用户名: 密码: 验证码:
聚合物/表活剂二元驱提高采收率技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以实验研究为基础,全面研究分析了影响二元驱驱油效果的主要影响因素,并在研究的基础上对矿场试验提出建议。
     针对新疆克拉玛依油田七中区油藏条件,提出适合该区块的聚合物/表活剂二元体系配方,通过聚合物的理化性能以及注入性(阻力系数和残余阻力系数)的研究,结合七中区聚合物驱的现场注入情况,推荐了该区块二元驱所使用聚合物。
     从界面张力、增粘性、洗油效率、长期稳定性、吸附稳定性、改善流度能力等方面研究了二元体系的性能,并对聚合物、表活剂之间的相互作用进行分析。确定了界面张力范围为100~10-3的二元体系配方,优化出适合不同配方的表活剂。
     通过岩心实验确定七中区适合二元体系/原油粘度大于2.0,界面张力的最佳值在10-3mN/m,二元驱极限提高采收率24.24%。
     聚合物/表活剂二元驱提高采收率微观机理包括:油膜的剥离乳化、盲端残余油启动、乳状液的携带、油滴的拉丝运移、油滴的切割、油滴的壁面运移以及孔道中残余油的启动等。与聚驱相比,二元驱启动残余油的能力更强。
     与三元驱相比,鉴于二元驱启动残余油能力较弱,可考虑在二元驱注入初期加入适量的碱,提高二元驱启动原油的能力,以达到既降低碱带来的负面影响,又最大限度提高二元驱采收率的目的。
     微观模型中驱替孔道中残余油需要的二元体系/原油粘度比在1.0以上。聚合物粘弹性在二元驱中作用明显,随着粘度比的增大,弹性的贡献率增大;随着界面张力降低,采收率明显增加,驱替孔隙中的残余油需要超低的界面张力。
     二元驱油过程中,低毛管数下函数点较为分散,高毛管数下函数点较为集中。相对渗透率为饱和度和毛管数的二元函数,在同一饱和度值下,相对渗透率随着毛管数增加而增加,并且随油相增加的幅度更大,从而使得油相分流量增加;提出了相对渗透率是饱和度与毛管数二元函数的实验依据,建立了考虑毛管数变化的二相渗流方程:扩展了Buckley—Leveert两相流渗流理论,将其应用于二元等化学驱渗流机理方面,将会得到了一些新的概念和新现象。
Basing on Experimental research, a comprehensive analysis of the main factors affecting oil displacement efficiency of binary flooding was carried out, and some suggestions for pilot test was given.
     As for reservoir conditions of Qizhong area in Karamay Oilfield, polymer/surfactant binary system formulations for this block was proposed, further in combination with Polymer injection-site situation in Qidong area and by studying the physical and chemical properties and injection ability (resistance coefficient and residual resistance coefficient) of polymer, the polymer used for binary polymer flooding in this very block was recommended.
     The interfacial tension, viscosity enhancing ability, oil displacement efficiency, long-term stability, adsorption stability, improving mobility abilities of the binary system were studied, and the interaction between polymer and surfactant was analyzed. The binary system formulations with Interfacial tension in the range of 100~10-3 of were determined, and surfactants for different formulations were optimized.
     By core experiments, that viscosity ratio between binary systems and oil of Qizhong area is greater than 2.0 was determined, and the optical interfacial tension is 10-3mN/m, the binary flooding systems can enhance oil recovery by 24.24% at the utmost.
     Polymer/surfactant binary Flooding microscopic mechanisms include: denudating and emulsifying oil film, starting blind-end residual oil, carrying emulsion, drawing and moving oil droplets, cutting oil droplets, oil droplets shifting along the wall and starting residual oil in the channel and so on. Compared with the polymer flooding, the ability to start more residual oil of binary flooding is greater.
     Compared with the ternary flooding, given that the ability to start residual oil of binary flooding is weak, appropriate amount of alkaline can be added in the early stage of injection to enhance the ability of starting residual oil to reach the goal of reducing the negative effects of alkali, but also to maximize the enhancing oil recovery of binary flooding.
     Viscosity ratio between binary systems and oil in Micro-pore model needs to be above 1.0. Viscoelasticity of polymer flooding plays a great role, as the viscosity ratio increases, the flexibility contribution rate increases; with the interfacial tension reduction, recovery was significantly increased. To displace residual oil in the pores, ultra-low interfacial tension is necessary.
     In binary flooding process, low capillary number makes that the function points are more dispersed while high capillary number makes that the function points are more concentrated. Relative permeability is the dual function of saturation and capillary number, in the same saturation value, the relative permeability increases with increasing capillary number, and the even larger increase with oil, making oil fractional flow increased. The basis of that Relative permeability is the dual function of saturation and capillary number was proposed, and two-phase flow equation considering changes in the capillary number was established:Buckley-Leveert two-phase flow theory was extended, which will obtain some new concepts and new phenomenon when it is applied to porous flow mechanism of chemical flooding.
引文
[1]Wang Demin, Cheng Jiecheng, Wu Junzheng, et al Summary of ASP pilots in Daqing Oilfield, SPE57288,1999.
    [2]程杰成,王德民,李群,等.大庆油田三元复合驱矿场试验动态特征[J].石油学报,2002,23(6):37-41.
    [3]李华斌.三元复合驱新进展及矿场实验[M].北京:科学出版社,2007.
    [4]徐国民.强碱三元复合驱面临的问题及解决对策[J].油气田地面工程,2008,27(11):70-71.
    [5]赵福麟.EOR原理[M].东营:石油大学出版社,2001.
    [6]1994 Worldwide EOR Survey.Oil & Gas Journal,1994.
    [7]1996 Worldwide EOR Survey.Oil & Gas Journal,1996.
    [8]1998 Worldwide EOR Survey.Oil & Gas Journal,1998.
    [9]2000 Worldwide EOR Survey.Oil & Gas Journal,2000.
    [10]2002 Worldwide EOR Survey.Oil & Gas Journal,2002.
    [11]2004 Worldwide EOR Survey.Oil & Gas Journal,2004.
    [12]2006 Worldwide EOR Survey.Oil & Gas Journal,2006.
    [13]2008 Worldwide EOR Survey.Oil & Gas Journal,2008.
    [14]A.Y.Zekri, K.K.Jerbi.Economic Evaluation of Enhanced Oil Recovery.Oil&Gas Science and Technology,2002,57(3):259-267.
    [15]王景良.三元复合驱用石油磺酸盐表面活性剂研究进展,国外油田工程,2000,12.
    [16]黄宏度,杨义震等.驱油剂石油羧酸盐的研制,油田化学,1991,8(3):235-239.
    [17]黄宏度.从烷烃汽相氧化产物直接制备(不磺化)驱油用活性剂[J].油田化学,1987.4(3):191-196.
    [18]伍晓林,张国印,刘庆梅.石油羧酸盐的研制及其在二次采油中的应用.油气地质与采收率2001,8(1):62-63.
    [19]赵福麟.羧甲基型的非离子-阴离子表面活性剂与石油磺酸盐的混合[J].石油大学学报,1996,20(4):52-55.
    [20]沈平平,俞稼镛.大幅度提高石油采收率的基础研究.石油工业出版社,2001.
    [21]沈平平.提高采收率技术进展.石油工业出版社,2006.
    [22]罗平亚,李华斌,郑焰,等.大庆油田疏水缔合聚合物-碱-表面活性剂三元复合驱提高采收率研究[J].大庆石油地质与开发,2001,20(6):1-5.
    [23]王健,罗平亚,郑焰,等.大庆油田条件下疏水缔合两性聚合物三元复合驱和聚合物驱体系的应用性能[J].油田化学,2000,17(2):168-172.
    [24]韩明,向问陶,张健,等.疏水缔合聚合物在盐水中的溶解性研究[J].中国海上油气,2006,18(1):28-31.
    [25]王健.化学驱物理化学渗流理论与应用.石油工业社,2008.
    [26]杨艳,蒲万芬,刘永兵.NNMB/NAPS二元体系与原油界面张力[J].西南石油学院学报,2006,28(1):68.
    [27]李柏林,程杰成.二元无碱驱油体系研究[J].油气地面工程,2004,23(6):16-17.
    [28]王德民.国外三次采油技术[M].上海:上海交通大学出版社,1992.
    [29]陈中华,李华斌.复合驱中界面张力数量级与提高采收率的关系研究[J].2006,25(3):53-57.
    [30]吴文祥.聚合物及表面活性剂二元复合体系驱油物理模拟实验[J].大庆石油学院学报,2005,29(6):98-100.
    [31]李孟涛,刘先贵.无碱二元复合体系驱油试验研究[J].石油钻采工艺,2004,26(5):73-76.
    [32]唐宪法,赖艳玲,周洲.组合驱提高原油采收率实验研究[J].石油钻采工艺,2006,29(6):47-49.
    [33]范文平.孤东油田二元复合驱现场应用研究.内江科技.2008,12:113.
    [34]顾永涛,李春燕,冯海船等.孤东油田七西区54-61二元复合驱见效初期动态分析,内部资料.
    [35]张星,李兆敏,孙仁远,苏成祥.聚合物流变性实验研究.新疆石油地质,2006,27(2):197-199.
    [36]王立军.聚合物溶液粘弹性对提高驱油效率的作用[J].大庆石油学院博士论文,2003.
    [37]岳湘安,张立娟,刘中春等.聚合物溶液在油藏孔隙中的流动及微观驱油机理 [J].油气地质与采收率质与采收率.2002,9(3):4-6.
    [38]夏惠芬,王德民,侯吉瑞等.聚合物溶液的粘弹性对驱油效率的影响田.大庆石油学院学报,2002,26(2):109-111.
    [39]崔波.三种聚合物体系流变性的比较研究.化工技术与开发,2009,37(8):7-10.
    [40]黄延章,于大森,张桂芳.聚合物微观驱油机理研究[J].油田化学,1990,7(1):57-60
    [41]郭尚平.微观驱油物理化学机理.北京:科技出版社,1990.
    [42]陈辉,李兆敏,黄善波等.含油聚合物溶液的流变性实验研究[J].辽宁化工,2009,38(8):505-509.
    [43]孙焕泉,张以根,曹绪龙.聚合物驱油技术.石油大学出版社,2002.
    [44]曹宝格,徐士琪,罗平亚等.不同油藏条件下缔合聚合物溶液的宏观流变性研究[J].钻采工艺,2006,29(6):33-37.
    [45]杨二龙,宋考平,谢远洋,贾洪波.聚合物溶液与原油界面流变性的实验.大庆石油学院学报,2006,30(2):35-37.
    [46]王启民,廖广志,牛金刚.聚合物驱油技术的实践与认识.大庆石油地质与开发,1999,18(4):1-5.
    [47]程杰成,沈兴海,袁士义,罗健辉.新型梳形抗盐聚合物的流变性.高分子材料科学与工程,2004,20(4):119-121.
    [48]夏惠芬,岳湘安,曹广胜,张世峰.渗流过程中聚合物溶液的流变性.大庆石油学院学报,2000,24(3):26-29.
    [49]马俊涛.疏水缔合型聚丙烯酞胺的合成与性能及其与离子型表面活性剂的相互作用.四川大学博士论文,2002.
    [50]贺十中,范洪富.表面活性剂对聚合物溶液流变性的影响.化学工程师,2006,128(5):15-17.
    [51]张星,李兆敏,徐林静.聚合物在多孔介质中的流变性研究.石油钻探技术,2010,38(1):8-10.
    [52]夏惠芬,王德民,刘中春,杨清彦.粘弹性聚合物溶液提高微观驱油效率的机理研究.石油学报,2001,22(4):60-64.
    [53]岳湘安,张立娟,刘中春,侯吉瑞,夏慧芬.聚合物溶液在油藏孔隙中的流 动及微观驱油机理.油气地质与采收率,2002,9(3):4-6.
    [54]王启民,廖广志,牛金刚.聚合物驱油技术的实践与认识.大庆石油地质与开发,1999,18(4):1-5.
    [55]颜肖慈,罗明道编.界面化学.化学工业出版社[M],北京,2005.
    [56]闫存章,李阳.三次采油技术文集,石油工业出版社,2005.
    [57]F.J.Trogus, R.S.Schechter, elta.Adsorption of Mixed Surfactant Systems.SPE6845,1979.
    [58]W.Fred Ramyez, C.Denoyelle, etal.Adsorption and Interfaction Tension Dynamics of Surfactants in Porous Media.SPE9280,1980.
    [59]Victor.M.Ziegler, Lyman.L.Handy.the Effect of Temperature on Surfacrant Adsorption in Porous Media.SPE8264,1981.
    [60]Ahmadall Tabatabal.Marla V. Gonzalez, etal, Reducing Surfactant Adsorption in Carbonate Reservoirs.SPE24105,1993.
    [61]Marc R.M.Vermet, Remy Truchetet etal.Compositional Effects on the Adsorption of Surfantant from Aqueous Phases in Equilibrium with a Middle Phase Microemulsion.SPE11212,1982.
    [62]W.F.Ramirez, P.J.Shuler.Mass Transport of Surfactants in Porous Media.SPE7951,1980.
    [63]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1984.
    [64]Anstad T.Chemical Flooding of Oil Reservoirs:PT9:Dynamic Adsorption of Surfactant onto Sandstone Cores from Injection Water with and Without Polymer Present.Colloids Surfaces, Sect A V 127, NOS 1-3, p69,1997.
    [65]Zheng C G, EFFects of Polymer Adsorption and Flow Behavior on Two-Phase Flow in Porous Media.SPE 39632,1998.
    [66]李新功,孙利德,高小勇等.钙镁离子影响原油与ASP驱配方产生超低界面张力的机理.油气采收率技术[J],1999,6(2):1-4.
    [67]Smith, F.W.Ion-Exchange Conditioning of Sandstones for Chemical Flooding.SPE6598,1978.
    [68]樊西惊.化学驱油过程中表面活性剂的沉淀损失.油田化学[J],1987,4(4):333-338.
    [69]王云峰,张春光,侯万国等.表面活性剂及其在油气田中的应用,石油工业出版社.1995.
    [70]Yoram Cohen, F.R.Christ.Polymer Retention and Adsorption in the Flow of Polymer Solutins Through Porous Media.SPE12942,1986.
    [71]C.Huh, E.A.Lange, etal.Polymer Retention in Polymer Media.SPE20235,1990.
    [72]S.G.Goodyeat and J.D.Johnston.Measurement of Polymer Retention Levels Representative of the Formation.SPE24155,1992.
    [73]姜海峰.不同条件下毛管数对三元复合驱驱油效果影响的实验研究.大庆石油学院博士论文,2004.
    [74]姜海峰.粘弹性聚合物驱提高驱油效率机理的实验研究.大庆石油学院博士论文,2008.
    [75]Wenxiang Wu, Demin Wang, Haifeng Jiang. Effect of the visco-elasticity of displacing fluids on the relationship of capillary number and displacement efficiency in weak oil-wet cores. SPE 2007
    [76]N.C.Dey and S.K.Baihal.Retention Mechanism During Flow of Polymer Solutions Through Porous Media.SPE7818,1978.
    [77]张继风,叶仲斌等.疏水缔合聚合物在石英砂上的吸附特性研究,天然气勘探与开发[J],2004,27(4):48-51.
    [78]姜海峰.粘弹性聚合物驱提高驱油效率机理的实验研究.大庆石油学院博士论文,2008.
    [79]赵福麟,张艳玉,徐英霞.有中间相存在的微乳状液相图.华东石油学院学报,1985;9(4):39-49.
    [80]贾忠伟,杨清彦,兰玉波.水驱油微观物理模拟实验研究.大庆石油地质与开发,2002,21(1):46-49.
    [81]潘一山,宋义敏,高迎伏.三元复合驱驱油机理及乳液渗流规律NMRI研究.辽宁工程技术大学学报,2003,22(2):199-201.
    [82]刘建军,宋义敏,潘一山.ASP三元复合体系驱油微观机理研究.辽宁工程技术大学学报,2003,22(3):326-328.
    [83]王凤琴,曲志浩,孔令荣.利用微观模型研究乳状液驱油机理.石油勘探与开发,2006,33(2):221-223.
    [84]刘林玉,王震亮.储层特征与真实砂岩微观模型实验研究_以鄂尔多斯盆地华池地区长3储层为例.西北大学学报(自然科学版),2009,39(4):639-642.
    [85]李劲峰,曲志浩,孔令荣.用微观模型组合实验研究最低吸水层渗透率.石油学报,2000,21(1):55-58.
    [86]郭平等.低压油藏真实岩心薄片微观水驱试验研究.石油天然气学报(江汉石油学院学报),2009,31(4):100-104.
    [87]夏惠芬.粘弹性聚合物溶液的渗流及其应用.石油工业出版社.2002.
    [88]孙卫.安塞油田长6油层微观模型化学堵水实验.石油与天然气地质,1997,18(3):199-203,.
    [89]刘林玉,王震亮.真实砂岩微观模型实验在白豹地区长4-5砂岩微观非均质性研究中的应用.矿物学报,2008,28(1):55-57.
    [90]刘林玉,王震亮,高潮.真实砂岩微观模型在鄂尔多斯盆地泾川地区长8砂岩微观非均质性研究中的应用.地学前缘,2008,15(1):80-83.
    [91]孙更涛,李华斌,黎锡瑜等.下二门油田微凝胶驱微观驱油机理实验研究.石油钻采工艺,2005,27(2):38-40.
    [92]王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率.石油学报,2000,21(5):45-51.
    [93]夏惠芬,王德民,刘中春,杨清彦.粘弹性聚合物溶液提高微观驱油效率的机理研究.石油学报,2001,22(4):60-65.
    [94]康万利,刘述忍,孟令伟,王志伟,周阳.自发乳化微观驱油机理研究.石油天然气学报(江汉石油学院学报),2009,31(3):99-102.
    [95]刘振宇,许元泽,翟云芳.聚合物微观驱油机理的实验方法研究.大庆石油地质与开发,1996,15(1):47-50.
    [96]孙灵辉,萧汉敏,刘卫东,杨烨,候红.泡沫复合驱微观驱油机理实验研究.辽宁工程技术大学学报(自然科学版),2009,28:32-34.
    [97]刘中春,侯吉瑞,岳湘安,吴文祥.泡沫复合驱微观驱油特性分析.石油大学学报(自然科学版),2003,27(1):49-53.
    [98]李文海.前梨园洼陷西坡沙三中油藏微观驱油研究.内蒙古石油化工,2002,29:182-184.
    [99]何秋轩,高永利,任晓娟,杜慧.沈阳油田储层微观驱油效率研究.西南石油 学院学报,1996,18(2):20-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700