbulent flow, and fulfilled with many complex conditions, such as dual-phase separation, interaction, adsorption, and electrostatic interference which made lots of obstacles to its mechanical research, although ACS's advantages above. ACS's flow patterns and separate mechanism are still not fully recognized until now.
     Experimental study and numerical simulation are combined to do intensive research on ACS's general flow characteristics according to its physical structure in this dissertation. And ACS's characteristics of inter flow field and separation performance to solid particles could be more comprehesively achieved. The main contents of this dissertation are as follows:
     1. The experimental research on the resistance performance of the axial flow cyclone separator. Build a wind tunnel experiment section to measure the resistance performance of the single-tube axial flow cyclone separator. And some detailed study is done on the resistance characteristics of the axial-flow cyclone separator and its main components. Then the detailed resistance characteristic parameters of the whole cyclone separator are well obtained. This lays a foundation for the verification of the numerical simulation.
     2. The experimental research on the pressure distribution along the outside wall of the axial cyclone separator. With the help of the high-accuracy pressure measuring instruments, the detailed data of the pressure distribution characteristics on the outside wall were measured. The results are disposed with the non-dimensional method. Also the pressure distribution characteristics of the cyclone separator are obtained. This provides a basis for validating the numerical simulation results.
     3. The experimental research on different solid particles separation efficiency of the axial flow cyclone separator. Design a quantificational feeding device to do some experiments on the separation efficiency of different solid particles. Do experiments on separation efficiency of the different granules under different inlet velocity conditions and the separation efficiency of the granules with different diameters under the same inlet velocity respectively. Finally, the more complete separation efficiency characteristics of the axial flow cyclone separator are obtained.
     4. The suitable numerical simulation method is selected according to the experimental results. The detailed and general numerical simulation is conducted on the internal flow field of the axial flow cyclone separator. And analyse the distributon of several typical flow parameters of the internal flow field. Then we obtain the distribution law of the flow field characteristic parameters. The resistance of the cyclone separator is obtained by numerical simulation method, and compared with the experimental results. The numerical simulation results are consistent to the experiment. With the help of numerical simulation, it conducts the research on the effect of the operation pressure and the temperature on the performance of the cyclone separator.
     5. Utilizing the numerical simulation method, obtain the non-dimensional flow pattern distribution characteristics, back flow boundary characteristics of the internal flow field, and the characteristic parameters distribution of the swirling number in the interior of the axial flow cyclone separator.
     6. Analyzing the mechanism of the internal energy loss inside the axial flow cyclone separator. Also criteria formula of running pressure and temperature to ACS's resistance is put forward and verified through numerical simulation.
     7. Doing two-phase flow simulation inside the axial flow cyclone separator and obtaining the grade separation efficiency. Comparision between the simulation result and experimental data show that boundary conditions used in two-phase simulation is reasonable.
引文
[1]徐剑.高效型Stairmand旋风器改进实验研究[D].硕士学位论文.东华大学.2002:12
    [2]高鹏.旋风器出口旋转流分离能力的试验研究[D].硕士学位论文.东华大学.2003:6-8
    [3]A.C.霍夫曼,L.E.斯坦因.旋风分离器—原理、设计和工程应用[M].北京:化学工业出版社,2004:13-64
    [4]徐继润,罗茜.水力旋流器流场理论,北京:科学出版社,1998:59.
    [5]钱付平.不同排尘结构及操作条件旋风分离器分离特性的研究[D].博士学位论文.东南大学.2006:04
    [6]Mehdi Azadia, Mohsen Azadib, Ali Mohebbi. A CFD study of the effect of cyclone size on its performance parameters [J]. Journal of Hazardous Materials.2010, (182): 835-841
    [7]Shi Yang, Hairui Yang, Hai Zhang, Shaohua Li, Guangxi Yue. A transient method to study the pressure drop characteristics of the cyclone in a CFB system [J]. Powder Technology.2009, (192):105-109
    [8]Jianyi Chen a, Mingxian Shi. A universal model to calculate cyclone pressure drop [J]. Powder Technology.2007, (171):184-191
    [9]Cuizhi Gao, Guogang Sun, Ruiqian Dong, Shuangcheng Fu. Characterizing the dynamic property of the vortex tail in a gas cyclone by wall pressure measurements [J]. Fuel Processing Technology.2010, (91):921-926
    [10]Arkadiusz Kepa. Division of outlet flow in a cyclone vortex finder—The CFD calculations [J]. Separation and Purification Technology.2010, (75):127-131
    [11]Hideto Yoshida, Yusuke Nishimura, Kunihiro Fukui, Tetsuya Yamamoto. Effect of apex cone shape on fine particle classification of gas-cyclone[J]. Powder Technology.2010, (204):54-62
    [12]C. Bhasker. Flow simulation in industrial cyclone separator [J]. Advances in Engineering Software.2010, (41):220-228
    [13]Bingtao Zhao. Modeling pressure drop coefficient for cyclone separators:A support vector machine approach [J]. Chemical Engineering Science.2009, (64):4131-4136
    [14]H. Safikhani, M.A. Akhavan-Behabadi, M. Shams, M.H. Rahimyan. Numerical simulation of flow field in three types of standard cyclone separators [J]. Advanced Powder Technology.2010, (21):435-442
    [15]Weiming Peng, Dorthe Christensen, Siri Jacobsson, Eli Kvinnesland, Alex C. Hoffmann. Studies of the flow in and around gas dedusters and demisters using neutrally buoyant tracer [J]. Chemical Engineering Journal.2010, (158):11-18
    [16]付双成,孙国刚,高翠芝.导叶式直流旋风分离器的研究与应用现状[J].过滤与分离.2008,18(2):11-13
    [17]李立国,王锁芳.直升机发动机的进气防护[M].北京:国防工业出版社,2009:77-100
    [18]S. Y. Ng, G. H. Priestman and R. W. K. Allen. Investigation of floooding re-entrainment and grade efficiency in axial flow cyclones [J]. Chemical Engineering Research and Design.84(A10):884-894
    [19]Youngmin Jo, Chi Tien, Madhumita B. Ray. Development of a post cyclone to improve the efficiency of reverse flow cyclones [J]. Powder Technology.2000, (113):97-108
    [20]H.T. Kim, Y. Zhu, W.C. Hinds, K.W. Lee. Experimental studyof small virtual cyclones as particle concentrators [J]. Aerosol Science.2002, (33):721-733
    [21]Stefan Obermaira, Jakob Woisetschla'gerb, Gernot Staudinger. Investigation of the flow pattern in different dust outlet geometries of a gascyclone by laser Doppler anemometry[J]. Powder Technology.2003, (138):239-251
    [22]Hideto Yoshida, Yang Kwan-Sik, Kunihiro Fukui, Satoshi Akiyama and Satoru Taniguchi. Effect of apex cone height on particle classification performance of a cyclone separator [J]. Advanced Powder Technol.2003,14(3):263-278
    [23]T. Yalcin, E. Kaukolin, A. Byers. Axial inlet cyclone for mineral processing applications [J]. Minerals Engineering.2003, (16):1375-1381
    [24]L. Ma, D. B. Ingham and X. Wen. Numerical modelling of the fluid and particle pentration through small sampling cyclones [J]. Aerosol Science.2000,31(9): 1097-1119
    [25]W. D. Griffiths and F. Boysan. Computational Fluid Dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers [J]. Aerosol Science.1996,27(2):281-304
    [26]B. Wang, D.L. Xu, K.W. Chu, A.B. Yu. Numerical study of gas-solid flow in a cyclone separator [J]. Applied Mathematical Modelling.2006, (30):1326-1342
    [27]S. Bernardo, M. Mori, A.P. Peres, R.P. Diom'sio.3-D computational fluid dynamics for gas and gas-particle flows in a cyclone with different inlet section angles [J]. Powder Technology.2006, (162):190-200
    [28]Irfan Karagoz, Fuat Kaya. CFD investigation of the flow and heat transfer characteristics in a tangential inlet cyclone [J]. International Communications in Heat and Mass Transfer.2007, (34):1119-1126
    [29]Hideto Yoshida, Shinsuke Yoshikawa, Kunihiro Fukui, Tetsuya Yamamoto. Effect of multi-inlet flow on particle classification performance of hydro-cyclones [J]. Powder Technology.2008, (184):352-360
    [30]Jolius Gimbun, T.G. Chuah, A. Fakhru'1-Razi, Thomas S.Y. Choong. The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study [J]. Chemical Engineering and Processing.2005, (44):7-12
    [31]Fuat Kaya, Irfan Karagoz. Numerical investigation of performance characteristics of a cyclone prolonged with a dipleg [J]. Chemical Engineering Journal.2009, (151):39-45
    [32]W. Peng, A.C. Hoffmann, H.W.A. Dries, M.A. Regelink, L.E. Stein. Experimental study of the vortex end in centrifugal separators:The nature of the vortex end [J]. Chemical Engineering Science.2005, (60):6919-6928
    [33]Jinyu Jiao, Ying Zheng, Jun Wang. Experimental and numerical investigations of a dynamic cyclone with a rotary impeller [J]. Chemical Engineering and Processing.2008, (47):1861-1866
    [34]Jinyu Jiao, Ying Zheng, Jun Wang. Study of the separation efficiency and the flow field of a dynamic cyclone [J]. Separation and Purification Technology.2006, (49):157-166
    [35]R.B. Xiang, K.W. Lee. Numerical study of flow field in cyclones of different height [J]. Chemical Engineering and Processing.2005, (44):877-883
    [36]Kwan-Sik Yang, Hideto Yoshida. Effect of mist injection position on particle separation performance of cyclone scrubber[J]. Separation and Purification Technology.2004, (37):221-230
    [37]Arman Raoufi, Mehrzad Shams, Meisam Farzaneh, Reza Ebrahimi. Numerical simulation and optimization of fluid flow in cyclone vortex finder [J]. Chemical Engineering and Processing.2008, (47):128-137
    [38]Arman Raoufi, Mehrzad Shams, Homayoon Kanani. CFD analysis of flow field in square cyclones [J]. Powder Technology.2009, (191):349-357
    [39]张永照,胡洪钢,刘智勇.轴流式多管旋风分离器的试验研究[J].工业锅炉.1997,(4):28-33
    [40]郭颖,王建军,金有海.轴流导叶式旋风管内气固两相流的实验研究[J].石油大学学报(自然科学版).2005,29(3):96-100
    [41]Zhengliang Liu, Jinyu Jiao and Ying Zheng. Study of axial velocity in gas cyclones by 2D-PIV,3D-PIV and simulation [J]. China Particuology.2006,4(3-4):204-210
    [42]江津河,王伟文,王立新,李建隆.直流降膜式旋风除雾器的流场模拟[J].流体机械.2007,35(5):29-32
    [43]黄兴华,王道连,王如竹,张吉光.旋风分离器中气相流动特性及颗粒分离效率的数值研究[J].动力工程.2004,24(3):436-441
    [44]吴小林,熊至宜,姬忠礼,时铭显.旋风分离器旋进涡核的数值模拟[J].化工学报.2007,58(2):383-390
    [45]胡璨元,时铭显,周力行,张健.旋风分离器三维强旋湍流流动的数值模拟[J].清华大学学报(自然科学版).2004,44(11):1501-1504
    [46]胡璨元,时铭显.蜗壳式旋风分离器全空间三维时均流场的结构[J].研究论文,2004,44(11):1501-15
    [47]林玮,王乃宁.旋风分离器内三维两相流场的数值模拟[J].动力工程.1999,19(1):72-76
    [48]宋健斐,魏耀东,时铭显.旋风分离器内颗粒浓度场的数值模拟[J].中国石油大学学报(自然科学版).2008,32(1):90-94
    [49]钱付平,章名耀.旋风分离器分离性能的经验模型与数值预测[J].东南大学学报(自然科学版),2005,35(1):35-39
    [50]龚光彩,朱少林,周游,徐春雯.轴入式旋风子气粒分离特性的数值模拟与试验[J].安全与环境学报.2009,9(1):58-61
    [51]孙治谦,金有海,王建军,张艳.新型旋风管内颗粒浓度分布的实验研究[J].过程工程学报.2008,8(3):432-436
    [52]王亚莹,金有海,张建.涡壳式旋风分离器气相流场的数值模拟[J].化工装备技术.2008,29(1):12-16
    [53]金有海,马艳杰,许伟伟,王建军.排气芯管结构对导叶式旋风管内流场影响的数值模拟[J].中国石油大学学报(自然科学版).2009,33(6):87-90
    [54]钱付平,章名耀.底部加直管旋风分离器的性能预测[J].热能动力工程.2005,20(1):41-44
    [55]王建军,金有海.导叶式旋风管内颗粒分离模型的研究[J].过程工程学报.2004,4(Z):651-657
    [56]王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程.2003,18(4):337-342
    [57]魏志军,张平.燃气发生器旋风式过滤器除尘效率数值模拟[J].固体火箭技术.2002,25(3):23-25
    [58]宋健斐,魏耀东,时铭显.蜗壳式旋风分离器气相流场的非轴对称特性的模拟[J].化工学报.2005,56(8):1397-1402
    [59]彭维明.切向旋风分离器内部流场的数值模拟及试验研究[J].农业机械学报.2001,32(4):20-23
    [60]张建,金有海.灰斗抽气对旋风分离器分离性能影响数值模拟研究[J].工程设计学报.2008,15(5):313-318
    [61]熊至宜,吴小林,姬忠礼.高压天然气田用旋风分离器内流场的数值模拟[J].机械工程学报.2005,41(10):193-199
    [62]Fuping Qian, Jiguang Zhang, Mingyao Zhang. Effects of the prolonged vertical tube on the separation performance of a cyclone [J]. Journal of Hazardous Materials.2006, (B136):822-829
    [63]Fuping Qian, Zhijia Huang, Guang Chen, Mingyao Zhang. Numerical study of the separation characteristics in a cyclone of different inlet particle concentrations [J]. Computers and Chemical Engineering.2007, (31):1111-1122
    [64]L. C. Kenny and R. A. Gussman. A direct approach to the design of cyclones for aerosol-monitoring applications [J]. Aerosol Sci.2000,31(12):1407-1420,
    [65]Zhongli Ji, Zhiyi Xiong, Xiaolin Wu, Honghai Chen, Hongxiao Wu. Experimental investigations on a cyclone separator performance at an extremely low particle concentration [J]. Powder Technology.2009, (191):254-259
    [66]Cristobal Cortes, Antonia Gil. Modeling the gas and particle flow inside cyclone separators [J]. Progress in Energy and Combustion Science.2007, (33):409-452
    [67]Yaxin Su, Yuru Mao. Experimental study on the gas-solid suspension flow in a square cyclone separator [J]. Chemical Engineering Journal.2006, (121):51-58
    [68]Gujun Wan, Guogang Sun, Xiaohu Xue, Mingxian Shi. Solids concentration simulation of different size particles in a cyclone separator [J]. Powder Technology.2008, (183): 94-104
    [69]B. Zhao, Y. Su and J. Zhang. Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration [J]. Chemical Engineering Research and Design.84, (A12):1158-1165
    [70]Yaxin Su. The turbulent characteristics of the gas-solid suspension in a square cyclone separator [J]. Chemical Engineering Science.2006, (61):1395-1400
    [71]Ali M. Jawarneh, Hitham Tlilan, Ahmad Al-Shyyab, Amer Ababneh. Strongly swirling flows in a cylindrical separator [J]. Minerals Engineering.2008, (21):366-372
    [72]Li Xiaodong, Yan Jianhua, Cao Yuchun, Ni Mingjiang, Cen Kefa. Numerical simulation of the effects of turbulence intensity and boundary layer on separation efficiency in a cyclone separator [J]. Chemical Engineering Journal.2003, (95): 235-240
    [73]S. Shaaban. Numerical optimization and experimental investigation of the aerodynamic performance of a three-stage gas-solid separator [J]. Chem Eng Res Des.2010, doi:10.1016/j.cherd.2010.04.008
    [74]Hideto Yoshida, Toru Takashina, Kunihiro Fukui, Takeshi Iwanaga. Effect of inlet shape and slurry temperature on the classification performance of hydro-cyclones [J]. Powder Technology.2004, (140):1-9
    [75]J.J. Derksen, S. Sundaresan, H.E.A. van den Akker. Simulation of mass-loading effects in gas-solid cyclone separators [J]. Powder Technology.2006, (163):59-68
    [76]Hideto Yoshida, Yuta Inada, Kunihiro Fukui, Tetsuya Yamamoto. Improvement of gas-cyclone performance by use of local fluid flow control method [J]. Powder Technology.2009, (193):6-14
    [77]Liming Shi, David J. Bayless. Comparison of boundary conditions for predicting the collection efficiency of cyclones [J]. Powder Technology.2007, (173):29-37
    [78]邹声华,刘建仁.普通旋风除尘器结构尺寸优化设计[J].环境科学学报.1999,19(3):342-34
    [79]毛羽,庞磊,王小伟,吴德飞.旋风分离器内二维紊流场的数值模拟[J].石油炼制与化工.2002,33(2):1-6
    [80]王海刚.旋风分离器中气-固两相数值计算与实验研究[D].博士学位论文.中国科学院,2003
    [81]赵兵涛.轴对称旋转流气固分离理论与技术[D].博士学位论文.东华大学,2004,
    [82]周强.方形卧式分离器的研究及其在循环流化床锅炉中的应用[D].博士学位论文.浙江大学,2004
    [83]王福军,计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004:1-10
    [84]马铁犹,计算流体动力学[M].北京:科学航空学院出版社,1986:12-18
    [85]Fluent Inc. FLUENT User's Guide. Fluent Inc.2006
    [86]蔡树棠,刘宇陆,湍流理论[M].上海交通大学出版社,1993:145-152
    [87]张兆顺,崔桂香,许春晓,湍流理论与模拟[M].北京:清华大学出版社,2005:207-232
    [88]是勋刚.湍流[M].天津:天津大学出版社,1994:46-63
    [89]Launder B E, Spalding D B. Lectures in mathematical models of turbulence [M]. Academic Press, London,1972,
    [90]Jones W P, Launder B E. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence [J]. Int J Heat Mass Transfer.1973,(16):1119-1130
    [91]Yakhot V, Orzag S A. Renormalization group analysis of turbulence:I. Basic theory[J]. Journal of Scientific Computing.1986,1(1):3-51
    [92]Shih T H, Liou W W, Shabbir A, Yang Z G, Zhu J. A new k-εeddy viscosity model for high Reynolds number turbulent flows[J]. Computers & fluids.1995,24(3):227-238
    [93]Menter F R. Two-Equation Eddy-Viscosity Turbulence models for engineering applications[J]. AIAA Journal.1994,32(8):1598-1605
    [94]Coakley T J. Turbulence methods for the compressible Navier-Stokes equations[R].1983, AIAA-1983-1693
    [95]周力行,多相湍流反应流体力学[M].北京:国防工业出版社,2002,(1):74-81
    [96]Ming Ouyang and Benjamin Liu YH. Analytical solution of flow field and pressure drop for filters with noncircular fibers[J]. Aerosol Science and Technology.1995, (23):311-320
    [97]Dominik D, Wisneski J, RajagoPal K, et al. Grid generation of a high fidelity complex multi-body space shuttle mated vehicle [J]. AIAA93-0432 1993,
    [98]Griffiths W D and Boysan F. Computational Fluid Dynamics(CFD) and empirical modeling of the performance of a numerical of cyclone samplers[J]. Journal of Aerosol Science.1996,27(2):281-304
    [99]Wilcox D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal.1988,26(11):1299-1310
    [100]Ma L, Ingham D B and Wen X. Numerical Modeling of the Fluid and Particle Penetration through Small Sampling Cyclones [J]. Journal of Aerosol Science.2000, 31(9):1097-1119
    [101]张凯,周屈兰,徐通模,惠世恩.新型轴向叶片式旋流燃烧器性能的实验研究[J].西安交通大学学报.1999,33(6):3-8
    [102]吴国江,黄震,田子平.有限旋转气流的切向速度特性分析[J].空气动力学学报.2002,20(3):361-365
    [103]史永征,郭全,潘树源.两个轴向叶片式旋流器的旋流强度计算公式的探讨[J].北京建筑工程学院学报.2007,23(2):17-19
    [104]江旭昌.多风道煤粉燃烧器旋流数的分析与计算[J].建材发展导向.2004,(5):62-67
    [105]S.-G. Mohamed-Swaray, and F. Hamdullahpur. A new semi-empirical model for predicting particulate collection effciency in low-to-high temperature gas cyclone separators [J]. Advanced Powder Technology.2004, (15):137-164
    [106]R. Zhang, P. Basu. A simple model for prediction of solid collection efficiency of a gas-solid separator [J]. Powder Technology.2004, (147):86-93
    [107]Trond Austrheim, Lars H. Gjertsen, Alex C. Hoffmann. An experimental investigation of scrubber internals at conditions of low pressure [J]. Chemical Engineering Journal.2008, (138):95-102
    [108]Antonio Filippone, Nicholas Bojdo. Turboshaft engine air particle separation [J]. Progress in Aerospace Sciences.2010, (46):224-245
    [109]Atakan Avci, Irfan Karagoz. Effects of flow and geometrical parameters on the collection effciency in cyclone separators [J]. Aerosol Science.2003, (34):937-955
    [110]Xiang, R., Park, S. H., & Lee, K. W. Effects on cone dimension on cyclone performance [J]. Journal of Aerosol Science.2005, (32):549-561
    [111]褚良银,陈文梅,李晓钟.水力旋流器能耗降减的研究进展[J].化工机械.1996,23(6):1-4
    [112]李晓钟,陈文梅,褚良银.水力旋流器能耗定义及其组成分析[J].过滤与分离.2000,10(2):1-4
    [113]李晓钟,陈文梅,李晓钟.水力旋流器类组合涡分析及节能原理研究[J].过滤与分离.2000,10(3):1-4
    [114]褚良银,陈文梅,李晓钟等.水力旋流器能耗机制与节能原理研究Ⅰ.能量损耗理论分析[J].化工机械.1998,25(2):63-69
    [115]褚良银,陈文梅,李晓钟等.水力旋流器能耗机制与节能原理研究Ⅳ.湍动能分布与湍动能耗散率[J].化工机械.1998,25(5):254-258
    [116]褚良银,陈文梅,李晓钟等.水力旋流器能耗机制与节能原理研究V.流场结构与能量损耗[J].化工机械.1998,25(6):316-320
    [117]褚良银,陈文梅,李晓钟等.水力旋流器能耗机制与节能原理研究Ⅵ.低能耗旋流器压力场结构及能耗降减原理[J].化工机械.1999,26(1):5-9
    [118]李自力.水力旋流器能量耗散特性实验研究[J].石油化工设备.2001,30(2):7-9
    [119]李枫.油田污水处理复合式水力旋流器分离机理及特性研究[D].博士学位论文.大庆石油学院.2008:44-47
    [120]褚良银,陈文梅,李晓钟.水力旋流器湍流结构控制[J].化工学报.1998,49(6):760-763
    [121]褚良银,陈文梅.旋转流分离理论[M].北京:冶金工业出版社,2002:104-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700