用户名: 密码: 验证码:
谷氨酸双结晶高效提取工艺关键技术的研究与集成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷氨酸(glutamic acid)是蛋白结构氨基酸之一,也是一种重要的游离氨基酸,广泛应用于食品、医药、日化及饲料等工业领域。2009年我国谷氨酸总产量达到160万吨,占全球总产量的75%以上,是我国在国际市场上具有一定竞争优势的大宗发酵产品之一。我国现有谷氨酸提取工艺以“低温等电离交工艺”为主,该工艺提取收率高,但原辅材料消耗大,环境污染严重。国际上针对糖蜜原料的谷氨酸“浓缩连续等电工艺”虽原辅材料消耗低,但提取收率低。因此,研究改造谷氨酸现有提取技术,实现“增产、降耗、减排”的综合目标,对促进我国氨基酸产业可持续发展、提升我国氨基酸产品在国际市场上的竞争力具有重要意义。本论文以我国普遍采用的生物素亚适量谷氨酸发酵液为研究对象,重点研究了“高粘度溶液环境中谷氨酸蒸发结晶”、“细晶消除型谷氨酸连续等电结晶”及“基于蛋白质热变性的絮凝除菌”等关键技术,通过技术集成形成了“谷氨酸双结晶高效提取工艺”的技术路线,并完成、完善了总容积为76 m3规模的中试研究工作。主要研究结果如下:
     (1)以MSG水溶液模拟发酵液,采用pH-shift模式研究溶液过饱和度对谷氨酸结晶的影响。结果表明:过饱和度同时影响谷氨酸结晶的晶习和粒径分布。25℃时,当过饱和度S≤7.15时谷氨酸主要以α型晶习析出,粒径呈对数对称分布。随着过饱和度增大,β型结晶比例增大,中位径趋小且分布范围变宽。当S≥14.17以后,晶体全部是β型晶习。结晶成核诱导时间实验和理论计算结果表明,成核速率随过饱和度增加而增大是导致晶体粒径分布范围变宽的主要原因,不同过饱和度时α、β型晶核的竞争性成核速率是导致晶体晶习变化的主要原因。基于实验结果提出了谷氨酸C-pH相图模型,该模型解释了过饱和度影响谷氨酸结晶晶习的机理。控制等电调酸速率或添加晶种能有效降低过饱和度,改善谷氨酸结晶晶习及粒径分布。
     (2)添加蔗糖改变谷氨酸溶液粘度,采用pH-shift模式研究了溶液粘度对谷氨酸结晶的影响。结果表明,在1.00-10.26 mP·s的粘度范围内,溶液粘度不影响谷氨酸结晶晶习,但粘度增加使得晶体粒径减小。高粘度溶液中谷氨酸结晶速率受溶质扩散速率控制,谷氨酸结晶成核速率、晶体生长速率随溶液粘度增加而下降是晶体粒径减小的主要原因。提高结晶温度能显著降低溶液的粘度,从而提高晶体的成核与生长速率。添加适量晶种能提高晶体平均粒径,并改善晶体均匀性。
     (3)以除菌后等电母液为研究对象,考察了温度、浓缩倍数对浓缩母液粘度及谷氨酸溶解度的影响规律。结果表明,母液浓缩倍数越大粘度越大,提高温度可显著降低母液粘度,当温度大于60℃后不同倍数浓缩液的粘度接近。但提高温度同时促进了谷氨酸的焦化速率,为避免蒸发结晶过程中损失谷氨酸,蒸发结晶温度应控制在70℃以下。以控制谷氨酸结晶晶习及粒径分布为目标,通过实验研究了结晶温度、晶种添加策略、蒸发速率及浓缩倍数等工艺参数对谷氨酸蒸发结晶的影响。实验确定的谷氨酸蒸发结晶工艺为:结晶温度60℃,晶种目数为120目,添加量为母液中理论谷氨酸总量的30%,控制蒸发速率为207 L/m2·h,共浓缩6倍。在此条件下,蒸发结晶获得中位径约122.2μm的颗粒状谷氨酸α结晶,提取收率达到72.8%以上。
     (4)实验确定了最大细晶消除循环速率R=1.3。进一步研究了不同细晶消除循环速率(R)、结晶停留时间等工艺参数对谷氨酸结晶的影响,结果表明,随着细晶消除循环速率的增加,细晶切割粒径从36.44μm提高到51.35μm,晶体粒径增大,粒径分布趋向集中。其原因是因为随着R值增加结晶过饱和度下降,晶体成核速率下降而晶体生长速率增加。结晶停留时间(τ)的长短同样影响结晶过饱和度,进而影响晶体粒径分布。分析对比等电离交、浓缩等电及细晶消除型连续等电
     (5)以菌体细胞、COD及可溶性蛋白质去除率为指标,考察了絮凝剂种类、絮凝剂添加量、pH、温度及维持时间等因素对絮凝效果的影响,在此基础上,通过响应面分析法优化了絮凝除菌工艺条件。最优絮凝工艺:等电母液原始pH3.1、絮凝剂PAAS添加量60 mg/L、温度80℃、维持时间30 min时。此时菌体细胞、COD和可溶性蛋白去除率分别达到99%、47%和65%,以滤布为过滤介质的过滤速率达到280 L/m2·h。探讨了热变性絮凝除菌的机理,研究表明提高温度能降低菌体细胞表面的zeta电位,压缩颗粒表面扩散层厚度,增强架桥效应的絮凝作用。絮团中位径达到148μm以上,借助普通滤布即能实现高速过滤。
     (6)在完成上述机理探索及关键技术研究的基础上,技术集成形成了基于谷氨酸二步结晶的“谷氨酸双结晶高效提取工艺”技术路线,并开展了总容积为76m3规模的中试验证。在中试研究过程中,对晶体分离、结晶质量提升等工序进行创新和优化,形成了更为完善的“谷氨酸双结晶高效提取工艺”路线。中试平均提取收率93.4%,比“浓缩等电工艺”(平均收率88%)高出5.4个百分点,仅比“等电离交工艺”(平均收率95%)低1.6个百分点。产品纯度、SO42-离子浓度、透光率等主要质量指标均高于“浓缩等电工艺”,更优于“等电离交工艺”。硫酸、液氨等辅料消耗比“等电离交工艺”分别下降了53%和100%,略低于“浓缩等电工艺”。技术经济性分析表明,在相同发酵水平、相同谷氨酸质量(转晶指标)、相同环境友好度的前提下,“双结晶工艺”吨谷氨酸生产成本分别比“等电离交工艺”和“浓缩等电工艺”下降了15.8%和14.6%。中试成果于2010年3月通过了中国发酵工业协会主持的技术鉴定,鉴定结论:本项目综合技术指标达到国际领先水平。
Glutamic acid (GA) is not only one of proteinogenic amino acids, but also an important free amino acid which is widely used in the fields of food industry, medicine industry, chemical industry for daily supplies and feed industry. Total output of the GA was 1.6 million tons in China in 2009, accounting for 75 per cent of global output. GA has now become one of the domestic staple fermentation products with strong competitive advantage in the global market. In our country, isoelectric crystallization with ion exchange (IEIE) is now the most common GA extracting process. Although the yield coefficient is high in IEIE, large amount of raw material is consumed and environmental pollution is serious. Instead, a concentrated continuous isoelectric process (CCIC) with low level of raw material consumption is applied to extract molasses-based GA. However the yield coefficient is not high enough in CCIC. Therefore modification of the current GA extraction technology to achieve the target of "energy-saving, raw material consumption and emission reduction" is essential for the promotion of the sustainable development and international competitiveness of Chinese GA industry. In this paper, key technologies of GA evaporative crystallization in the high viscosity solution, continuous isoelectric crystallization with eliminating fine crystal, and bacterium removal by combining thermal denaturation with flocculation were studied using Biotin-limited GA fermentation broth as the research object. A novel and cleaner GA extraction technique, called two-stage crystallization technology (TSC), was proposed and tested in pilot scale (76 m3). The main research work is summarized as follows:
     (1) pH-shift model was adopted to investigate the effect of supersaturation on the GA crystallization using monosodium glutamate (MSG) solution instead of fermentation broth. Results showed that the supersaturation influenced both the crystal habit and size distribution. The main crystal habit wasα-form and the crystal size showed a logarithmic symmetric distribution when the supersaturation S≤7.15 at 25℃. With the increase of the supersaturation, the percentage ofβ-form crystal increased whereas the median diameter decreased with a wider size distribution. Almost all the crystal habit wereβ-form when the S≥14.17. According to the theoretical calculation and measurement of the induce time of nucleation, the increase of nucleation rate with the supersaturation is the primary reason for the widened crystal size distribution range. A GA C-pH Phase diagram model was proposed based on the results. This model explained how the supersaturation affected the GA crystal habit theoretically. The supersaturation could be efficiently reduced, and GA crystal habit as well as the crystal size distribution range could be improved by controlling the rate of acidity adjustment or by adding crystal seed.
     (2) The pH-shift model was used to study how the viscosity of solution influenced the GA crystallization by adding sucrose to change the viscosity of solution. Results indicated that the viscosity did not affect the GA habit but reduce the nucleation rate in the range of 1.00-10.26 mP·s. The increase of viscosity led to smaller crystal size. The rate of crystallization was controlled by the solute diffusion rate in the high viscosity solution. Nucleation rate and crystal growth rate decreased with the increased viscosity which caused the smaller crystal size. The viscosity could be reduced by enhancing the temperature to increase the nucleation rate and crystal growth rate. Larger crystal size and better crystal habit could be obtained by adding crystal seed properly.
     (3) The effects of temperature and condensed fold on the viscosity of condensed mother liquor and GA solubility were investigated using the isoelectric mother liquor in which the bacterium was removed. Results suggested that the viscosity increased as the folds of concentration enhanced. The viscosity could be reduced by rising the temperature. Besides, the viscosity under different concentration was similar when the temperature was over 60℃. On the other hand, high temperature could also promote the coking rate of GA. So the temperature should be controlled under 70℃to avoid the loss of GA in the evaporation crystallization process. To control the GA habit and size distribution, experiments were carried out to study the effects of crystallization temperature, strategy of seed addition, evaporation rate, folds of concentration and other factors during the evaporation crystallization process. The optimum operation conditions were: the optimum crystallization temperature at 60℃, seed crystal size of 120 mesh, the amount of seed addition of 30% of the theoretical GA quantity, evaporation rate of 207 L/m~2·h and 6 folds. Under these conditions, granularα-form crystal with median diameter of 122.2μm was obtained, and the yield coefficient of extraction reached to more than 72.8%.
     (4) The maximum cycle rate of fine crystal elimination (R) was 1.3. Further research was done to investigate the effects of the technological parameters such as R, crystallization retention time and other parameters on the GA crystallization. As the increase of R, the cutting particle size of fine crystal was increased from 36.44μm to 51.35μm, and the crystal size was also increased. At the same time size distribution tended to be centralized. This phenomenon was due to the decrease of supersaturation and the nucleation rate, in contrast the increase of crystal growth rate with the increase of R value. Crystallization retention time could also influence the supersaturation and then crystal size distribution. This system was proved to efficiently eliminate the fine crystal and improve the crystal quality by comparing the size distribution of the three crystals in the processes of IEIE, evaporation isoelectric crystallization and continuous isoelectric crystallization respectively.
     (5) In order to determine the optimum condition for the removal of bacterium, COD and soluble protein, the effects of flocculants, dosage, pH, temperature and time on flocculation were carried out using Response Surface Analysis. Highest bacterium, COD and soluble protein removal capacities (99%, 47% and 65%, respectively) were obtained when the PAAS was used under the condition of pH 3.1, dosage 60 mg/L, temperature 80℃and 30min. And the filtering rate was 280 L/m2·h when filter cloth was used. The mechanism of thermal denaturation with flocculation technology was studied. Results indicated that higher temperature could reduce the zeta potential on the surface of bacterium, compress the thickness of diffusion layer around the surface of particle, and enhance the bridge effect. The median diameter of the floccules reached to more than 148μm. In this condition, high filtering rate could be obtained using common filter cloth.
     (6) Based on the above results, a novel and cleaner GA extraction technique, called two-stage crystallization technology (TSC), was proposed and tested in pilot scale (76 m3). Crystal separation and crystal quality were optimized in the pilot scale test to form a more perfect two-stage crystallization technology. Average yield coefficient of extraction was 93.4% which is higher than that of evaporation isoelectric crystallization process by 5.4% and lower than that of IEIE process by only 1.6%. Purity, SO42- concentration and transmittance were superior to those of the other two processes. Compared with IEIE process, sulfuric acid and liquid ammonia consumptions were reduced by 53% and 100%, respectively. Technical analysis shows that production cost of TSC process would be lower than those of IEIE process and evaporation isoelectric crystallization process by 15.8% and 14.6%, respectively, provided that the fermentation level, the GA quality and effect on environment of the three processes were same.
引文
[1].于信令.味精工业手册[M].中国轻工业出版社,北京, 2009
    [2]. Wiltshire G H. The estimation of D- and L-glutamic acid in proteins[J]. Biochemical Journal, 1953, 55(1):46-49
    [3]. Manzurola E, Apelblat A. Solubilities of-glutamic acid, 3-nitrobenzoic acid, p-toluic acid, calcium—lactate, calcium gluconate, magnesium—aspartate, and magnesium—lactate in water[J]. The Journal of Chemical Thermodynamics, 2002, 34(7):1127-1136
    [4]. Grosse J B, Held C, Ruether F, et al. Measurement and modeling solubility of aqueous multisolute amino-acid solutions[J]. Industrial & Engineering Chemistry Research, 2009, 49(3):1395-1401
    [5].陈宁.氨基酸工艺学[M].中国轻工业出版社,北京, 2007:6-13
    [6]. Kusumoto I. Industrial production of L-glutaming. Proceedings of the International Symposium on Glutamate[J]. 2000
    [7]. Chen N, Liu H. Elementary mode analysis and metabolic ?ux analysis of L-glutamate biosynthesis by Corynebacterium glutamicum[J]. Annals of Microbiology, 2009, 59(2):317-322
    [8]. Choi S U, Nihira T, Yoshida T. Enhanced glutamic acid production of Brevibacterium sp. With temperature shift-up cultivation[J]. Journal of bioscience and bioengineering, 2004, 98(3):211-213
    [9]. Kimura E. Metabolic engineering of glutamate production[J]. Microbial Production of l-Amino Acids, 2003:37-57
    [10]. Gourdon P, Lindley N D. Metabolic analysis of glutamate production by Corynebacterium glutamicum[J]. Metabolic Engineering, 1999, 1(3):224-231
    [11]. Peica N, Lehene C, Leopold N, et al. Monosodium glutamate in its anhydrous and monohydrate form: Differentiation by Raman spectroscopies and density functional calculations[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66(3):604-615
    [12]. Hodson N, Linden R. The effect of monosodium glutamate on parotid salivary flow in comparison to the response to representatives of the other four basic tastes[J]. Physiology & behavior, 2006, 89(5):711-717
    [13].蒋滢.氨基酸的应用[M].世界图书出版社,北京, 1996:23-29
    [14]. Johnson J. Glutamic acid as a synaptic transmitter in the nervous system. A review[J]. Brain research, 1972, 37(1):1
    [15]. Populin T, Moret S, Truant S, et al. A survey on the presence of free glutamic acid in foodstuffs, with and without added monosodium glutamate[J]. Food Chemistry, 2007, 104(4):1712-1717
    [16]. Cairns B E, Dong X, Mann M K, et al. Systemic administration of monosodium glutamate elevates intramuscular glutamate levels and sensitizes rat masseter muscle afferent fibers[J]. Pain, 2007, 132(1-2):33-41
    [17]. http://www.fda.gov/opacom/backgrounders/msg.html.,
    [18]. Takeda M, Haga M, Yamada H, et al. Ionotropic glutamate receptors expressed in human retinoblastoma Y79 cells[J]. Neuroscience letters, 2000, 294(2):97-100
    [19]. San Gabriel A M, Maekawa T, Uneyama H, et al. mGluR1 in the fundic glands of rat stomach[J]. FEBS letters, 2007, 581(6):1119-1123
    [20].张伟国,钱和.氨基酸生产技术及其应用[M].中国轻工业出版社,北京, 1997
    [21].杜敏清,吴德,方正峰,等.不同饲粮氨基酸水平对泌乳母猪生产性能,血液指标及乳汁中氨基酸浓度的影响[J].动物营养学报, 2010, 4
    [22].余健剑,束刚,江青艳.氨基酸调控畜禽采食的研究进展[J].动物营养学报, 2011, 23(6):908-913
    [23]. Fonnum F. Glutamate: a neurotransmitter in mammalian brain[J]. Journal of neurochemistry, 1984, 42(1):1-11
    [24]. Schousboe A. Transport and metabolism of glutamate and GABA in neurons and glial cells[J]. International review of neurobiology, 1981, 22:1-45
    [25]. Hamberger A, Berthold C, Karlsson B, et al. Extracellular GABA, glutamate, and glutamine in vivo perfusion dialysis of the rabbit hippocampus[J]. Glutamine, Glutamate and GABA in the Central Nervous System, 1983:473-492
    [26]. Ottersen O, Zhang N, Walberg F. Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum[J]. Neuroscience, 1992, 46(3):519-534
    [27]. Moriyama Y, Hayashi M, Yamada H, et al. Synaptic-like microvesicles, synaptic vesicle counterparts in endocrine cells, are involved in a novel regulatory mechanism for the synthesis and secretion of hormones[J]. Journal of Experimental Biology, 2000, 203(1):117-125
    [28]. Rada P, Tucci S, Murzi E, et al. Extracellular glutamate increases in the lateral hypothalamus and decreases in the nucleus accumbens during feeding[J]. Brain research, 1997, 768(1-2):338-340
    [29]. Reeds P J, Burrin D G, Stoll B, et al. Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets[J]. American Journal of Physiology-Endocrinology And Metabolism, 1997, 273(2):E408-E415
    [30].刘涛,彭健.在日粮中添加谷氨酰胺和谷氨酸对断奶仔猪生产性能的影响[J].华中农业大学学报, 1999, 18(5):457-460
    [31]. http://www.chemistry innovation.co.uk.
    [32]. Richard A, Margaritis A. Rheology, oxygen transfer, and molecular weight characteristics of poly (glutamic acid) fermentation by Bacillus subtilis[J]. Biotechnology and bioengineering, 2003, 82(3):299-305
    [33]. Tsushida T, Murai T. Conversion of Glutamic Acid toγ-Aminobutyric Acid in Tea Leaves under Anaerobic Conditions (Biological Chemistry)[J]. Agricultural and biological chemistry, 1987, 51(11):2865-2871
    [34]. Chelius D, Jing K, Lueras A, et al. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies[J]. Analytical chemistry, 2006, 78(7):2370-2376
    [35].叶瑞荣,汪朝阳,莫阳青,等.熔融聚合法合成生物材料聚(乳酸-谷氨酸)[J].材料导报, 2010, 24(8):94-97
    [36].张建华,杨玉岭,孙付保,等谷氨酸提取产业现状与无废化发展方向[J].生物加工过程, 2009, 7(6):1-7
    [37].王家勤.味精行业发展形势分析[C].全国氨基酸技术交流研讨会论文集, 2008:1-7
    [38].冯容保.国外氨基酸生产的进展[C].中国食品工业协会发酵工程研讨会技术经验交流论文集, 2001:1-4
    [39]. Eggeling L, Sahm H. L-Glutamate and L-lysine: traditional products with impetuous developments[J]. Applied microbiology and biotechnology, 1999, 52(2):146-153
    [40]. Kusumoto I. Industrial production of L-glutamine[J]. The Journal of nutrition, 2001, 131(9):2552S
    [41]. Das K, Anis M, Azemi B, et al. Fermentation and recovery of glutamic acid from palm waste hydrolysate by Ion‐ exchange resin column[J]. Biotechnology and bioengineering, 1995, 48(5):551-555
    [42]. Itoh H, Toide K, Ikeda M, Method for purification of an amino acid using ion exchange resin. 1994, Google Patents.
    [43]. ?zdamar T, Taka? S, ?alik G, et al. Kinetics of ion exchange process for separation of glutamic acid[J]. Bioprocess and Biosystems Engineering, 1989, 4(6):249-256
    [44].沈金玉,汪秦宇.离子交换法提取谷氨酸的研究[J].离子交换与吸附, 1994, 10(004):300-305
    [45].吕少英,梁雪,徐庆阳,等. L-谷氨酸分离提取研究进展[C]. 2007年全国发酵行业高峰论坛暨中国发酵工业协会2007年行业大会论文汇编:113-119
    [46]. Delaunay S, Gourdon P, Lapujade P, et al. An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum[J]. Enzyme and microbial technology, 1999, 25(8-9):762-768
    [47].冯容保.谷氨酸转晶浅述[J].发酵科技通讯, 2007, 36(4):14-15
    [48].束松坡,黄国营.谷氨酸浓缩连续等电四步法提取新工艺[C].中国发酵工业协会第四届会员代表大会论文集, 2009:223-224
    [49]. Izui H, Moriya M, Hirano S, et al., Method for producing L-glutamic acid by fermentation accompanied by precipitation. 2011, Google Patents.
    [50]. Izui H, Moriya M, Hirano S, et al., Method for producing L-glutamic acid by fermentation accompanied by precipitation. 2005, US Patent App. 20,050/227,334.
    [51]. Izui H, Moriya M, Hirano S, et al., Method for producing L-glutamic acid by fermentation accompanied by precipitation. 2006, Google Patents.
    [52]. Hiroshi I, Moriya M, Hirano S, et al., Method for producing L-glutamic acid bu fermentation accompanid by precipitation. 2008, Google Patents.
    [53].刘乘龙,张建华,王正伟,等.等电结晶谷氨酸溶解度及晶体沉降特性对提取收率的影响[J].食品与发酵工业, 2008, 34(11):6-9
    [54]. Huang S, Wu X, Yuan C, et al. Application of membrane filtration to glutamic acid recovery[J]. Journal of Chemical Technology & Biotechnology, 1995, 64(2):109-114
    [55]. Kuo W S and Chiang B H. Recovery of glutamic acid from fermentation broth by membrane processing[J]. Journal of Food Science, 1987, 52(5):1401-1404
    [56].李平凡.谷氨酸发酵液除菌过程的超滤膜污染探讨[J].广州食品工业科技, 2002, 18(3):28-30
    [57].战宇,周琦,钟敏,等.氨基酸组成和调酸速率对谷氨酸结晶的影响[J].食品与发酵工业, 2000, 26(2):46-49
    [58].许赵辉赵亮.超滤膜除L-谷氨酸发酵液中菌体对等电提取收率的影响[J].膜科学与技术, 2000, 20(3):62-64
    [59]. Zhang G, Liu Z, Zhao L, et al. Recovery of glutamic acid from ultrafiltration concentrate using diafiltration with isoelectric supernatants[J]. Desalination, 2003, 154(1):17-26
    [60]. Xiu f, Li J L, Xueqi Fub, et al. Chemical cleaning of PS ultrafilters fouled by the fermentation broth of glutamic acid[J]. Separation and Purification Technology, 2005, 42:181-187
    [61]. Strathmann H, Krol J, Rapp H J, et al. Limiting current density and water dissociation in bipolar membranes[J]. Journal of membrane science, 1997, 125(1):123-142
    [62]. Gineste J L, Pourcelly G, Lorrain Y, et al. Analysis of factors limiting the use of bipolar membranes: a simplified model to determine trends[J]. Journal of membrane science, 1996, 112(2):199-208
    [63].雷智平,凌开成.双极膜电渗析法处理谷氨酸水溶液的过程性能研究[J].环境污染治理技术与设备, 2003, 4(2):33-35
    [64]. Zhang X, Lu W, Ren H, et al. Recovery of glutamic acid from isoelectric supernatant using electrodialysis[J]. Separation and purification technology, 2007, 55(2):274-280
    [65].毛忠贵,陈建新.谷氨酸提取闭路循环工艺循环无限性理论证明[J].发酵科技通讯, 1999, 28(2):1-4
    [66].毛忠贵,陈建新,张建华.发酵工业与清洁生产[J].发酵科技通讯, 1999, 28:17-21
    [67]. Cohen R R H. Use of microbes for cost reduction of metal removal from metals and mining industry waste streams[J]. Journal of Cleaner Production, 2006, 14(12-13):1146-1157
    [68].黄翔峰,陈树斌.序批式缺氧—好氧工艺处理味精废水试验研究[J].环境工程, 2001, 19(2):7-9
    [69].臧立华,徐国华,葛秀丽,等.复合肥生产中有机污染气体的气相色谱/质谱分析[J].山东轻工业学院学报, 2005, 19(1):11-14
    [70].熊万刚,荣维华.复合肥喷浆造粒机尾气治理方法[J].发酵科技通讯, 2008, 37(3):44-45
    [71].郭尽力,任万衷.谷氨酸对苏云金杆菌的芽孢和伴孢晶体的影响[J].微生物学杂志, 2001, 21(1):55-56
    [72]. Chen F. High cell density culture of microalgae in heterotrophic growth[J]. Trends in biotechnology, 1996, 14(11):421-426
    [73]. Chen F, Johns M R. High cell density culture of< i> Chlamydomonas reinhardtii on acetate using fed-batch and hollow-fibre cell-recycle systems[J]. Bioresource technology, 1996, 55(2):103-110
    [74]. Chen F, Johns M R. A strategy for high cell density culture of heterotrophic microalgae with inhibitory substrates[J]. Journal of applied phycology, 1995, 7(1):43-46
    [75]. Xue F Y, Zhang X, Luo H, et al. A new method for preparing raw material for biodiesel production[J]. Process Biochemistry, 2006, 41(7):1699-1702
    [76]. Xue F Y, Miao J, Zhang X, et al. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium[J]. Bioresource technology, 2008, 99(13):5923-5927
    [77]. Zheng S K, Yang M, Yang Z, et al. Biomass production from glutamate fermentation wastewater by the co-culture of Candida halophila and Rhodotorula glutinis[J]. Bioresource technology, 2005, 96(13):1522-1524
    [78].金新梅.味精废水的微生物转化与效益[J].环境污染与防治, 1997, 19(2):13-16
    [79]. Schnitzer H, Ulgiati S. Less bad is not good enough: approaching zero emissions techniques and systems[J]. Journal of Cleaner Production, 2007, 15(13-14):1185-1189
    [80]. Frijns J, Van Vliet B. Small-scale industry and cleaner production strategies[J]. World Development, 1999, 27(6):967-983
    [81].汪东海,王淑红,马福顺,等.头孢曲松钠精制方法的改进[J].山东化工, 2007(10):7-8
    [82]. Roelands C, Horst J H, Kramer H J M, et al. The unexpected formation of the stable beta phase of l-glutamic acid during pH-shift precipitation[J]. Journal of Crystal Growth, 2005, 275(1-2):e1389-e1395
    [83].居文政,陶开春,胡津丽.药物多晶型与临床药效[J].中国药师, 2000, 3(6):369-370
    [84].张菁,王金龙,姜建国,等.地红霉素多晶型对其体外抗菌活性的影响[J].中国药业, 2008, 17(3):16-17
    [85]. Hirokawa S. A new modification of L-Glutamic acid and its crystal structures[J]. Acta Cryst, 1955, 8:637-641
    [86]. Lehmann K T, Hamilton WC. Precision neutron diffraction structure determination of protein and nucleic acid components. VIII: the crystal and molecular structure of the -form of the amino acid L-Glutamic acid[J]. Cryst Mol Struct, 1972, 2:225-233
    [87]. Kitamura M. Polymorphism in the crystallization of L-glutamic acid[J]. Journal of Crystal Growth, 1989, 96(3):541-546
    [88]. Ponnuswamy P K, Sasisekharm. V. Studies on the conformation of amino acids. IX. Conformations of butyl, seryl, threonyl, cysteinyl, and valyl residues in a dipeptide unit[J]. Biopolymers, 1971, 10(3):565-582
    [89]. Garti N Z H. The effect of surfactants on the crystallization and polymorphic transformation of glutamic acid[J]. Cryst Growth, 1997, 172:486-498
    [90]. Ferrari E S, Davey R J. Solution-mediated transformation ofαtoβL-glutamic acid: Rate enhancement due to secondary nucleation[J]. Crystal growth & design, 2004, 4(5):1061-1068
    [91]. Sugita Y. Polymorphism of L-Glutamic Acid Crystals and Inhibitory Substance forβ-Transition in Beet Molasses (Microbiology & Fermentation Industry)[J]. Agricultural and biological chemistry, 1988, 52(12):3081-3085
    [92]. Beckmann W. Seeding the desired polymorph: Background, possibilities, limitations, and case studies[J]. Organic process research & development, 2000, 4(5):372-383
    [93]. Davey R, Blagden N, Potts G, et al. Polymorphism in molecular crystals: stabilization of a metastable form by conformational mimicry[J]. Journal of the American Chemical Society, 1997, 119(7):1767-1772
    [94]. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization[J]. Advanced Drug Delivery Reviews, 2001, 48(1):27-42
    [95]. Kitamura M, Ishizu T. Kinetic effect of L-phenylalanine on growth process of L-glutamic acid polymorph[J]. Journal of Crystal Growth, 1998, 192(1):225-235
    [96]. Mohan R, Koo K K, Strege C, et al. Effect of additives on the transformation behavior of L-phenylalanine in aqueous solution[J]. Industrial & Engineering Chemistry Research, 2001, 40(26):6111-6117
    [97]. Blagden N, Davey R, Lieberman H, et al. Crystal chemistry and solvent effects in polymorphic systems Sulfathiazole[J]. J. Chem. Soc., Faraday Trans., 1998, 94(8):1035-1044
    [98]. Kitamura M, Furukawa H, Asaeda M. Solvent effect of ethanol on crystallization and growth process of L-histidine polymorphs[J]. Journal of Crystal Growth, 1994, 141(1-2):193-199
    [99]. Threlfall T. Crystallisation of polymorphs: thermodynamic insight into the role of solvent[J]. Organic process research & development, 2000, 4(5):384-390
    [100]. Kitamura M. Controlling factor of polymorphism in crystallization process[J]. Journal of Crystal Growth, 2002, 237:2205-2214
    [101]. Kitamura M, Nakamura K. Effects of solvent composition and temperature on polymorphism and crystallization behavior of thiazole-derivative[J]. Journal of Crystal Growth, 2002, 236(4):676-686
    [102]. Kolpachnikova M G, Penner N A, Nesterenko P N. Effect of temperature on retention of alkali and alkaline-earth metal ions on some aminocarboxylic acid functionalised silica based ion exchangers[J]. Journal of Chromatography A, 1998, 826(1):15-23
    [103]. Roelands C, Horst J H, Kramer H J M, et al. Precipitation mechanism of stable and metastable polymorphs of L‐glutamic acid[J]. AIChE journal, 2007, 53(2):354-362
    [104].彭达洲,高大维.搅拌操作对L—谷氨酸结晶晶型的影响[J].食品科学, 1997, 18(6):5-8
    [105].王正伟,张建华,孙付保,等.谷氨酸间歇等电结晶研究Ⅰ:调酸速率的控制[J].食品与发酵工业, 2009(9):1-5
    [106]. Kitamura M, Funahara H. Effect of L-and D-Phenylalanine on crystallization and transformation of L-Glutamic acid polymorphs[J]. Journal of chemical engineering of Japan, 1994, 27(1):124-126
    [107]. Kitamura M, Yamanami T. Effect of D-, L-Phenylalanine on Growth Rate and Morphology ofαL-Glutamic Acid[J]. Molecular Crystals and Liquid Crystals, 1996, 276(1-2):213-220
    [108]. Kitamura M, Hashimoto H. Morphology Change in Crystallization ofαL-Glutamic Acid in the Presence of L-Phenylalanine[J]. Molecular Crystals and Liquid Crystals, 1996, 276(1-2):221-228
    [109]. Kitamura M, Sumi Y. Growth Process and Morphological Change ofβ-Glutamic Acid in the Presence of l-Phenylalanine. 1997: ACS Publications.
    [110]. Cashell C, Corcoran D, Hodnett B K. Effect of amino acid additives on the crystallization of L-Glutamic acid[J]. Crystal growth & design, 2005, 5(2):593-597
    [111].张文会.谷氨酸结晶理论及其应用研究[D]. 1994,华南理工大学.
    [112].张爱群,杨立斌,沙作良,等.过饱和度对芒硝结晶过程影响分析[J].盐业与化工, 2009(003):51-53
    [113]. Srinivasan K, Dhanasekaran P. Nucleation control and crystallization of l-glutamic acid polymorphs by swift cooling process and their characterization[J]. Journal of Crystal Growth, 2010
    [114].冯志彬,刘进杰,王东阳,等.提高L-谷氨酸产量的后期发酵工艺参数研究[J].食品科学, 2009, 30(04)
    [115].丁绪淮,工业结晶学[M],北京:化学工业出版社.
    [116]. Ono T, Ter Horst J, Jansens P. Quantitative measurement of the polymorphic transformation of L-glutamic acid using in-situ Raman spectroscopy[J]. Crystal growth & design, 2004, 4(3):465-469
    [117]. Dharmayat S, Calderon De Anda J, Hammond R B, et al. Polymorphic transformation of L-glutamic acid monitored using combined on-line video microscopy and X-ray diffraction[J]. Journal of Crystal Growth, 2006, 294(1):35-40
    [118]. Sch?ll J, Bonalumi D, Vicum L, et al. In situ monitoring and modeling of the solvent-mediated polymorphic transformation of L-glutamic acid[J]. Crystal growth & design, 2006, 6(4):881-891
    [119]. Kashchiev D, Van Rosmalen G. Review: Nucleation in solutions revisited[J]. Crystal Research and Technology, 2003, 38(7‐8):555-574
    [120]. Kitamura M, Ishizu T. Growth kinetics and morphological change of polymorphs of L-glutamic acid[J]. Journal of Crystal Growth, 2000, 209(1):138-145
    [121].沈国良,徐铁军,傅承碧,等.季戊四醇水溶液结晶介稳区性质的研究[J].化学世界, 2003, 44(4):181-184
    [122]. Yothi A, Sasikiran K, Nambisan B, et al. Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum[J]. Process Biochemistry, 2005, 40(11):3576-3579
    [123]. Garti N, Zour H. The effect of surfactants on the crystallization and polymorphic transformation of glutamic acid[J]. Journal of Crystal Growth, 1997, 172(3-4):486-498
    [124]. Hamamura T, Sotowa K I, Hasebe S, et al. The effects of design variables on the stabilizing control of continuous DTB crystallizers[J]. Computers & Chemical Engineering, 2000, 24(2-7):917-923
    [125].陈爱强,张建华,张宏建,等.晶浆黏度对谷氨酸结晶晶习及粒度分布的影响[J].食品与发酵工业, 2010(10):1-5
    [126]. Meadhra Ró. Continuous crystallization strategy for recovery of fermentation products[J]. Chemical Engineering Research and Design, 2005, 83(8):1000-1008
    [127]. Collins K D. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process[J]. Methods, 2004, 34(3):300-311
    [128]. Kim H J, Kim W S. Configuration of sodium fluoride crystal characterized by surface crystals on mother crystal[J]. Journal of Crystal Growth, 2001, 233(1):326-335
    [129]. Sha Z, Alatalo H, Louhi-Kultanen M, et al. Purification by crystallization from solutions of various viscosities[J]. Journal of Crystal Growth, 1999, 198:692-696
    [130]. Zijlema T G, Geertman R M, Witkamp G J, et al. Antisolvent crystallization as an alternative to evaporative crystallization for the production of sodium chloride[J]. Industrial & Engineering Chemistry Research, 2000, 39(5):1330-1337
    [131]. Puel F, Fevotte G, Klein J. Simulation and analysis of industrial crystallization processes through multidimensional population balance equations. Part 1: a resolution algorithm based on the method of classes[J]. Chemical engineering science, 2003, 58(16):3715-3727
    [132].彭景华.毛细管法粘度测量的影响因素[J].新疆化学, 2006, 2:13-16
    [133]. Tavare N.S.. Simultaneous estimation of crystal nucleation and growth kinetics from batch experiments[J]. Chem Eng Res Des, 1986, 64:109-118
    [134]. Byung S.Choi T A R e a. Evolution of crystal size distributions in a CMSMPR-the effect of temperature,?ow rate, and mixing speed with tim[J]. Fluid Phase Equilibri, 2005, 228/229:99-107
    [135].张金龙. L-苏氨酸结晶过程研究[D].天津大学, 2003,天津:31-32
    [136]. Sha H A, M.Louhi-Kultanen,S.Palosaari. In?uence of viscosity ratio on processing and morphology of TLCP/PEN blends[J]. Crystal growth & design, 1999, 198/199:692-699
    [137]. Shan G, Igarashi K, Noda H, et al. Control of solvent-mediated transformation of crystal polymorphs using a newly developed batch crystallizer (WWDJ-crystallizer)[J]. Chemical Engineering Journal, 2002, 85(2-3):169-176
    [138]. Ryu D Y, Free M L. The importance of temperature and viscosity effects for surfactant adsorption measurements made using the electrochemical quartz crystal microbalance[J]. Journal of colloid and interface science, 2003, 264(2):402-406
    [139]. Yang Q, Yang M, Zhang S, et al. Treatment of wastewater from a monosodium glutamate manufacturing plant using successive yeast and activated sludge systems[J]. Process Biochemistry, 2005, 40(7):2483-2488
    [140].郑平友,余劲松,张淑萍,等.蒸发结晶系统传热传质规律的研究[J].科学技术与工程, 2006, 6(8):1002-1006
    [141]. Lowe J, Ogden M, McKinnon A, et al. Crystal growth of sodium oxalate from aqueous solution[J]. Journal of Crystal Growth, 2002, 237:408-413
    [142]. Nakayama M, Process for crystallizing out l-glutamic acid. 1967, Google Patents.
    [143]. Byrne P, Bosander P, Parhammar O, et al. A primary, secondary and pseudo-tertiary mathematical model of a chlor-alkali membrane cell[J]. Journal of applied electrochemistry, 2000, 30(12):1361-1367
    [144]. Maruyama S, Ooshima H, Kato J. Crystal structures and solvent-mediated transformation of Taltireline polymorphs[J]. Chemical Engineering Journal, 1999, 75(3):193-200
    [145]. Takiyama H, Matsuoka M. Design of seed crystal specifications for start-up operation of a continuous MSMPR crystallizer[J]. Powder technology, 2001, 121(1):99-105
    [146]. Loi M, Lung-Somarriba B, Moscosa-Santillan M, Porte C, et al. Effect of seeded surface area on crystal size distribution in glycine batch cooling crystallization: a seeding methodology[J]. Journal of Crystal Growth, 2004, 270(3-4):624-632
    [147]. Kitamura M, Konno H, Yasui A, et al. Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions[J]. Journal of Crystal Growth, 2002, 236(1):323-332
    [148]. Gros H, Kilpi? T, Nurmi J. Continuous cooling crystallization from solution[J]. Powder technology, 2001, 121(1):106-115
    [149]. Gerstlauer A, Motz S, Mitrovic A, et al. Development, analysis and validation of population models for continuous and batch crystallizers[J]. Chemical engineering science, 2002, 57(20):4311-4327
    [150].黄男男,石秀东,张建华,等.导流筒对搅拌槽流场的影响[J].食品与机械, 2009, 25(1):93-96
    [151]. Sha Z, Palosaari S. Modeling and simulation of crystal size distribution in imperfectly mixed suspension crystallization[J]. Journal of chemical engineering of Japan, 2002, 35(11):1188-1195
    [152].武首香,王学魁,沙作良,等.工业结晶过程的多相流与粒数衡算的CFD耦合求解[J].化工学报, 2009(3):593-600
    [153]. Laloue N, Couenne F, Le Gorrec Y, et al. Dynamic modeling of a batch crystallization process: A stochastic approach for agglomeration and attrition process[J]. Chemical engineering science, 2007, 62(23):6604-6614
    [154]. Rohani S, Haeri M, Wood H. Modeling and control of a continuous crystallization process Part 1. Linear and non-linear modeling[J]. Computers & Chemical Engineering, 1999, 23(3):263-277
    [155].丛进阳,刘树中.在MSMPR结晶器中谷氨酸的结晶动力学研究[J].清华大学学报:自然科学版, 1996, 36(6):60-66
    [156].阎灵均,李大鹏,马放.谷氨酸发酵废水的处理及资源化利用[J].辽宁石油化工大学学报, 2008, 28(2):28-34
    [157]. Shan J, Xia J, Guo Y, et al. Flocculation of cell, cell debris and soluble protein with methacryloyloxyethyl trimethylammonium chloride--acrylonitrile copolymer[J]. Journal of biotechnology, 1996, 49(1-3):173-178
    [158]. Sano C, Kashiwagi T, Nagashima N, et al. Effects of additives on the growth of L-glutamic acid crystals (β-form)[J]. Journal of Crystal Growth, 1997, 178(4):568-574
    [159].刘彩玫,郭海峰,龙建华,等.母液中杂质成分对蒸发结晶过程的影响[J].轻金属, 2006(9):33-36
    [160].高廷东,魏新春.味精废水处理研究[J].环境科学与技术, 2003, 26(5):40-42
    [161].鲍启钧,张洪昌,顾煊,等.国产碟式分离机处理谷氨酸发酵液菌体的应用和探索[J].中国水污染防治技术装备论文集(第五期), 1999
    [162].广州奥桑味精食品有限公司.谷氨酸发酵液清洁生产新工艺[J].发酵科技通讯, 2007, 36(3):28-29
    [163].景文衍,孙友勋.陶瓷膜在谷氨酸等电母液除菌过程中的应用[J].化工装备技术, 2002, 23(6):10-14
    [164].姜红灿.谷氨酸发酵液进行超滤膜分离[J].发酵科技通讯, 2003, 4(23):3-5
    [165].章樟红,刘小红,叶微微,等.谷氨酸生产中膜分离技术的应用研究[J].中国酿造, 2006(5):52-55
    [166]. Li X, Li J, Fu X, et al. Chemical cleaning of PS ultrafilters fouled by the fermentation broth of glutamic acid[J]. Separation and purification technology, 2005, 42(2):181-187
    [167]. Chen W, Berg J C. The effect of polyelectrolyte dosage on floc formation in protein precipitation by polyelectrolytes[J]. Chemical engineering science, 1993, 48(10):1775-1784
    [168]. Barany S, Szepesszentgyorgyi A. Flocculation of cellular suspensions by polyelectrolytes[J]. Advances in colloid and interface science, 2004, 111(1-2):117-129
    [169].林远生.发酵液后处理研究[J].中山大学学报, 1992, 3:146-149
    [170]. Kim W S, Hirasawa I. Effects of experimental conditions on the mechanism of particle aggregation in protein precipitation by polyelectrolytes with a high molecular weight[J]. Chemical engineering science, 2001, 56(23):6525-6534
    [171]. Renault F, Sancey B, Badot P M, et al. Chitosan for coagulation/flocculation processes-An eco-friendly approach[J]. European Polymer Journal, 2009, 45(5):1337-1348
    [172]. Rattanakawin C, Hogg R. Aggregate size distributions in flocculation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 177(2-3):87-98
    [173]. Franks G V. Stimulant sensitive flocculation and consolidation for improved solid/liquid separation[J]. Journal of colloid and interface science, 2005, 292(2):598-603
    [174]. Rijnaarts H H M, Norde W, Lyklema J, et al. The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion[J]. Colloids and Surfaces B: Biointerfaces, 1995, 4(4):191-197
    [175].毛忠贵,张建华.一种从高浓高杂溶液中回收谷氨酸的生产工艺[J].中国专利, 200810156676.4:2008.10.15
    [176].毛忠贵,张建华.结合细晶消除的谷氨酸连续间歇耦联等电点提取工艺[J].中国专利, ZL2007100220482:2007.4.27
    [177].张建华,毛忠贵.一种谷氨酸连续等电结晶的方法[J].中国专利, 201010286887.7:2010.9.20
    [178].张建华,毛忠贵.氨基酸发酵液、提取废液中回收菌体细胞的除菌方法[J].中国专利, ZL200910026719.1:2009.4.28
    [179].毛忠贵,张建华.一种高质量低物耗少废水的谷氨酸提取工艺[J].中国专利, 100810244726.4:2008.12.16
    [180].毛忠贵,张建华.一种谷氨酸提取方法[J].中国专利, 200910224086.5:2009.12.7
    [181]. Browder L W, Medlin J C, Spaugh Jr A T. Extraction process for removal of impurities from terephthalic acid filtrate. 1990, Google Patents.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700