用户名: 密码: 验证码:
反式茴脑微生物降解和转化合成茴香醛和茴香酸
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
八角是广西盛产的天然香料资源,八角茴香油(简称茴油)是从八角果、枝和叶中提取的一种芳香精油,其中反式茴脑含量为80%-90%。反式茴脑是具有丙烯基苯结构的化合物,通常作为化学法合成香料的起始原料。微生物在降解丙烯基苯化合物的过程中产生的中间产物大部分都是具有很高经济价值的芳香族化合物。利用微生物转化反式茴脑极有可能获得茴香醛、茴香酸等高附加值的天然生物香料。因此本课题选择反式茴脑为底物,筛选能降解并转化反式茴脑合成茴香醛或茴香酸的微生物;同时对影响转化的因素、生物降解中间产物的分离鉴定以及反式茴脑的生物降解途径进行了探讨。
     一、反式茴脑生物降解和转化体系的分析方法建立
     建立了分析反式茴脑降解和转化体系中反式茴脑和产物茴香醛、茴香酸的薄层层析法(TLC法)、薄层层析-紫外分光光度法(TLC-UV法)、反相高效液相色谱法(RP-HPLC法)和硫代巴比妥酸分光光度法(TBA法)。TLC法选用的适宜展开剂配方为石油醚(bp.60℃~90℃):氯仿:乙酸乙酯:甲酸(V/V/V/V)=25:10:3:0.2,该法能同时定性和半定量分析反式茴脑、茴香醛和茴香酸,操作简单,检测快速,适合于生物降解和转化反式茴脑菌株的快速筛选。TLC-UV法和RP-HPLC法可同时定量分析反式茴脑、茴香醛和茴香酸三元混合体系,RP-HPLC法测定的准确性高于TLC-UV法。适宜的RP-HPLC法条件为:采用Kromasil-100A C18色谱柱(250 mm×4.6mmx5μm),流动相为V(乙腈):V(水):V(冰醋酸)=70:30:0.02,等度洗脱,流速0.8 mL·min-1,检测波长为260 nm,进样量5μL,柱温室温。此外,还可根据需要采用硫代巴比妥酸分光光度法定量测定样液中的茴香醛,反式茴脑和茴香酸对茴香醛的测定几乎没有影响。
     二、生物降解反式茴脑的微生物筛选及鉴定
     通过从广西高峰林场八角种植区土样、八角植物内生菌、八角加工车间废液中筛选耐受高浓度茴油的微生物,并检验菌株降解反式茴脑合成茴香醛或茴香酸的能力。用逐级添加茴油的富集培养方法从土样中获得了一株能够在1%(V/V)茴油浓度下生长的菌株BT-13,确定其在改良M9培养基上,一定的转化条件下,具有高转化反式茴脑的能力,转化产物以茴香酸为主。菌株BT-13根据其形态特征观察、部分生理生化特性和16S rDNA序列同源性比较,鉴定为假单胞菌属(Pseudomonas sp.)。从新鲜八角果、枝、叶中分离到87株内生菌,其中真菌69株,细菌18株。有一株内生细菌BZ-15对反式茴脑降解能力较强,可检测到茴香酸的生成。该菌经16SrDNA序列同源性比较,鉴定为恶臭假单胞菌(Pseudomonas putida)。从八角加工车间废液中筛选获得了一株具有较强降解反式茴脑能力并转化合成少量茴香醛的真菌菌株ZJ-9,通过对其形态特征、培养特征的观察,对照《真菌鉴定手册》,鉴定该真菌为黑曲霉。
     三、微生物转化反式茴脑合成茴香醛和茴香酸工艺研究
     研究了假单胞菌BT-13在有机溶剂-水两相体系中生物转化反式茴脑合成茴香醛的条件。首先考察了在摇瓶条件下,有机溶剂极性和加入量、培养基配方、转化时间、转化温度、摇床转速、装液量以及pH值等条件对游离细胞转化合成茴香醛的影响。结果表明,适宜有机溶剂为乙酸乙酯,加入量控制在10%(V/V)。适宜的培养基为改良马丁氏培养基,培养方式为摇床培养。在装液量为20 mL/150 mL三角瓶,培养基初始pH控制在6.5,温度30℃,转速150 r·min-1,转化时间30 h,茴香醛的摩尔生成率为7.7%。接着在此两相体系中采用海藻酸钙固定化细胞对反式茴脑进行转化,茴香醛的摩尔生成率可提高至12.6%。为实现转化液中未转化的反式茴脑和茴香醛的分离,转化液首先用等体积的乙酸乙酯萃取,取上层有机相,接着在有机相中加入饱和亚硫酸氢钠将茴香醛反萃到水相,再将水相茴香醛加成物酸化成醛的形式,最后用乙酸乙酯萃取可得到茴香醛。
     开展了假单胞菌BT-13在改良M9培养基上转化反式茴脑合成茴香酸的条件优化,考察了培养基配方、底物加入量、摇床转速、温度和培养基初始pH值对茴香酸生成的影响。结果表明:在改良M9培养基中添加碳源的浓度高于1 g·L-’时,明显抑制反式茴脑的转化。生成茴香酸的优化条件是,培养基配方为麦芽糖0.5 g·L-1, NH4Cl 0.5 g·L-1, FeSO4·7H2O 0.01 g·L-1, MgSO4·7H2O2.0g·L-1, NaCl 0.5 g·L-1, Na2HPO4 6.8 g·L-1, KH2PO4 3.0 g·L-1, CaCl2 0.02 g·L-1;反式茴脑加入量为9.83 g-L-’,摇床转速为200 r-min-1,转化温度为30℃,转化培养基的初始pH为7.0。在优化条件下,茴香酸积累的浓度为3.49 g·L-1,摩尔生成率为34.6%,比优化前结果提高了92.8%。假单胞菌BT-13转化反式茴脑的主要产物为茴香酸,还含有茴香醛、茴香二醇等中间产物。利用5L机械搅拌发酵罐进行放大试验,茴香酸浓度最高可达3.57 g·L-1,摩尔生成率为36.1%。转化液经酸化、乙酸乙酯萃取、真空浓缩和结晶可得到针状的茴香酸晶体。
     四、反式茴脑在假单胞菌BT-13和黑曲霉ZJ-9作用下的可能降解途径
     采用高效液相色谱和气相色谱/质谱联用等手段分析假单胞菌BT-13和黑曲霉ZJ-9降解反式茴脑的中间产物,通过与标准物质的比对或GC-MS图谱分析确定了假单胞菌BT-13降解反式茴脑四种中间产物,分别为茴香环氧化物、茴香二醇、茴香醛和茴香酸;黑曲霉ZJ-9降解反式茴脑五种中间产物,分别为茴香环氧化物、茴香二醇、茴香醇、茴香醛和茴香酸,且在一定条件下,茴香醇有一定程度的积累。这些中间产物中茴香醇、茴香醛和茴香酸在香料和医药产业中是高附加值的芳香族化合物。根据中间产物的生成情况,推测了这两种菌降解反式茴脑的可能途径。假单胞菌BT-13和黑曲霉ZJ-9降解反式茴脑的共同可能途径:反式茴脑首先在丙烯基侧链双键处加氧,形成茴香环氧化物,环氧化物水解后形成茴香二醇,进一步氧化生成茴香醛、茴香酸。在黑曲霉ZJ-9中,茴香醛还可以被还原生成茴香醇。两种菌都通过形成茴香二醇途径实现对反式茴脑的降解,但在某些中间产物积累上存在差异。
     假单胞菌BT-13和黑曲霉ZJ-9胞内酶中检测到过氧化物酶(POD)和过氧化氢酶(CAT)的活性。假单胞菌BT-13胞内检测的POD和CAT酶活最高分别为122 U·mL-1和625 U-mL-1,黑曲霉ZJ-9胞内检测的POD和CAT酶活最高分别为4.8 U·mL-1和42.5 U·mL-1,明显低于假单胞菌BT-13。从检测的酶活结果和两株菌降解反式茴脑中间产物的积累情况,得出黑曲霉ZJ-9和假单胞菌BT-13降解反式茴脑的关键酶及酶的调控存在差异。以假单胞菌BT-13粗酶液转化反式茴脑的转化液中检测到茴香环氧化物、茴香醛和茴香酸。适量的添加H202对酶催化反式茴脑合成茴香酸有促进作用,转化适宜pH=8。
Illicium verum Hook.f. is a kind of local rich natural flavor in Guangxi. Anise oil is extracted from the fruits, branches and leaves of Illicium verum Hook.f. by steam-distillation extraction, in which trans-anethole content of 80% to 90%.trans-Anethole, a type of propenylbenzene compound, is usually used as starting material to synthesize fragrants in flavor and fragrance industry. Most valuable aromatic compounds are produced as intermediates in the biodegradation pathways of propenylbenzene compounds. Thus, it is likely that microorganisms capable of utilizing trans-anethole will produce high value-added natural biological spices, such as anisaldehyde, anisic acid etc. Therefore,trans-anethole was selected as substrate. Microorganisms that can degrade and transfor trans-anethole to anisaldehyde or anisic acid were isolated. Meanwhile, the factors that affected biotransformation, isolation and identification of intermediate products and trans-anethole biodegradation pathways were studied.
     1. Establishment of methods for analyzing trans-anethole, anisaldehyde and anisic acid in trans-anethole degradation and transformation system
     A thin layer chromatography method (TLC), thin layer chromatography-UV spectrophotometry method (TLC-UV), reversed phase high performance liquid chromatography method (RP-HPLC) and thiobarbituric acid spectrophotometric method (TBA) for the analysis of trans-anethole, anisaldehyde and anisic acid in trans-anethole biodegradation and transformation system were developed. The suitable developing solvent of TLC was petroleum ether (bp.60℃-90℃): chloroform:ethyl acetate:formic acid (V/V/V/V)= 25:10:3:0.2. TLC was found to be simple and rapid for qualitative and semiquantitative analysis of trans-anethole, anisaldehyde and anisic acid. The method was suitable for rapid screening of trans-anethole degrading microorganisms. TLC-UV and RP-HPLC method can be simultaneous quantitative analysis of trans-anethole, anisaldehyde and anisic acid. RP-HPLC method was accurate above TLC-UV method. RP-HPLC conditions were as follow:The separation was performed on Kromasil-100A C18 column (250 mm×4.6 mm×5μm) using V(acetonitrile):V(water):V(acetic acid)=70:30:0.02 as the mobile phase. The flow rate was 0.8 mL·min-1. The detection wave length was 260 nm. The injection volume was 5μL, and the column temperature was room temperature. The method showed good linear relationship, precision and repeatability. In addition, anisaldehyde in transformation liquids could also be detected by TBA method.trans-Anethole and anisic acid don't interfered with the determination of anisaldehyde.
     2. Isolation and identification of trans-anethole degrading microorganisms
     Isolation of trans-anethole degrading microorganisms which can grow on high concentration of anise oil from the soil under aniseed tree, the fruits、branches and leaves of fresh aniseed, waste residue of aniseed workshop. Then biotransformation of trans-anethole to anisaldehyde or anisic acid with these strains were carried out by fermentation. Bacteria were isolated from soil under aniseed trees by enrichment culture. Bacterial strain BT-13, which utilizes 1%(V/V) anise oil as the sole source of carbon and energy in modified M9 media, was screened out base on its good capability to biotransform trans-anethole to anisic acid. This strain was identified as Pseudomonas sp. according to visual observation, physiological and biochemical experiments and 16S rDNA sequence analysis. Eighty-seven endophytes were isolated from the fruits、branches and leaves of fresh aniseed. It includes sixty-nine strains of endophytic fungus, eighteen strains of endophytic bacteria. A endophytic bacterium designated BZ-15 was newly isolated based on its ability to degrade trans-anethole. Anisic acid was detected in the culture.This strain was identified as Pseudomonas putida according to its 16S rDNA sequence analysis. A fungal strain ZJ-9 was newly isolated from waste residue in aniseed workshop based on its ability to degrade trans-anethole. A small amount of anisaldehyde was detected in the culture. Strain ZJ-9 was identified as Aspergillus niger according to its morphological characteristics, culture characteristics and "fungal identification manual".
     3. Biodegradation and biotransformation technology of trans-anethole to anisaldehyde and anisic acid
     The biotransformation process of trans-anethole to anisaldehyde by Pseudomonas sp. BT-13 was carried out in aqueous-organic solvents biphasic systems. The effects of some key factors such as organic solvent polarity and content, the component of culture medium, conversion time, temperature, medium capacity, rotate speed of rotary shaker and medium initial pH were investigated on the biotransformation of trans-anethole to anisaldehyde by free cell. The results showed that the suitable organic solvent was ethyl acetate, ethyl acetate content was 10%(V/V), the suitable medium was the modified Martin's medium, medium capacity was 20 mL/150 mL flask, medium initial pH 6.5, temperature 30℃, rotate speed of rotary shaker at 150 r·min-1, conversion time 30 h. On the optimum conditions, the molar generation ratio of anisaldehyde was increased to 12.6% by immobilized cells with calcium alginate compared with 7.7% of free cells. In order to separate trans-anethole and anisaldehyde, trans-anethole and anisaldehyde were extracted from biotransformation liquids by equal volume ethyl acetate at first, then trans-anethole was stripped to water phase via saturation sodium bisulfite solution. Because trans-anethole was almost insoluble in water, this reactive-extraction also resulted in anisaldehyde purification. Finally anisaldehyde was obtained from acidic water phase by ethyl acetate.
     The optimization of conversion conditons for the biotransformation of trans-anethole to anisic acid by Pseudomonas sp. BT-13 was carried out in modified M9 medium, on which the effects of culture medium components, substrate concentration, shaking speed, temperature and initial medium pH were studied. The results showed that the carbon source concentration of above 1 g·L-1 in modified M9 medium could marketdly inhibit the transformation of trans-anethole. The optimal medium composition was obtained:maltose 0.5 g·L-1,NH4Cl 0.5 g·L-1,FeSO4·7H2O 0.01 g·L-1, MgSO4·7H2O 2.0 g·L-1,NaCl 0.5 g·L-1, Na2HPO4 6.8 g·L-1, KH2PO4 3.0 g·L-1 CaCl2 0.02 g·L-1. Under an optimal condition of trans-anethole concentration of 9.83 g·L-1, shaking speed 200 r·min-1, temperature 30℃, pH 7.0, the cumulative concentration of anisic acid could reach to 3.49 g·L-1 with a molar generation ratio of 34.6%, which increased 92.8% than that under the unoptimized conditions. Anisic acid was proved to be the leading product of this biotransformation, while some other intermediates such as anethole epoxide, anisaldehyde,t-anethole-diol etc could also be detected in the culture. When the biotransformation was processed in 5 L fermentor, the anisic acid of 3.57 g·L-1 was obtained with a molar generation ratio of 36.1%. Crystals of anisic acid was obtained from biotransformation liquid afer acidified, extracted with ethyl acetate, vacuum concentration and crystallization.
     4. Proposed degradation pathway of trans-anethole by Pseudomonas sp. BT-13 and Aspergillus niger ZJ-9
     The degradation pathway of trans-anethole in Pseudomonas sp. BT-13 and Aspergillus niger ZJ-9 were studied by analyzing intermediates using HPLC and GC-MS. Some main intermediates were identified by comparison with standard sample or GC-MS spectra analysis. Four intermediates that is anethole epoxide, anethyl diol, anisaldehyde and anisic acid were produced in the degradation of trans-anethole by Pseudomonas sp. BT-13; Five intermediates that is anethole epoxide, anethyl diol, anisyl alcohol, anisaldehyde and anisic acid were produced in the degradation of trans-anethole by Aspergillus niger ZJ-9. Under certain conditions, anisyl alcohol was accumulated. These intermediate products are all high value-added aromatic compounds in the perfume and pharmaceutical industries. According to the generation of intermediates, possible degradation pathways of trans-anethole by Pseudomonas sp. BT-13 and Aspergillus niger ZJ-9 were proposed:First the 1,2-CC double bond in the trans-anethole side chain is epoxidized and anethole epoxide is produced.Then the epoxide is hydrolysed, forming anethyl diol which is subsequently oxidized to anisaldehyde. Anisaldehyde can continue to be oxidized to anisic acid. In Aspergillus niger ZJ-9, anisaldehyde also can continue to be reduced to anisyl alcohol. In two strains,trans-anethole was degraded through anethyl diol pathway, but the accumulation of some intermediate products was different.
     Peroxidase (POD) and catalase (CAT) activity were detected in intracellular enzyme extracted from Pseudomonas sp. BT-13 and Aspergillus niger ZJ-9. POD and CAT activity of Pseudomonas sp. BT-13 were 122 U·mL-1 and 625 U·mL-1, but POD and CAT activity of Aspergillus niger ZJ-9 were 4.8 U·mL-1 and 42.5 U·mL-1, significantly lower than Pseudomonas sp. BT-13. According to the testing enzymes activity and the accumulation of the intermediate products, there were some differences among the key enzymes and enzyme regulation in biodegradation of trans-anethole by Aspergillus niger ZJ-9 and Pseudomonas sp. BT-13. Anethole epoxide, anisaldehyde, and anisic acid were also detected in the biotransformation liquids of trans-anethole by Pseudomonas sp. BT-13 crude enzyme. Adding amount of H2O2 could promote the biotransformation of trans-anethole to anisic acid. Enzymatic transforming suitable pH was 8.
引文
[1]王琴,蒋林,温其标.八角茴香的研究进展[J].中国调味品,2005(5):18-22
    [2]李祖光,许丹倩,徐振元.八角茴香挥发性风味成分的研究[J].中国调味品,2003(10):13-15,20
    [3]钟昌勇,周宗明,刘虹.广西大茴香油的生产、加工和贸易现状[J].广西林业科学,2007,36(3):173-176
    [4]何春茂.茴脑的性质及生产、利用[J].林产化工通讯,2004,38(1):31-35
    [5]孙宝国,何坚.香料化学与工艺学[M].北京:化学工业出版社,2004
    [6]黄海鹰,刘雄民,李飘英.八角茴香油溶剂结晶分离的研究[J].天然产物研究与开发,2000,12(4):105-108
    [7]Yi Xiao, Hongmei Huang, Dulin Yin, et al. Oxidation of anethole with hydrogen peroxide catalyzed by oxovanadium aromatic carboxylate complexes[J].Catalysis Communications,2008,10(1):29-32
    [8]张小朋,杨波,杨健,等.合成茴香醛新工艺的研究[J].日用化学工业,2008,38(6):382-385
    [9]胡瑞省,刘欣,顾登平,等.Cr2072-/Cr3+和Ce4+/Ce3+电解液作媒质间接合成对甲氧基苯甲醛[J].高校化学工程学报,2005,19(1):134-138
    [10]李云艳,李敏贤.茴脑氧化合成茴香醛工艺进展[J].化工中间体,2010,1:12-15
    [11]张克强,孙宝国.茴香醛异丙硫醇缩醛的合成研究[J].化学试剂,1999,21(4):208-209
    [12]杨爱云,刘士荣,曹光明.茴香醛的合成和利用[J].湖南师范大学自然科学学报,1995,18(1):90-96
    [13]王庆军,刘福胜,于世涛.对甲氧基苯甲醛的制备与应用研究[J].精细石油化工进展,2006,7(5):34-38
    [14]林莉.对甲氧基苯甲醛[J].精细与专用化学品,2000,12:33-34
    [15]白枚,戴文英,杨国玲,等.茴香醛抗真菌实验及临床治疗研究[J].中华皮肤科疾病,1 995,28(7):364-366
    [16]林云,朱世富,赵北君,等.二茂铁有机磁体的磁性能与应用研究[J].四川师范大学学报,2004,27(1):74-77
    [17]唐谦.间接电解法制备茴香酸[J].广西化工,1988,1:20-22
    [18]曾永明,周丽珠.茴香酸酯的试验研究[J].广西林业科技,1992,21(3):112-117
    [19]周国华,彭胜石.茴香酸甲酯的合成[J].广西师院学报(自然科学版),1995,12(2):81-83
    [20]周国华,彭胜石.茴香酸甲酯的合成[J].广西师院学报(自然科学版),1996,13(4):42-45
    [21]苏小建,方健,陈孟林,等.分子蒸馏八角茴香油微波催化氧化茴香脑制备茴香醛[J].精细化工,2009,26(4):386-390,402
    [22]Kitajima N, Sunaga S, Morooka Y, et al. The liquid-phase oxidation of p-methoxy- toluene to p-anisaldehyde with cobalt diacetate cerium triacetatechromium triacetate catalyst[J]. Bulletin of the Chemical Society of Japan,1988,61(3):967-971
    [23]石玉香,王春林,林枫玲.对甲氧基苯甲醛合成新工艺[J].应用化工,2001,30(2):22-24
    [24]Kumar A, Jain N, Chauhan S. Oxidation of benzylic alcohols to carbonyl compounds with potassium permanganate in ionic liquids [J]. Synthetic Communications.2004, 34(15):2835-2842
    [25]Praveen K. Tandon, Manisha Purwar, Satpal Singh, Nidhi Srivastava. Un-catalyzed and iridium(Ⅲ) catalyzed oxidation of p-methoxy benzaldehyde by cerium(IV) [J]. Journal of Molecular Catalysis A:Chemical,2008,284(1-2):120-126
    [26]黄文榜等.相转移催化高锰酸钾氧化茴香脑制备大茴香醛[J].化学世界,1988,29(6):253-256
    [27]钟文海.茴油氧化制备大茴香醛的工艺改进[J].香料香精化妆品,1990,(4):4-5,25
    [28]李正球,哈成勇,马一静,等.二氧化锰氧化茴脑制备茴香醛的工艺研究[J].林产化学与工业,2009,29(8):59-62
    [29]Fichter F. Uber die elektrochemische Oxydation von Anethol und Isoeugenol[J]. Helvetica Chim Acta,1925,8(1):332-336
    [30]Halter M A. Electrochemical Oxidation of Alkyl Aromatic Compounds[P]. US 4212710,1980
    [31]Kreysa G, Medin H. Indirect electrosynthesis of p-methoxybenzaldehyde[J]. Jappl Electrochem,1986,16(4):757-767
    [32]James G, Cheng H. The conversion of isosafrole to piperonal and anethole to anisaldehyde:electrochemical active manganese dioxide. Electrochimica Acta,1994, 39(4):497-499
    [33]李则林,张永康,成阶平.茴香脑电氧化合成茴香醛[J].精细化工,1995,12(11):16-18
    [34]杨爱云,刘士荣,胡云楚.电化学氧化法合成茴香醛(Ⅱ)[J].合成化学,1995,3(3):239-243
    [35]杨爱云,刘士荣,李仕进.电化学氧化法合成茴香醛(Ⅲ)——茴香脑合成茴香醛的反应动力学[J].合成化学,1995,3(3):244-249
    [36]唐新军,欧利辉,易建龙,等.硫酸高铈氧化茴香脑合成茴香醛的反应动力学研究[J].化学研究与应用,2006,18(5):554-556
    [37]唐新军,洪礼章,徐建兵,等.茴香脑间接电化学氧化合成茴香醛的研究[J].化学世界,2007,10:621-624
    [38]顾登平,胡瑞省,刘欣,等.电化学法合成茴香醛的中试研究[J].精细化工,2004,21(1):53-55
    [39]胡瑞省,李健飞,张元静,等.间接电合成芳香醛反应机理的研究[J].石家庄师范专科学校学报,2004,(6):17-21
    [40]邓为玲,刘兴正,杨元田,等.茴香醛的电合成研究[J].精细化工,1999,16(4):29-31
    [41]邓为玲.茴香醛电合成的研究[D].青岛化工学院,1999
    [42]杨本勇,杨德红,张光业,等.茴香醛的合成工艺[J].中原工学院学报,2005,16(2):16-17
    [43]蔡军,聂勤.大茴香醛的合成研究[J].香料香精化妆品,2005,4(2):21-22
    [44]钱海燕,曾跃,李源栋.茴香脑间接电氧化合成茴香醛[J].应用化工,2009,38(4):477-482
    [45]刘利华,宁秀玲.臭氧法制备大茴香醛工艺的研究[J].广西林业科学,1997,26(1):11-14,17
    [46]易封萍,周永红,李伟光,等.臭氧化法制取苯甲醛和茴香醛的研究[J].广西大学学报(自然科学版),1998,23(1):54-56
    [47]李伟光,粟桂娇,刘雄民,等.茴油臭氧化选择性的研究[J].化学世界,2003,44(9):464-465,478
    [48]高蓉,李稳宏,李冬,等.八角茴香油臭氧化制备茴香醛工艺研究[J].食品科学,2008,29(6):174-177
    [49]梁红军,刘雄民,李伟光,等.苯乙烯、茴脑与肉桂醛的臭氧化反应竞争性研究[J].林产化学与工业,2002,22(1):39-42
    [50]于静,哈成勇,沈敏敏,等.单一羰基溶剂体系的茴脑臭氧化反应[J].精细化工,2010,27(4):374-378
    [51]Schrader J,Etschmann M M W,Sell D, et al. Applied biocatalysis for the synthesis of natural flavour compounds-current industrial processes and future prospects[J]. Biotechnology Letters,2004,26:463-472
    [52]Anne L,Christelle S,Marcel A, et al. Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry[J]. Trends in Biotechnology, 1999,17(7):282-289
    [53]Kenji O,Shinji N,Akihisa K, et al. Biosynthesis of p-Anisaldehyde by the White-Rot Basidiomycete Pleurotus ostreatus[J].Journal of Bioscience and Bioengineering,2002, 93(2):207-210
    [54]GutiCrrez A, Caramelo L, Prieto A, et al.Anisaldehyde production and aryl-alcohol-oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus[J]. Appl. Environ. Microbiol.,1994,60:1783-1788
    [55]Shimazono H and Nord F F. Transformations of anisic acid and methylanisate by the mold Polystictus versicolor[J].Archives of Biochemistry and Biophysics.1960,87,1: 140-143
    [56]Benjaram M. Reddy, Komateedi N Rao, Gunugunuri K. Reddy and Pankaj Bharali. Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole[J]. Journal of Molecular Catalysis A:Chemical.253(1-2),2006,44-51
    [57]Shimoni E, Baasov T, Ravid U, et al. Biotransformations of propenylbenzenes by an Arthrobacter sp. and its t-anethole blocked mutants[J]. Journal of Biotechnology,2003, 105:61-70
    [58]Xu P, Hua D L, Ma C Q.Microbial transformation of propenylbenzenes for natural flavour producti on [J].Trends in Biotechnology,2007,25(12):571-576
    [59]Andreas L, Murillo V F. Production of fine chemicals using biocatalysis [J]. Chemical Biotechnology,1999,10:595-603
    [60]Priefert H, Rabenhorst J, Steinbuchel A. Biotechnological production of vanillin [J]. Appl. Microbiol. Biotechnol.,2001,56:296-314
    [61]Ramya Seshadri. Mechanism studies on the oxidation of isoeugenol by Nocardia sp. NRRL 5646[D]. Iowa:the University of Iowa,2005
    [62]Shimoni E, Ravid U, Baasov T, et al. The trans-anethole degradation pathway in an Arthrobacter sp.[J]. Journal of Biological Chemistry,2002,277(14):11866-11872
    [63]Shimoni E,Ravid U, Shoham Y. Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin[J]. J Biotechnol,2000,78:1-9
    [64]Jiyoung Ryu, Jiyoung Seo,Youngshim Lee, et al. Identification of syn-and anti-anethole-2,3-epoxides in the metabolism of trans-anethole by the newly isolated Bacterium Pseudomonas putida JYR-1[J].Journal of Agricultural and Food Chemistry,2005,53(15):5954-5958
    [65]Zhao L Q, Sun Z H, Zheng P, et al. Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis[J]. Biotechnol Lett,2005,27:1505-1509
    [66]Zhang Y M, Xu P, Han S, et al. Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8[J].Appl Microbiol Biotechnol,2006,73: 771-779
    [67]Hua D L, Ma C Q, Lin S, et al. Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain:Identification of major metabolites[J].Journal of Biotechnology,2007,130(4):463-470
    [68]Zhao L Q, Sun Z H, Zheng P, et al. Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8[J].Process Biochemistry,2006,41(7):1673-1676
    [69]Chatterjee T, De B K, Bhattacharyya D K. Microbial conversion of isoeugenol to vanillin by Rhodococcus rhodochrous[J].Indian J Chem B,1999,38:538-541
    [70]Tripathi U, Rao R S, Ravishankar G A. Biotransformation of phenylpropanoid compounds to vanilla flavor metabolites in cultures of Haematococcus pluvialis[J]. Process Biochem.,2002,38:419-426
    [71]S. Ramachandra Rao, G.A. Ravishankar. Biotransformation of isoeugenol to vanilla flavour metabolites and capsaicin in suspended and immobilized cell cultures of Capsicum frutescens:study of the influence of β-cyclodextrin and fungal elicitor[J]. Process Biochem.,1999,35:341-348
    [72]朱慧霞,邓胜松,张洪斌,等.香兰素生物合成法的研究进展[J].精细化工,2004,21(2):125-128
    [73]Santos A S,Pereira Jr N, Silva I M da,et al.Peroxidase catalyzed microbiological oxidation of isosafrol into piperonal[J].Process Biochemistry,2004,39,2269-2275
    [74]Genzel Y, Archelas A, Broxterman Q B, et al.Microbiological transformations 50: selections of epoxide hydrolases for enzymatic resolution of 2-,3- or 4-pyridyloxyrane [J]. J Mol Catal B:Enzymatic,2002,16:217-222
    [75]van Deurzen M P J, van Rantwijk F, Sheldon R.Selective oxidations catalyzed by peroxidases[J]. Tetrahedron,1997,39:13183-13220
    [76]van Rantwijk F, Sheldon R. Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistics aspects[J]. Curr Opin Biotechnol,2000,11:554-564
    [77]van de Velde F,van Rantwijk F,Sheldon R.Improving the catalytic performance of peroxidase in organic synthesis[J]. Trends Biotechnol,2001,19:73-80
    [78]Rao S R,Ravishankar G A.Biotransformation of isoeugenol to vanilla flavour metabolites and capsicin in suspended and immobilized cell cultures of Capsicum frutescens:study of the influence of β-cyclodextrin and fungal elicitor[J]. Process Biochem,1999, 35:341-348
    [79]Tripathi U,Rao S R,Ravishankar G A.Biotransformation of phenylpropanoid compounds to vanilla flavor metabolites in cultures of Haematococcus pluviatis[J].Process Biochem, 2002,38:419-426
    [80]Russ R.Benzylic bio-oxidation of various toluenes to aldehydes by peroxidase[J]. Tetrahedron Lett,2002,43:791-793
    [81]Marcel Z,Franz K.Understanding the structure and function of catalases:clues from molecular evolution and in vitro mutagenesis[J]. Progress in biophysics and molecular biology.1999,72:19-66
    [82]McEldoon J P.Lignin peroxidase type activity of soybean peroxidase[J]. Enzyme Microb Techno 1,1995,17:359-365
    [83]Uyama H,Kobayashi S.Enzyme catalysed polymerization to functional polymers[J]. J Mol Catal B Enzyme,2002,785:1-11
    [84]沈德中主译.生物催化和生物降解——有机化合物的微生物转化[M].北京:化学工业出版社,2005
    [85]王杉霖,张剑波,王维敬,等.四氧化三铁吸附包埋固定辣根过氧化物酶及其应用[J].北京大学学报(自然科学版),2006,42(6):762-766
    [86]张坤生,田荟琳.过氧化氢酶的功能及研究[J].食品科技,2007,1:8-10
    [87]饶国华,赵谋明.生物催化剂氧化酶的工业研究进展[J].中国食品添加,2005,1:12-19
    [88]孙志浩.生物催化工艺学[M].北京:化学工业出版社,2005
    [89]文福姬,俞庆善.植物性天然香料的研究进展[J].现代化工,2005,25(4):25-28
    [90]辛羚,俞苓,齐凤兰,等.天然香精香料与生物技术[J].食品科技,2004,11:49-54
    [91]姜标,汪桦,李祖义.生物催化制备香精香料[J].有机化学,2007,27(3):377-384
    [92]刘均洪,袁卫平,杨丽等.微生物和酶在香料生产中的应用[J].化学工业与工程技术,1998,19(3):19-21
    [93]朱林瑶,涂茂兵,姚家顺,等.生物技术在香精香料生产中的应用[J].香料香精化妆品,2002,3:25-27
    [94]Soares M,Christen P,Pandey A,et al.A novel approach for the production of natural aroma compounds using agro-industrial residue[J].Bioprocess Engineering,2000,23(6): 695-699
    [95]陆顺忠,李秋庭,黎贵卿,等.茴油高效分离茴脑新技术研究[J].食品与发酵工业,2009,35(8):183-186
    [96]Jurado J M,Alcazar A,Pablos F,et al.LC Determination of anethole in aniseed drinks [J].Chromatographia,2006,64(3):223-226
    [97]魏小平,李建平,蓝小月.分光光度法测定微量茴香醛的研究[J].食品科学,2002,23(1):101-103
    [98]牛淑妍,王光信,刘艳.气相色谱法测定茴香醛[J].青岛化工学院学报,1999,20(4):360-362
    [99]刘敬兰,陈连文,张宏坤.对甲基茴香醚和茴香醛的气相色谱法分离分析[J].分析试验室,2004,23(2):66-67
    [100]海洪,李建平.茴香醛席夫碱衍生物的极谱波行为及分析应用[J].广西科学,2002,9(4):270-272
    [101]王晓春,马继平,陈令新,等.微柱高效液相色谱法分离八角茴香挥发油成分[J].分析测试学报,2004,23(4):54-57
    [102]丁艳芬,杨冬,官金梅HPLC法测定八角茴香水中茴香醛的含量[J].药物分析杂志,2008,28(6):970-972
    [103]董文宾.生物工程分析[M].北京:化学工业出版社,2006
    [104]曹军卫,马辉文.微生物工程[M].北京:科学出版社,2002
    [105]李能章,彭远义.植物内生菌研究进展[J].生物技术,2004,14(2):69-71
    [106]文才艺,吴元华,田秀玲.植物内生菌研究进展及其存在的问题[J].生态学杂志,2004,23(2):86-91
    [107]李雪梅,徐若飞,杨黎华,等.利用香荚兰内生菌制备天然香料及其在卷烟中的应用[J].烟草科技,2008,3:31-34,62
    [108]陈传文,孙前光,朱军等.三种药用植物内生菌的分离及其抗肿瘤活性菌株的筛选[J].微生物学通报,2010,37(10):1462-1466
    [109]Li W K,Hu Z B.Endophytes and natural medicines[J].Chin J Nat Med,2005,3(4): 193-199
    [110]Shen L,Shi D H,SONG Y C,et al. Chemical Constituents of Liquid Culture of Endophyte IFB-E012 in Artemisia annua[J].Chinese Journal of Natural Medicines,2009, 7(5):354-356
    [111]徐仕国.微生物的鉴别与图谱[M].北京:中国医药科技电子出版社,2005
    [112]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    [113]Buchanan R E, Gibbons N E(中国科学院微生物研究所翻译组译).伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984
    [114]Rodrigo J S, Jacques C S, Fatima M B, et al. Anthracene biodegradation by Pseudomonas sp. isolated f rom a petrochemical sludge landfarming site [J]. Int Biodeter & Biodegr,2005,56:143-156
    [115]邓琦,常萍,周围,等.芳香烃化合物降解菌CP5的降解特性及降解基因[J].华中农业大学学报,2010,29(2):185-188
    [116]Garciar Valdes E, Cozar E, Rotger R, et al. New naphthalene degrading marine Pseudomonas strains [J]. Appl Environ Microbiol,1988,54 (10):2478-2485
    [117]聂麦茜,张志杰,王晓昌,等.两株假单胞菌对蒽菲芘的降解作用[J].环境科学学报,2002,22(5):630-633
    [118]冯佳颖,顾科菲,陈佩佩,等.聚羟基烷酸合成菌的分离,鉴定及其生长特性研究[J].安徽农业科学,2010,38(3):1112-1113,1181
    [119]郭继强,朱殿生,谭慧.假单胞菌转化喜树碱的初步研究[J].食品科技,2010,35(1):42-45
    [120]魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979
    [121]王轶雄,陈敏,方序.非常规介质中细胞生化反应研究进展[J].生物工程进展,2001,21(6):43-46
    [122]王志龙.两相分配生物反应器——浊点系统在生物转化中的应用[J].中国工程科学,2005,7(5):73-78
    [123]陆军,张伟国.两相体系生物转化L-苯丙氨酸生成2-苯乙醇[J].化工进展,2008,27(3):417-420
    [124]Bie S T, Du L X, Zhang L M, et al. Bioconversion of methyl-testosterone in a biphasic system[J].Process Biochemistry,2005,40(10):3309-3313
    [125]lik D, Bayraktar E, Mehmetoglu U. Biotransformation of 2-phenylethanol to phenyl-acetaldehyde in a two-phase fed-batch system[J].Biochemical Engineering Journal, 2004,17:5-13
    [126]Cruze A, Fernandes P, Cabral J M S, et al. Effect of phase composition on the whole cell bioconversion of β-sitostreol in biphasic media [J]. J mol Catal B:Enzym,2002, 19-20:371-375
    [127]胡健,徐岩.两相系统中不对称还原2—辛酮的菌株筛选[J].化工学报,2006,57(10):2383-2387
    [128]王普,陈希杨,虞炳钧,等.新技术在甾体药物微生物转化中的应用[J].化工进展,2002,21(11):805-808,813
    [129]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,2002
    [130]诸葛健,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社,1994
    [131]陈明,王周芳,夏黎明.固定化基因重组酵母发酵木糖产乙醇[J].浙江大学学报(工学版),2008,42(2):290-293
    [132]王杉霖,张剑波,王维敬,等.四氧化三铁吸附包埋固定辣根过氧化物酶及其应用[J].北京大学学报(自然科学版),2006,42(6):762-766
    [133]杨本宏,蔡敬民,吴克,等.海藻酸钠固定化根霉脂肪酶的制备及其性质[J].催化学报, 2005,26(11):977-981
    [134]詹喜,王庆利,邹慧熙,等.有机溶剂中固定化酵母细胞催化香叶醇还原生物转化的研究[J].浙江大学学报(农业与生命科学版),2006,32(4):391-395
    [135]粟桂娇,刘雄民,朱萍,等.反式茴脑生物降解菌株的筛选及其生物转化[J].化工进展,2009,28(1):141-144,172
    [136]粟桂娇,刘雄民,李伟光,等.两相系统中生物转化茴脑生成茴香醛[J].精细化工,2009,26(2):136-141
    [137]杨忠华,曾嵘,吴高明,等.水-有机溶剂两相体系中面包酵母不对称还原苯乙酮合成手性苯乙醇的研究[J].高校化学工程学报,2009,23(3):450-454
    [138]张咏梅.天然丙烯基苯化合物微生物转化和代谢的研究[D].山东大学,2006,71-74
    [139]陈敏.茴脑生物催化合成茴香醛及其生物转化体系分析方法的构建[D].广西大学,2008
    [140]周远明,张媛媛,刘均洪.利用苯胺检测过氧化物酶活力的方法[J].青岛科技大学学报.2003,24(5):401-404
    [141]李仕飞,刘世同,周建平,等.分光光度法测定植物过氧化氢酶活性的研究[J].安徽农学通报.2007,13(2):72-73
    [142]张子张.黑曲霉催化烯烃的不对称双羟基化反应的机理和应用[J].分子催化,2008,22(1):80-85
    [143]李永红.生物转化法生产香草醛的研究[D].江南大学,2004,75
    [144]李书良,焦鹏,曹竹安.流加H2O2对提高供氧及微生物代谢的影响[J].微生物学报,2002,42(1):129-132
    [145]Joo H, Lin Z, Arnold F H. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation[J]. Nature,1999,399:670-673

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700