用户名: 密码: 验证码:
天然高分子材料在渗透汽化膜分离己内酰胺—水体系中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渗透汽化膜分离作为一种新型分离技术,具有其他传统分离技术所不具备的优势:选择性高、操作简便、能耗低、环境友好清洁、过程不受汽液平衡的限制等。本课题选用的分离体系为已内酰胺-水,已内酰胺(CPL)为中国石化股份有限公司巴陵石化分公司引进的由荷兰DSM公司研发的HPO工艺。
     已内酰胺作为尼龙-6的单体,是一种重要的有机化工原料。由于少许痕量的水和其他杂质都会影响生产化纤和树脂的质量。因此,对已内酰胺脱水提出了很高的要求。传统的已内酰胺脱水技术是指在工业上采用三效蒸发减压蒸馏装置从水-已内酰胺溶液中结晶制备已内酰胺。这种方法存在中压蒸汽消耗大、热传质效率低、污染物转入第二相、操作费用高等缺点,近年来研究人员开始寻找新的技术来改进或替代CPL水溶液的脱水工艺。
     众所周知,渗透汽化膜分离过程最重要也是最核心的环节就是能找到一种合适的膜材料,经过最简单易行的处理,达到最佳的渗透汽化分离效果。加之现在日益恶化的环境问题,也促使人们越来越倾向于寻找一种无毒、可自然环境降解、兼容性好的纯天然高分子膜材料。本文就是基于以上几点,进行了多种膜材料的探讨性试验。
     本试验以魔芋葡甘聚糖(KGM)、壳聚糖(CS)为主要的高分子膜材料,结合聚乙烯醇(PVA)和聚丙烯酸(PAA)这两种同样对环境无毒害的传统高分子材料,以戊二醛为交联剂,聚丙烯腈(PAN)超滤膜为底膜,制备了KGM交联膜、KGM-PVA交联共混膜、KGM-CS交联共混膜、CS-PVA交联共混膜以及CS-PAA共混膜。通过红外光谱(FT-IR)、X-射线衍射(XRD)、热分析(TGA, DTG, DSC)和扫描电镜(SEM)等表征手段对聚合物膜的结构形态和物理化学性质进行了表征,分析了聚合物膜材料自身特性与其在CPL/水体系中的溶胀行为和分离性能之间的关系。
     KGM交联膜的渗透汽化试验中,探讨了膜中交联剂的含量、进料液温度、进料液组成对渗透汽化膜分离性能的影响。结果表明,交联剂的加入降低了膜在体系中的溶胀度,增加了膜的热稳定性,并且随着交联剂含量的增加,渗透通量减小,分离因子增加;料液温度的升高,增加了膜的通量,减小了分离因子;料液组分的增大,也会使膜的通量减小,分离因子增大。组分渗透通量的自然对数值与操作绝对温度的倒数遵循Arrhenius定律,通过这一经典式子算出的活化能也验证了膜的亲水性质。
     对于KGM-PVA交联共混膜,一定范围内膜材料中KGM含量的增加,会造成膜溶胀度与通量的增加,分离因子的降低;KGM-CS交联共混膜在体系内的渗透汽化性质跟KGM-PVA交联共混膜不同:膜内CS含量在一定范围的增加,导致通量的先减小后增大,分离因子则先增大后基本保持不变;CS-PVA交联共混膜膜组分的变化情况也较复杂:随着膜内PVA含量的增大,通量的变化情况是先增大后减小,分离因子正好相反。CS-PAA共混膜在渗透汽化试验中显示的特性为:随着膜内PAA含量的增加,膜耐热性质逐步变差,膜通量在减少,分离因子增加。料液温度的升高和料液组分中CPL含量的减小,都会造成这三组膜的渗透通量的增大和分离因子的减小。
     在传质模型的建立上选择了经典的溶解-扩散模型,对已内酰胺-水体系中各种渗透汽化膜的性能进行了综合评价:a)在对总传质系数的模拟中发现,随着温度升高和水含量的增加,水的总传质系数都在不断增大;对于过程总活化能的模拟结果却显示改变组分或交联度的比例时,活化能变化的趋势往往并不是单一的,任一单一组分含量过高往往都会造成渗透活化能上升。印证了通过共混改性的膜比纯聚合物膜更有利于组分的进一步渗透。b)在水组分及已内酰胺组分渗透系数的模拟中发现,随着温度升高和料液中已内酰胺比例的升高,已内酰胺组分渗透系数明显上升,而这些条件变化时水组分的渗透系数变化不大,由此造成膜的选择性会随着温度及料液组成发生明显变化。对实验结果的数据模拟证明了本文中制备的几种渗透汽化膜基本符合溶解-扩散模型,从理论上分析了影响渗透汽化分离过程的因素,为渗透汽化用于已内酰胺-水体系的分离提供了理论依据。
Pervaporation (PV) as a novel separation technology, compared with other traditional methods, has far more effective characters due to high selectivity, simplicity, low energy consumption, environmental-friendly cleaning and breaking through the limits of vapor-liquid equilibrium. The study is based on seperation of solution mixied withε-Caprolactam(CPL) and water, CPL from the HPO technology introduced by Baling Petrochemical Co. Ltd. (SINOPEC, China) from DSM Corporation (Dutch).
     s-Caprolactam (CPL), as the monomer of nylon-6, is an important organic chemical material. Since CPL is a very heat sensitive substance and has lower volatility than water. A small trace of water and other impurities will affect the production of fiber and resin.Thus, dehydration of CPL is a demanding profession. Traditional separation techniques, crystallization under a reduced pressure distillation through triple-effect evaporation sets, is often widely adopted by chemical industry in manufacture of CPL. But disadvantages, such as large consumption of steam pressure, low heat transfer coefficient and the pollutants into the second phase, make researchers look for a new or alternative technology to improve the dehydration process in CPL aqueous solution.
     As it is well known that a suitable membrane material is the most important technologic process in PV. And then, with as simply treated as possible, people can achieve the best effect of pervaporation. In addition, worsening environmental problems led to an increasing tendency to find the nontoxic, environmental-friendly macromolecule materails. In this dissertation, several materials were discussed.
     KGM and chitosan(CS) as the main membrane materials, combined with Poly (vinyl alcohol) (PVA) and Poly(acrylic acid)(PAA), which were also nontoxic, environmental-friendly, cross-linked by Glutaraldehyde, were layed on the (PAN) ultrafiltration membrane chosen as supported substrate layer. Following the methods above, KGM crosslinked membranes, KGM-PVA/PAN, KGM-CS/PAN, CS-PVA/PAN and CS-PAA/PAN were prepared to the separation of CPL/water mixtures. The membranes were characterized by FT-IR, XRD, TGA, DTG, DSC and SEM to analyze the relationships between the structures and characteristics of polymer membranes and swelling behavior and separation performances.
     On KGM crosslinked membranes, effects of crosslinking agents loading, feed temperature, feed composition in PV performances, were investigated. The experimental results indicated that with the crosslinking agents loading in the membranes rising, the degree of swelling (D.S) decreased, but the thermal stability of polymer membranes increased. Through evaluating the pervaporation performance, we came to a conclusion that with the increase of crosslinker content, permeation flux decreased and separation factor increased. Temperature of mixtures increasd, flux of membranes increased and the separation factor reduces; CPL concentration in the mixtures increase would also reduced the flux and increased separation factor. The experimental results also showed that the temperature dependence of the pervaporation flux agreed well with the Arrhenius relationship and activation energy ((?)E) is also calculated to verify the nature of the hydrophilic membrane.
     The law of KGM-PVA cross-linked blend membranes in the CPL/water system by pervaporation is as follows:to some extent, the more KGM content in the membrane, the more swelling and flux, but the lower separation factor; The law was different in KGM-CS crosslinked blend membranes to that of KGM-PVA blend membranes: content of CS in membrane increasing maked the flux reduce first and then increase, separation factor was increase first and them remained basically unchanged; The law of CS-PVA cross-linked blend membranes are more complex:as CS content increased in membranes, the changes of flux first increased and then decreased, the separation factor is just the opposite; CS-PAA blend membranes in pervaporation experiments show the characteristics as follows:with the increase of the content of PAA in membranes, membrane flux was higher and separation factor was lower. When liquid temperature and water content in liquid components increased, permeation flux of three groups of membranes concerned above increased and the separation factor of them decreased.
     The classical solution- diffusion model was chosen as transport model to evaluation the pervaporation performance of the membranes, which were used in our study, for separation of caprolactam - water system:a) through simulating transport coefficients in the model, with the temperature and water content increased, the water transport coefficients were increasing. The results of total activation energy simulated in the model had shown that with the change of ratio in composition or the ratio of crosslinking agents, the change in the trend of activation energy is often not single, and the more single component content, the more activation energy. It is confirmed that multi-component membrane is more conducive to the further penetration than one-component membrane. b)It was shown that with the increase of temperature and CPL content, CPL transport coefficients were increasing but the water transport coefficients didn't change much, resulting that selectivity of membrane changed as the liquid temperature and composition change significantly. The simulation of different membranes in this study proved that the data used in this article of several pervaporation membranes were in line with the classical solution - diffusion model and the results would have a certain guiding significance for description of the membrane structure and choices of pervaporation conditions in industrial applications of pervaporation separation of caprolactam-water system.
引文
[1]Gross R. A., Kalra B., Biodegradable Polymers for the Environment [J]Science,2002,297: 803-807.
    [2]Darder M., Aranda P., Ruiz-Hitzky E., Bionanocomposites:A new concept of ecological, bioinspired, and functional hybrid materials [J] Adv. Mater.,2007,19:1309-1319.
    [3]Mohanfty A. K., Misra M., Drzal L. T., Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World [J] J. Polym. Envir.,2002, 10:19-25.
    [4]魏玉萍,程发,李厚萍,于九皋,基于天然高分子的聚氨酯材料[J]高分子通报,2004,2:22-29.
    [5]温永堂,郭振友,付振刚,张桂英,CN 9411908917.
    [6]杜予民,甲壳素化学与应用的新进展[J]武汉大学学报(自然科学版),2000,46:181-186.
    [7]戈进杰,生物降解高分子材料及其应用,北京:化学工业山版社,2002.
    [8]梁亮,崔英德,罗宗铭,微波新技术制备壳聚糖的研究[J]广东工业大学学报,1999(1):63-65.
    [9]谢雅明,可深性甲壳质的制造和用途[J]化学世界,1983(4):118.
    [10]汪志君,碱量法测定壳聚糖中的胺基[J]化学世界,1986(1):22.
    [11]骆鑫,陈世光,壳聚摄制备工艺改进[J]华西药学杂志,1999(1):41.
    [12]关立平,陈维国,羊毛壳聚糖处理及其缩绒性能的研究[J]毛纺科技,1999(1):41-43.
    [13]季鸿渐,张万喜,潘振远等,高吸水性树脂的合成和应用[J]高分子通报,1992(2):111-113.
    [14]朱秀林,顾梅等,高吸水性纤维复合体的研究[J]高分子材料科学与工程,1994(6):31-35.
    [15]崔英德,郭建维,阎文峰等,SA-P-SPS型保水剂及其对土壤物理性能的影响[J]农业工程学报,2003,19(1):28-31.
    [16]张小红,崔英德,潘湛昌,聚丙烯酸/海藻酸钠高吸水性树脂的制备及生物降解性能[J]化工学报,2005,56(6):1134-1137.
    [17]陈煜,陆铭,王海涛等,壳聚糖接枝聚丙烯酸高吸水性树脂的合成工艺[J]高分子材料科学与工程,2005,21(5):266-269.
    [18]邵琼芳,董明,胡利华,环糊精接枝聚乳酸的初步研究[J]江西科学,2002,20(4):213-215.
    [19]章悦庭,胡绍华,生物可降解高吸水性非织造布的研制[J]功能高分子学报,1999,12(4):389-392.
    [20]孙建华,陈新华,胡有慧[J]化工新型材料,2001,28(7):3-7.
    [21]林海琳,海藻酸钠超强吸水树脂的制备与性能研究(博士学位论文),广东工业大学,2005.
    [22]张俐娜,天然高分子改性材料及应用,北京:化学工业出版社,2006.
    [23]张俐娜,天然高分子科学与材料,北京:科学出版社,2007.
    [24]Ismail H., Hairunezam H. M. The effect of a compatibilizer on curing characteristics, mechanical properties and oil resistance of styrene butadiene rubber/epoxidized natural rubber blends [J] Eur. Polym. J.,2001,37:39-44.
    [25]Choi S S. Influence of polymer-filler interactions on retraction behaviors of natural rubber vulcanizates reinforced with silica and carbon black [J] J. Appl. Polym. Sci.,2006,99:691-696.
    [26]Radheshkumar, H. Munstedt, Antimicrobial polymers from polypropylene/silver composites-Ag+ release measured by anode stripping voltammetry [J] Reactive & Functional Polymers 2006,66:780-788.
    [27]Khabbaz F., Albertsson A. C., Great Advantages in Using a Natural Rubber Instead of a Synthetic SBR in a Pro-Oxidant System for Degradable LDPE [J] Biomacromolecules,2000,1: 665-673.
    [28]Noordermeer J. W.M.,Recent advances in sponge technology of EPDM-rubber in automotive weatherstrips:A review [J] Cell. Polym.,1997.16(5):331-348.
    [29]Pandey J. M., Singh R. P. Green Nanocomposites from Renewable Resources:Effect of Plasticizer on the Structure and Material Properties of Clay-filled Starch [J] Starch/Starke,2005, 57:8-15.
    [30]Griffin G. J. L., Degradation of Polyethylene in composit buria [J] J. Polym. Sci. Polym.Symp.,1977,57:281-286.
    [31]Averous L., Fauconnier N., Moro L., Blends of thermoplastic starch and polyesteramide: processing and properties [J] J. Appl. Polym. Sci.,2000,76(7):1117-1128.
    [32]Herrmann A. S., Nickel J., Riedel U., [J] Polym. Dergad. Stabil,1998,59(1-3):251-261.
    [33]Funke U., Bergthaller W.,Lindhauer M. G., Processing and characterization of biodegradable products based on starch [J] Polymer Degradation and Stability,1998,59(1-3):293-296.
    [34]Angellier H., Molina Boisseau S., Lebrun L., Dufresne A., Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber [J] Macromolecules,2005, 38:3783-3792.
    [35]Angellier H., Molina Boisseau S., Dufresne A., Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber [J] Macromolecules,2005,38:9161-9170.
    [36]Thielemans W., Belgacem M. N., Dufresne, A., Starch nanocrystals with large chain surface modifications [J] Langmuir,2006,22:4804-4810.
    [37]Angellier H., Molina Boisseau S., Belgacem M. N., Dufresne A. Surface chemical modification of waxy maize starch nanocrystals [J] Langmuir,2005,21:2425-2433.
    [38]Labet M., Thielemans W., Dufresne A., Polymer Grafting onto Starch Nanocrystals [J] Biomacromolecules,2007,8:2916-2927.
    [39]Wang Y., Zhang L., Blends and Composites Based on Cellulose Natural Polymers Biodegradable Polymer Blends and Composites from Renewable Resources. John Wiley & Sons, 2008.
    [40]Cao X., Dong H., Li C., New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane [J] Biomacromolecules,2007,8:899-904.
    [41]Borsa J., Racz I., Carboxymethylcellulose of Fibrous Character, a Survey [J] Cellul.Chem.Technol.,1995,29 (6):657-663.
    [42]Ishikuro T., Inoul S.,Meshitsuka G., Preparation of sulfoalkyl derivatives of cellulose and other polysaccharides and assay of their anti-HIV activity [J] Sen'I Gakkaishi,1995, 51(12):571-579.
    [43]M.Yonemura日本公开特许,JP02,78:223.
    [44]S.R.Shukla, G.V.Gopala Rao, and A.R.Aihalye., Ultraviolet-radiation-induced graft copolymerization of styrene and acrylonitrile onto cotton cellulose [J] J.Appl.Polym.Sci.,1992, 45:1341-1349.
    [45]D.L. Vander Hart. R.St.John Manley and J.D.Barnes., Proton Spin Diffusion Studies of Polymer Blends Having Modest Monomer Size-Blends of Cellulose with either Poly(acrylonitrile) or Poly(4-vinylpyridine) [J] Macromolecules,1994,27: 2826-2836.
    [46]Araki J., Kuga S., Effect of trace electrolyte on liquid crystal type of cellulose microcrystals [J] Langmuir,2001,17:4493-4496.
    [47]Huang J., Zhang L., Effects of NCO/OH moral ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin [J] Polymer,2002,43: 2287-2294.
    [48]Kumar R., Liu D., Zhang L., [J] J Biobased Materials and Bioenergy,2008,2:1-24.
    [49]Zhang J., Mungara P., Jane J., Mechanical and thermal properties of extruded soy protein sheets [J] Polymer,2001,42:2569-2578.
    [50]Zhong Z., Sun X. S., Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate [J] Polymer,2001,42:6961-6969.
    [51]Zhang J., Jiang L., Zhu L., Morphology and properties of soy protein and polylactide blends [J] Biomacromolecules,2006,7:1551-1561.
    [52]Hartgerink J. D., Beniash E., Stupp S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers [J] Science,2001,294:1684-1688.
    [53]Miralles G., Baudoin R., Duman D., et al. Sodium alginate sponges with or without sodium hyaluronate:in vitro engineering of cartilage [J] J. Biomed. Mater. Res.,2001,57:268-278.
    [54]Glicklis R., Shapiro L., Agbaria R., et al. Hepatocyte behavior within three-dimensional porous alginate scaffolds [J] Biotechno. Bioeng.,2000,67:344-353.
    [55]Pai V., Srinivasarao M., Khan S. A., Evolution of microstructure and rheology in mixed polysaccharide systems [J] Macromolecules,2002,35:1699-1707.
    [56]Phaechamud T., Ritthidej G., Sustained-release from Layered Matrix System Comprising Chitosan and Xanthan Gum [J] Drug. Dev. Ind. Pharm.,2007,33:595-605.
    [57]Hitoshi F., et al. Extraction of water-soluble soybean polysaccharides under acidic conditions [J] Biosci. Biotechnol. Biochem.,1998,62(12):2300-2305.
    [58]Hamley I.W., Nanostructure Fabrication Using Block Copolymers. [J] Nanotechnology,2003, 14:39-54.
    [59]温永堂,郭振友,付振刚,张桂英,CN 9411908917.
    [60]Lu Y., Weng L., Zhang L., Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers [J] Biomacromolecules,2004,5:1046-1051.
    [61]Peng X., Zhang L., Formation and morphologies of novel self-assembled micelles from chitosan derivatives [J] Langmuir,2007,23:10493-10498.
    [62]Peng X., Zhang L., Surface Fabrication of Hollow Microspheres from N-Methylated Chitosan Cross-Linked with Gultaraldehyde [J] Langmuir,2005,21:1091-1095.
    [63]Luo X., Xu J., Wang J., Chen H., Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application [J] Chem. Comm.,2005,16:2169-2171.
    [64]Constantine C. A., Mello S. V., Dupont A., et al., Layer-by-Layer Self-Assembled Chitosan/Poly(thiophene-3-acetic acid) and Organophosphorus. Hydrolase. Multilayers [J] J. Am. Chem. Soc.,2003,125:1805-1809.
    [65]Jumaa M., Furkert F. H., Muller B. W., A new lipid emulsion formulation with high antimicrobial efficacy using chitosan [J] Pharm.. Biopharm.,2002,53(1):115-123.
    [66]Felix L., Hernandez J., Arquelles W., Kinetics of Gelation and Thermal Sensitivity of N-Isobutyryl Chitosan Hydrogels [J] Biomacromolecules,2005,6:2408-2415.
    [67]Badawy M. E. I., Rabea E.1., Rogge T. M., Synthesis and fungicidal activity of new N, O-acyl chitosan derivatives. Biomacromolecules,2004,5:589-595.
    [68]Tong Y., wang S., Xu J. Synthesis of O,O'-dipalmitoyl chitosan and its amphiphilic properties and capability of cholesterol absorption [J] Polymers,2005,60:229-233.
    [69]Dave V., Sheth M., McCarthy S. P., et al., Liquid crystalline, rheological and thermal properties of konjac glucomannan [J] Polymer,1998,39:1139-1148.
    [70]Ogawa K., Molecular and crystal structure of konjacglucomannan in the mannan Ⅱ Polymorphic from [J] Agri.Biol.Chem.1991,55:2105-2112.
    [71]Zhou G., Li Y., Zhang L., et al., Preparation and characterization of nano-hydroxyapatite/chitosan/konjac glucomannan composite [J] J. Biomed. Mate.r Res. A,2007, 83A:931-939.
    [72]Xiao C.B.,Gao.S.J., Zhang L.N., Characterization of poly(vinyl alcohol)-konjac glucomannan blend films [J] Macromol.Sci. A.,2001,38(1):33-42.
    [73]Xiao C.B., Lu.Y.S., Zhang L.N., Preparation and physical properties of konjac glucomannan-polyacrylamide blend films [J] J. Appl. Polym. Sci,2001,81(4):882-888.
    [74]S.P.努内斯,K.V.派内曼,化学工业中的膜技术[M]马润宇,王艳辉,阎建民译北京:化学工业出版社,2005.111-162.
    [75]Anjali Devi D., Smitha B., Sridhar S., et al., Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes [J] J. Memb. Sci.,2005,262:91-99.
    [76]Vijaya Kumar Naidu B., Sairam M., Raju K.V. S. N., et al., Pervaporation separation of water +isopropanol mixtures using novel nanocomposite membranes [J] J. Memb. Sci.,2005,260: 142-155.
    [77]Fontalvo J., Vorstman M. A. G., Wijers J. G., et al., Separation of Organic-Water Mixtures by Co-current Vapor-Liquid Pervaporation with Transverse Hollow-Fiber Membranes [J] Ind. Eng. Chem. Res.,2006,45:2002-2007.
    [78]Kariduraganavar M. Y., Kulkarni S. S., Kittur A. A., Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol)-silicone based hybrid membranes [J] J. Memb. Sci., 2005,246:83-93.
    [79]Alghezawi N., Sanl O., Aras L., et al., Separation of acetic acid-water mixtures through acrylonitrile grafted poly(vinyl alcohol) membranes by pervaporation [J] Chem. Eng. Process., 2005,44:51-58.
    [80]Chapman P. D., Tan X. Y., Livingston A. G., et al., Dehydration of tetrahydrofuran by pervaporation using a composite membrane [J] J. Memb. Sci.,2006,268:13-19.
    [81]Satyanarayana S. V., Bhattacharya P. K., Pervaporation of hydrazine hydrate:separation characteristics of membranes with hydrophilic to hydrophobic behaviour [J] J. Memb. Sci.,2004, 238:103-115.
    [82]Ben Bettens, Sofie Dekeyzer, Bart Van der Bruggen, et al., asymmetic poly (vinylidene fluride)(PVDF) pervaporation membrane. [J] J. Memb. Sci.1993,85:301-309.
    [83]Papaefstathiou I., Bilitewski U.,Luquede Castro M. D., Pervadoration:An Interface between Fermentors and Monitoring [J] Anal. Chim. Acta.,1996,330:265.
    [84]Isci A., Sahin S., Sumnu G., Recovery of strawberry aroma compounds by pervaporation [J] J. Food. Eng.,2006,75:36-42.
    [85]Liu K., Tong Z. F., Liu L., et al., Separation of organic compounds from water by pervaporation in the production of n-butyl acetate via esterification by reactive distillation [J] J. Memb. Sci.,2005,256:193-201.
    [86]Higuchi A., Yoon B., Asano T., et al., Separation of endocrine disruptors from aqueous solutions by pervaporation [J] J. Memb. Sci.,2002,198:311-320.
    [87]Ray S., Ray S. K., Separation of organic mixtures by pervaporation using crosslinked rubber membranes [J] J. Memb. Sci.,2006,270:132-145.
    [88]Hasanoglu A., Salt Y., Keleser S., et al., Effect of operating conditions on pervaporation of methanol-water mixtures:Part 1 [J] Chem. Eng. Process.,2005,44:375-381.
    [89]Ray S., Ray S. K., Synthesis of highly methanol selective membranes for separation of methyl tertiary butyl ether (MTBE)-methanol mixtures by pervaporation [J] J. Memb. Sci.,2006, 278:279-289.
    [90]C. Bang xiao, Yu L., Ye Hailin, et al., Effect of separating layer in pervaporation composite membrane for MTBE/MeOH separation [J] J. Memb. Sci.,2001,194:151-156.
    [91]Xu W. Y., Paul D. R., Carboxylic acid containing polyimides for pervaporation separations of toluene/iso-octane mixtures [J] J. Memb. Sci.,2003,219:89-102.
    [92]Schwarz H. H., Malsch G., Polyelectrolyte membranes for aromatic-aliphatic hydrocarbon separation by pervaporation [J] J. Memb. Sci.,2005,247:143-152.
    [93]Yang Y., Qian J. W., Xuan L. J., et al., Preparation and pervaporation of a palygorskite/polyacrylamide inorganic-organic hybrid membrane for separating m-/p-xylene isomers [J] Desalination,2006,193:193-201.
    [94]Katarzynski D., Staudt-Bickel C., Separation of multi component aromatic/aliphatic mixtures by pervaporation with copolyimide membranes [J] Desalination,2006,189:81-86.
    [95]Figoli A., Donato L., Carnevale R., et al., Bergamot essential oil extraction by pervaporation [J] Desalination,2006,193:160-165.
    [96]Wang L. H., Zhao Z. P., Li J. D., et al., Synthesis and characterization of fluorinated polyimides for pervaporation of n-heptane/thiophene mixtures [J] Eur. Polym. J.,2006, 42:1266-1272.
    [97]White L. S., Wormsbecher R. F., Lesemann M. USP,0211706 A1,2004.
    [98]White L. S., USP,6180008,2001.
    [99]Barsema J. N., Kapantaidakis G. C., vander Vegt N. F. A., et al. Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide [J] J. Memb. Sci.,2003,216:195-205.
    [100]Schult C., Lesemann M., Pollution solutions [J] Hydrocarbon. Engineering.,2003, 8(3):20-25.
    [101]李文国,壳聚糖膜渗透汽化研究,华南理工大学硕士学位论文,2003.
    [102]姚子昂,韩宝芹,刘万顺,不同分子量壳聚糖膜性质的研究[J]中国生物医学工程报,2002,256-262.
    [103]张富尧,张一烽,沈之荃,壳聚糖醇水分离膜的研究[J]水处理技术,1993,259-263.
    [104]Masaru M., Reikichi I.,高分子论文集,1985,42(3):139-145.
    [105]Marguerite R., Chitin and chitosan:propertiesand applications [J] Prog. Polym. Sci.,2006, 31:603-632.
    [106]Binsu V. V., Nagarale R..K, Shahi V. K., Studies on N-methylene phosphonic chitosan/poly (vinyl alcohol) composite proton-exchange membrane [J] Reaction & Function Polymers,2006, 66:1619-1629.
    [107]Liu Y. L., Yu C. H., Lee K. R., Chitosan/poly (tetrafluoroethylene) composite membranes using in pervaporation dehydration processes [J] J. Memb. Sci.,2007,287:230-236.
    [108]Devi D. A., Smit ha B., Aminabhavi T. M., Novel crosslinked chitosan/poly(vinylpyrrolidone) blend membranes for dehydrating tetrahydrofuran by the pervaporation technique [J] J. Memb. Sci.,2006,280:45-53.
    [109]Wali A. C., Naidu B. V. K., Aminabhavi.T M., Miscibility of chitosan-hydroxyethylcellulose blends in aqueous acetic acid solutions at 35℃ [J] J. Appl. Poly. Sci.,2005,96:1996-1998.
    [110]Jawalkar S. S., Raju KVSN, Aminabhavi T. M., Molecular modeling simulations to predict compatibility of poly(vinyl alcohol) and chitosan blends:a comparison with experiments. [J] J. Phys. Chem. B,2007,111:2431-2439.
    [111]Liu Y. L., Hsu C. Y., Su Y. H., Chitosan-Silica Complex Membranes from Sulfonic Acid Functionalized Silica Nanoparticles for Pervaporation Dehydration of Ethanol-Water Solutions [J] Biomacromolecule,2005,6:368-373.
    [112]Lu L. Y., Sun H. L., Jiang Z. Y., Novel graphite-filled PVA/CS hybrid membrane for pervaporation of benzene/cyclohexane mixtures [J] J. Memb. Sci.,2006,281:245-252.
    [113]Jiraratananon R., Chanachai A., Huang RYM., Poration dehydration of ethanol-water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes:I. Effect of operating conditions [J] J. Memb. Sci.,2002,195:143-151.
    [114]Jiraratananon R., Chanachai A., Huang RYM., Pervaporation dehydration of ethanol-water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes:Ⅱ. Analysis of mass transport [J] J. Memb. Sci.,2002,199:211-222.
    [115]蔡邦肖,张金锋,有机物(水)混合物分离的国外膜工业现状[J]水处理技术,2005,31:1-6.
    [116]陈雄林,溶剂手册[M],化学工业出版社,1994.
    [117]Ariyaskul A., Huang R. Y. M.,. Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol [J] J. Memb. Sci,2006,280:815-823.
    [118]Chavasit V., Kienzle-Sterzer C., Torres J. A., Formation and characterization of an insoluble polyelectrolyte complex:chitosan-polyacrylic acid [J] Polym. Bull.,1988,19(3):223-301.
    [119]周立志,王星,平郑骅,一种新型的亲水性有机/无机渗透蒸发分离膜的研制[Jl高等学校化学学报,2005,26:567-570.
    [120]Yang Y., Qian J. W., Xian L. J., Preparation and pervaporation of a palygorskite/polyacrylamide inorganic-organic hybrid membrane for separating m-/p-xylene isomers [J] Desalination,2006,193:193-201.
    [121]Liu Y. L., Lai J. Y., Crosslinked organic-inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol-water mixtures with a long-term stability [J] J. Memb. Sci.,2005,251:233-238.
    [122]Devi D. A., Smit ha B., Aminabhavi T. M., Novel crosslinked chitosan/poly(vinylpyrrolidone) blend membranes for dehydrating tetrahydrofuran by the pervaporation technique [J] J. Memb. Sci.,2006,280:45-53.
    [123]Huang R. Y. M., Moon G. Y., Pal R., N-acetylated chitosan membranes for the pervaporation separation of alcohol/toluene mixtures [J] J. Memb. Sci.,2000,176:223-231.
    [124]Huang R. Y. M., Moon G. Y., Pal R., Chitosan/anionic surfactant complex membrane for the pervaporation separation of methanol/METB and characterization of the polymcr/surfactant system [J] J. Memb. Sci.,2001,184:1-15.
    [125]Lu L. Y., Sun H. L., Jiang Z. Y., Novel graphite-filled PVA/CS hybrid membrane for pervaporation of benzene/cyclohexane mixtures [J] J. Memb. Sci,2006,281:245-252.
    [126]E. Korngold, E. Korin,I Ladizhensky., Water desalination by pervaporation with hollow fiber membranes [J] Desalination,1996,107:121-129.
    [127]Niang M., Luo G. S., Schaetzel P., Pervaporation separation of methyl tert-butyl ether/methanol mixtures using a high-performance blended membrane [J] J. Appl. Poly. Sci.,1997, 5:875-882.
    [128]Kusumocahyo S. P., Kanamori T., Sumaru K., et al., Pervaporation of xylene isomer mixture through cyclodextrins containing polyacrylic acid membranes [J] J. Memb. Sci.,2004, 231:127-132.
    [129]Paris J, Molina-Jouve C, Nuel D, et al. Enantioenrichment by pervaporation [J] J Memb Sci, 2004,237:9-14.
    [130]卢灿辉,许晨,壳聚糖/褐藻酸钠聚离子复合膜的渗透汽化分离性能研究功能[J]高分子学报,1996,9:383-389.
    [131]Shieh J., Huang R. Y. M., Chitosan/N-methylol nylon 6 blend membranes for the pervaporation separation of ethanol-water mixtures [J] J. Memb. Sci.,1998,148:243-255.
    [132]Li B. B., Xu Z. L., Chitosan-poly (vinyl alcohol)/poly (acrylonitrile) (CS-PVA/PAN) composite pervaporation membranes for the separation of ethanol-water solutions [J] Desalination, 2006,193:171-181.
    [133]Huang R. Y. M., Pal Rajinder, Moon Go Young., Crosslinked chitosan composite membrane for the pervaporation dehydration of alcohol mixtures and enhancement of structural stability of chitosan/polysulfone composite membranes [J] J. Memb. Sci,1999,160:17-30.
    [134]Zhang Q. G., Liu Q. L., Jiang Z. Y., Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes [J] J. Memb. Sci.,2007,287:237-245.
    [135]Ge J. J., Cui Y. F., Yan Y., The effect of structure on pervaporation of chitosan membrane [J] J. Memb. Sci.,2000,165:75-81.
    [136]寇建朝,于萍,赵承军,刘岚,罗运柏,甲苯法生产己内酰胺水溶液的吸附精制工艺试验研究[J]化工进展,2005,24(6):661-665.
    [1]J.G.Wijmans, R.W. Baker, A simple predictive treatment of the permeation process in pervaporation, J. Membr. Sci.,1993,79 (1):101-113.
    [2]J. G. Wijmans, R. W. Baker, The solution-diffusion model:a review [J] J. Membr. Sci., 1995,107 (1-2):1-21.
    [3]陈镜泓,李传儒,热分析及其应用,北京:科学出版社,1985.
    [1]Bin L., Bijun X., Synthesis and Characterization of Konjac Glucomannan/Poly(Vinyl Alcohol) [J] Interpenetrating Polymer Networks,2004,93:2775-2780.
    [2]Li B., Wu J., Wang C., et al., Synthesis, Structure and Characterization of Konjac Glucomannan Based Degradable Interpenetrating [J] Transactions of the Chinese Society of A gricultural Engineering,2004,20 (6):155-161.
    [3]Chen Y., Zhang L. N., Lu Y. S., et al., Preparation and properties of water-resistant soy dreg/benzyl konjac glucomannan composite plastics [J] J.Appl.Polym.Sci.,2003,90 (13): 3790-3796.
    [4]Zheng H., Du Y. M., Preparation and characterization of chitosan/ carboxymethylated konjac glucomannan blend films [J] Wuhan University Journal of Natural Sciences,2002,7 (1):107-112.
    [5]Yang G., Xiong X. P., Zhang L. N., Microporous Formation of Blend Membranes from Cellulose/Konjac Glucomannan in NaOH/ Thiourea Aqueous Solution [J] J. Memb. Sci.,2002, 201:161-173.
    [6]Davies G. J., Gilbert H. J., Bolaml D. N., Ligand2Mediated Dimerization of a Carbohydratebinding Module Reveals a Novel Mechanism for Protein Carbohydrate Recognition [J] Journal of Mold Biology,2004,337:417-425.
    [7]Liu P., Yang Y. H., Liu Y., et al., Konjac Glucomannan Supported Palladium Complex: an Efficient and Recyclable Cata21yst for Heck Reaction [J] Reactive & Functional Polymers,2007: 125.
    [8]Umemura K., Inoue A., Kawai S., Development of New Natural Polymer-Based Wood Adhesives Ⅰ: Dry Bond Strength and Water Resistance of Konjac Glucomannan, Chitosan, and Their Composites[J] The Japan Wood Research Society,2003,49:221-228.
    [9]邹群,朱丹丹,夏服宝,交联魔芋葡甘聚糖水凝胶包裹尿素的缓释效果[J]江苏化工,2005,33(2):41-43.
    [10]尉芹,马希汉,杨仲堂,改性魔芋葡甘聚糖常温保鲜猕猴桃的研究[J]西北林学院学报,1999,14(2):41-44.
    [11]Li B., Kennedy J. F., Jiang Q. G., et al., Quick Dissolvable, Edible and Heatsealable Blend Films Based on Konjac Glucomannan Gelatin [J] Food. Res. Int.,2006,39:544-552.
    [12]Nishinaria K., Zhang H., Recent Advances in the Understanding of Heat Set Gelling Polysaccharides [J] Trends. Food. Sci. Tech.,2004,15:305-312.
    [13]Li B., Kennedy J. F., Peng J. L., et al., Preparation and Performance Evaluation of Glucomannan-Chitosan-Nisin TernaryAntimicrobial Blend Film [J] Carbohyd. Polym.,2006,65: 488-494.
    [14]Xu X., Li B., Kennedy J. F., et al., Characterization of Konjac Glucomannan-Gellan Gum Blend Films and Their Suitability for Release of Nisin Incorporated Therein [J] Carbohyd. Poly., 2007,70:192-197.
    [15]Liu C. H., Xiao C. B., Characterization of Konjac Glucomannan Quaternized Poly (4-vinyl-N-butyl) and Their Preservation Effect [J] J. Appl. Polym. Sci.,2004,93:1868-1875.
    [16]Xiao C. B., Gao S. J., Zhang L. N., Blend Films from Konjac Glucomannan and Sodium Alginatevative Effect [J] J. Appl. Polym. Sci.,2000,77:617-626.
    [17]Chen H. L., Cheng H. C., Liu Y. J., et al., Konjac Acts as a Natural Laxative by IncreasingColonic Ecology in Healthy Adults [J] Nutrition,2006,22: 1112-1119.
    [18]Hogi, Tsuneo,公开特许公报[P]平052194603; Kameda, Nobuo,公开特许公报[P].
    [19]Alberto F. V., Salvador B., Marina B., et al., Acute Hepatitis of Cholestatic Type Possibly comannan (Amorphophalus Konjac) [J] J. Hepatol.,2004,41:1061-1062.
    [20]Zhou G., Li Y. B., Zhang L., et al., The Study of Tri-phasic Interactions in Nano-Hydroxyapatite/Chitosan Composite [J] J. Mater. Sci.,2007,42:2591-2660.
    [21]Chen Y., Zhang L. N., Ye C. S., et al., Preparation and Properties of Water-Resistant Soynan Composite Plastics [J] J. Appl. Polym.Sci.,2003,90:3790-3796.
    [22]Liu H. H., Wan Y. Q., Zou G. L., Redox Reactions and Enzyme-Like Activities of Immobilizedganic Mixtures [J] Journal of Electroanalytical Chemistry,2006,594:111-117.
    [23]Yu H. Q., Huang A. B., Xiao C. B., Characteristics of Konjac Glucomannan and Poly (acrylictrolled Drug Release [J] J. Appl. Polym. Sci.,2006,100:1561-1570.
    [24]Mara A. S., Margarita C., Carmen R. L., et al., Formation of New Glucomannan-Chitosan Nanoparticles and Study of Their Ability to Associate and Deliver Proteins [J] Macromolecules 2006,39:4152-4158.
    [25]Kang W., Zhimin H., Alginate-konjac glucomannan-chitosan beads as controlled release matrix. [J] Int. J. Pharm..,2002,244:117-126.
    [26]Xu Z., Xie B. J., Preparation and temperafure effect on the swelling behavior of konjae glucomalman-methylcellulose blend film [J] Eur. Food. Res. Technol.,2006,223(1):132-135.
    [27]M.C. Burshe, S.B. Sawant, J.B. Joshi, V.G. Pangarkar, Sorption and permeation of binary water-alcohol systems through PVA membranes crosslinked with multifuctional crosslinking agents [J] Sep. Purif. Technol.,1997,12 (2):145-156.
    [28]P. Sampraniboon, R. Jiraratananon, D. Uttapap, X. Feng, R.Y. M. Huang, Separation of aroma compounds from aqueous solutions by pervaporation using polyoctylmethylsiloxane (PDMS) membranes, [J] J. Memb. Sci.,2000,174(1):55-65.
    [29]P. Shao, R.Y. M. Huang, X. Feng, W. Anderson, R. Pal, C.M. Burns, Composite membranes with an integrated skin layer: preparation, structural characteristics and pervaporation performance, [J] J. Memb. Sci.,2005,254 (1-2):1-11.
    [30]X. Feng, R.Y.M. Huang, Preparation and performance of asymmetric polyetherimide membranes for isopropanol dehydration by pervaporation, [J] J. Membr. Sci.,1996,109:165-172.
    [1]N. D. Hilmioglu, S. Tulbentci, Pervaporation of MTBE/methanol mixtures through PVA membranes [J] Desalination,2004,160:263-270.
    [2]Park H. C., Meertens R. M., Mulder M. H. V. et al., Sorption of alcohol-toluene mixtures in poly (acrylic acid)-poly (vinyl alcohol) blend membranes and its role on pervaporation[J] J. Ind. Eng. Chem.,1998,37:4408-4417.
    [3]Yutaka Sakurada, Akinori Sueoka, Masaru Kawahashi., Blood purification device using membranes derived from poly (vinyl alcohol) and copolymer of ethylene and vinyl alcohol [J] Polymer,1987,19 (5):501-5031.
    [4]Chen F. R., Chen H. F., Pervaporation separation of ethylene glycol-water mixtures using cro sslinked PVA-PES composite membranes:Part I. Effects of membrane preparation conditions on pervaporation performances [J] J. Memb. Sci.,1996,109:2472256.
    [5]Choong-Kyum Yeom, Kew-Ho L., Pervapo ration separation of water-acetic acid mixtures through poly (vinyl alcohol) membranes crosslinked with glutaraldehyde [J] J. Memb. Sci.,1996, 109:257-265.
    [6]Lang K., Matsuura T., Chowdhury G., Preparation and testing of polyvinyl alcohol composite membranes for reverse osmosis [J] The. Canadian. Chem. Eng.,1995,73:681-696.
    [7]Nilufer Durmaz H., Sema T., Pervaporation of MTBE/methanol mixtures through PVA membranes [J] Desalination,2004,160:263-270.
    [8]Nilufer Durmaz H., Sema T., Separation of IP A/water mixtures by pervaporation:sorption and pervaporation results [J] Vacuum,2004,72:35-40.
    [9]Vauclair C., Tarjus H., Schaetzel P., Perm selective properties of PVA-PAA blended membrane used for dehydration of fused oil by pervaporation [J] J. Memb. Sci.,1997,125:293-301.
    [10]P. Shao, R.Y.M. Huang, X. Feng, W. Anderson, R. Pal, C.M. Burns, Composite membranes with an integrated skin layer:preparation, structural characteristics and pervaporation performance, [J] J. Memb. Sci.,2005,254 (1-2):1-11.
    [11]X. Feng, R.Y.M. Huang, Preparation and performance of asymmetric polyetherimide membranes for isopropanol dehydration by pervaporation, [J] J. Membr. Sci.,1996,109:165-172.
    [12]N. Alghezawi, O. Sanh, L. Aras, G. Asman, Separation of acetic acid-water mixtures through acrylonitrile grafted poly(vinyl alcohol) membranes by pervaporation [J] Chem. Eng. Process., 2005,44(1):51-58.
    [1]Kang W., Zhimin H., Alginater-konjac glucomannan-chitosan beads as controlled. [J] Int. J pharm.,2002,244:117-126.
    [2]陈新,邵正中,黄郁芳,黄曜,周平,于同隐,不用交联剂含量对戊二醛壳聚糖膜结构与性能影响的研究,化学学报,2000,58:1654-1659.
    [3]Marguerite R., Chitin and chitosan: properties and applications [J] Prog. Polym. Sci.,2007, 31:603-632.
    [4]谢文娟,韩永生,壳聚糖-葡甘聚糖共混改性的研究,包装工程,2008,29:27-29.
    [5]X. Ye, J.F. Kennedy, B. Li, B.J. Xie, Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films. [J] Carbohydrate Polymers,2006,64:532-538.
    [6]Jian D., Jing D.i, Jun-Long L., Theresa Dankovich. Novel pH-sensitive polyelectrolyte carboxymethyl Konjac glucomannan-chitosan beads as drug carriers [J] Reactive & Functional Polymers,2006,66:1055-1061.
    [7]Zhou G., L. Yubao, Zhang L., L. Hong, W. Mingbo, C. Lin, W. Yuanyuan, W. Huanan, S. Pujiang, The study of tri-phasic interactions in nano-hydroxyapatite/konjac glucomannan/chitosan composite [J] J. Mater. Sci.,2007,42:2591-2597.
    [8]Jun L., Xiaodan W., Chaobo X., Preparation and characterization of konjac glucomannan/poly(diallydimethylammonium chloride) antibacterial blend films [J] Carbohydrate Polymers,2008,73:427-437.
    [9]H.M. Guan, T.-S. Chung, Z. Huang, M.L. Chung, S. Kulprathipanja, Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol-water mixture [J] J. Memb. Sci.,2006,268:113-122.
    [10]S.M. Ahn, J.W. Ha, J.H. Kim, Y.T. Lee, S.B. Lee, Pervaporation of fluoroethanol/water and methacrylic acid/water mixtures through PVA composite membranes, [J] J. Membr. Sci.,2006, 247 (5):51-57.
    [11]M.C. Burshe, S.B. Sawant, J.B. Joshi, V.G. Pangarkar, Sorption and permeation of binarywater-alcohol systems throughPVAmembranes crosslinked with multifunctional cross-linking agents [J] Sep. Purif. Technol.,1997,12:145-156.
    [12]C.H. Lee, W.H. Hong, Influence of different degrees of hydrolysis of poly(vinyl alchol) memmbrane on the transport properties in pervaporation of IP A/water mixture [J] J. Memb. Sci., 1997,135:187-193.
    [13]Gang Zhou, Yubao Li, Li Zhang, Yi Zuo, John A. Jansen. Preparation and characterization of nano-hydroxyapatite/chitosan/konjac glucomannan composite. [J] J. Bio. Mat.Res.,2007:931-939.
    [1]Wen-Yuan C., Tai-Horng Y., Chun-Hsu Y., Wen-Yen C., Properties of the poly(vinyl alcohol)/chitosan blend and its elect on the culture of broblast in vitro [J] Biomaterials,1999, 20:1479-1487.
    [2]Lianyu L., Honglei S., Fubing P. and Zhongyi J., Novel graphite-filled PVA/CS hybrid membrane for pervaporation of benzene/cyclohexane mixtures. [J] J. Memb. Sci.,2006, 281:245-252.
    [3]D. Anjali Devi, B. Smitha, S. Sridhar and T.M. Aminabhavi. Dehydration of 1,4-dioxane through blend membranes of poly(vinyl alcohol) and chitosan by pervaporation. [J] J. Memb. Sci., 2006,280:138-147.
    [4]R.M. Silverstein, F.X. Webster, Spectrometric identification of organic compounds. Wiley, New York,1998.
    [5]L. Zhang, P. Yu, Y.B. Luo, Separation of caprolactam-water system by pervaporation through crosslinked PVA membranes, [J] Sep. Purif. Technol.,2006,52:77-83.
    [6]A.S.-Ariyaskul, R.Y.M. Huang, P.L. Douglas, R. Pal, X. Feng, P. Chen, L. Liu, Blended chitosan and polyvinyl alcohol membranes for thepervaporation dehydration of isopropanol [J] J. Memb. Sci.,2006,280:815-823.
    [7]S. S. Kulkarni, S. M. Tambe, A. A. Kittur, M. Y. Kariduraganavar, Modification of Tetraethylorthosilicate Crosslinked, Poly(vinyl alcohol) Membrane Using Chitosan and Its Application to the Pervaporation Separation of Water-lsopropanol Mixtures [J] J. Appl. Polym. Sci.,2006,99:1380-1389.
    [8]L. K. Pandey, C. Saxena, V. Dubey, Modification of poly(vinyl alcohol) membranes for pervaporative separation of benzene/cyclohexane mixtures, [J] J. Memb. Sci.,2003,227: 173-182.
    [9]M. C. Bursche, S. B. Sawant, J. B. Joshi, V. G. Pangarkar, Dehydration of ethylene glycol by pervaporation using hydrophilic IPNs of PVA, PAA and PAAM membranes [J] Sep. Purif. Technol.,1998,13:47-56.
    [10]A.S.-Ariyaskul, R.Y.M. Huang, P.L. Douglas, R. Pal, X. Feng, P. Chen, L. Liu, Blended chitosan and polyvinyl alcohol membranes for thepervaporation dehydration of isopropanol [J] J. Memb. Sci.,2006,280:815-823.
    [11]E.L. Cussler, Membranes containing selective flakes [J] J. Membr. Sci.,1990,52:275-288.
    [12]R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena,2nd ed., John Wiley & Sons, New York,2002.
    [13]W.L. McCabe, J.C. Smith, P. Harriott, Unit Operations of Chemical Engineering,7th ed., McGraw-Hill, New York,2004.
    [14]H.M. Guan, T.-S. Chung, Z. Huang, M.L. Chung, S. Kulprathipanja, Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol-water mixture [J] J. Memb. Sci.,2006,268:113-122.
    [15]S.M. Ahn, J.W. Ha, J.H. Kim, Y.T. Lee, S.B. Lee, Pervaporation of fluoroethanol/water and methacrylic acid/water mixtures through PVA composite membranes [J] J. Memb. Sci.,2005,247: 51-57.
    [16]M.C. Burshe, S.B. Sawant, J.B. Joshi, V.G. Pangarkar, Sorption and permeation of binarywater-alcohol systems throughPVAmembranes crosslinked with multifunctional cross-linking agents [J] Sep. Purif. Technol.,1997,12:145-156.
    [17]C.H. Lee, W.H. Hong, Influence of different degrees of hydrolysis of poly(vinyl alchol) memmbrane on the transport properties in pervaporation of IP A/water mixture [J] J. Memb. Sci., 1997,135:187-193.
    [18]L.G. Wu, C.L. Zhu, M. Liu, Study of a new pervaporation membrane. Part 1. Preparation and characteristics of the new membrane [J] J. Memb. Sci.,1994,90:199-205.
    [1]Park H. C., Ramaker N. E., Mulder M. H. V., et al., Separation of MTBE-Methanol Mixtures by Pervaporation [J] Sep. Sci. Technol.,1995,30:419-43.
    [2]刘毅,杨丹,刘得海,高吸水性树脂的制备[J]湛江海洋大学学报,2001,21(3):80-84.
    [3]Wang L. Y., Li J. D., Lin Y. Z., et al., Separation of Dimethyl Carbonate/Methanol Mixtures by Pervaporation with Poly(acrylic acid)/Poly(vinyl alcohol) Blend Membranes [J] J. Membr. Sci., 2007,305(1/2):238-246.
    [4]Yang H., Xu Z. Q., Study on Acrylic Acid Modified Polyethersulfone Hollow Fiber Pervaporation Membrane with Thermal Polymerization [J] J. Fun. Polym.,2005,18:1-13.
    [5]Xu D. M., Zhang K. D., study on pervaporation performance of acrylic acid-acrylamide copolymer membrane [J] Polym. Mat.Sci. Eng.,2001,17(3):49-57.
    [6]Hu, C. L. Li, B., Pervaporation performance of chitosan-poly(acrylic acid) polyelectrolyte complex membranes for dehydration of ethylene glycol aqueous solution [J] Sep. Purif. Technol, 2007,55(3):327-334.
    [7]Hu, C. L.Guo, R. L., Development of novel mordenite-filled chitosan-poly(acrylic acid) polyelectrolyte complex membranes for pervaporation dehydration of ethylene glycol aqueous solution [J] J. Memb. Sci.,2007,293(1-2):142-150.
    [8]Smitha B., Sridhar S., Polyelectrolyte complexes of chitosan and poly (acrylic acid) as proton exchange membranes for fuel cells [J] Macromolecules,2004,37(6):2233-2239.
    [9]Iwatsubo T., Kusumocahyo S., Water/ethanol pervaporation performance of asymmetric polyelectrolyte complex membrane constructed by the diffusion of poly(acrylic acid) in chitosan membrane [J] J. Appl. Polym. Sci.,2002,86(2):265-271.
    [10]Kang W., Zhimin H., Alginater-konjac glucomannan-chitosan beads as controlled. [J] Int. J. Pharm.,2002,244:117-126.
    [1]Shieh J. J., Huang R. Y. M., Apseudophase-change solution-diffusion model for pervapo-ration(I) Single component permeation [J] Sepn. Sci & Technol.,1998,33(6):767-785.
    [2]Shieh J. J., Huang R. Y. M., Pseudophase-change solution-diffusion model for pervapo-ration(II)Single compent permeation [J] Sepn. Sci & Technol.,1998,33(7):933-957.
    [3]时钧,袁权,膜技术手册[M]北京:化学工业出版社,2001:20-40.
    [4]Kedem O., The role of coupling in pervaporation [J] J. Memb. Sci.,1989,47(3):277-285.
    [5]Binning R. C., Lee R. J., Jennings J. F., et al., Separation of liquid mixtures by pervaporation [J] J. Memb. Sci.,1991,59(3):133-150.
    [6]Lee C.H., Theory of reverse osmosis and some other membrane permeation operations [J] J. Appl. Polym.Sci.,1975,19(1):83-95.
    [7]Yamasaki A., Pervaporation of ethanol/water through a poly (vinylalcohol)/cyclodextrin (PVA/CD) membrane [J] J. Memb. Sci.,1994,89:111-117.
    [8]Fujita, Fortschr. Hochpclym. Fortsch.1961, p.l.
    [9]Franke M., Analyzing and optimizing of pervaporation for dehydration of organic solvent and organic mixtures [D] Germany:Unversity of Aachen,1990.
    [10]陈镇,刘家祺,水中脱除VOC渗透汽化传质模型的研究,高校化学工程学报,2004,18(1):118-122.
    [11]Miyata T., Higuchi J., Okuno H., et al., Preparation of polydimethylsiloxane/polystyrene interpenetrating polymer network membranes by pervaporation [J] J. App. Polym. Sci.,1996,61: 1315-1324.
    [12]I. Blume, J. G. Wijmans, R. W. Baker, The separation of dissolved organics from water by pervaporation [J] J. Memb. Sci.,1990,49 (3):253-286.
    [13]J. G.Wijmans, R. W. Baker, A simple predictive treatment of the permeation process in pervaporation [J] J. Membr. Sci.,1993,79 (1):101-113.
    [14]J. G. Wijmans, R. W. Baker, The solution-diffusion model: a review [J] J. Membr. Sci.,1995, 107(1-2):1-21.
    [15]J. Gmehling, U. Onken, Vapor-liquid equilibrium data collection, aqueous-organic systems, Chemistry Data series, Vol.1, Part 1, DECHEMA, Frankfurt/Main, Germany,1977,5:12-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700