用户名: 密码: 验证码:
天津城市水、土环境中典型药物与个人护理品(PPCPs)分布及其复合雌激素效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物与个人护理品(Pharmaceuticals and Personal Care Products,PPCPs)是一类与人们日常生活联系最为密切的新型污染物。本文选取在我国大量使用的氟喹诺酮类抗生素、磺胺类抗生素和四环素类抗生素为目标物质,对其在天津城市水、土环境中的分布状况进行了调查。同时选取了雌酮、17β-雌二醇、雌三醇和17α-乙炔基雌二醇这4种典型雌激素类物质,对其二元混合溶液的复合雌激素效应进行了研究。
     本文建立并优化了基于液相色谱-质谱联用技术,可对水环境样品中氟喹诺酮类抗生素,磺胺类抗生素和四环素类抗生素同时进行检测的方法。该方法检出限为0.4-3.2 ng/L,目标抗生素加标回收率在60-105 %之间,相对标准偏差小于15 %。
     应用上述方法对天津市市内河流、市内排污河、污水处理厂出水与再生水、饮用水水源地以及自来水中18种氟喹诺酮类抗生素、磺胺类抗生素、四环素类抗生素的分布情况进行了检测。检测结果表明:
     在天津市内河流水样中,检测出13种目标抗生素,浓度范围在3.0-1080.0 ng/L。在天津市内排污河水样中,检测出9种目标抗生素,浓度范围在4.7-448.4 ng/L。在污水处理厂出水样品中,检测出12种目标抗生素,浓度范围在43.0-486.0 ng/L。在再生水样品中,检测出9种目标抗生素,浓度范围在4.0-311.0 ng/L。在饮用水水源地水样及自来水水样中均未检出目标抗生素。
     此外,本文还建立了基于液相色谱-质谱联用技术,可对土壤环境样品中氟喹诺酮类抗生素,磺胺类抗生素和四环素类抗生素同时进行检测的方法。该方法检出限为0.1-1.9μg/kg,目标抗生素加标回收率在56-97 %之间,相对标准偏差小于20 %。
     应用上述方法对天津市大沽排污河、北塘排污河,饮用水水源地于桥水库周边地区土壤中18种氟喹诺酮类抗生素、磺胺类抗生素、四环素类抗生素的分布情况进行了检测。检测结果表明:
     在大沽排污河周边土壤样品中,检测出12种目标抗生素,浓度范围在1.4-114.8μg/kg。在北塘排污河周边土壤中,检测出9种目标抗生素,浓度范围在0.7-306.9μg/kg,在饮用水水源地周边土壤样品中,检测出全部18种目标抗生素,浓度范围在0.5-20343.2μg/kg。
     本文对重组基因酵母检测方法的实验条件进行优化,确定了酵母与受试溶液最优反应时间为2 h,确定了酵母与O-NPG反应时间为30 min。
     对人乳腺癌细胞(MCF-7)增殖检测方法的实验条件进行优化,确定以DMSO为溶剂时,可导致MCF-7细胞增殖效应显著降低,故应选取无酚红DMEM培养基为配制待测溶液时所用溶剂。确定培养基中的酚红、血清中内源性雌激素对MCF-7细胞有增殖效应,应选取无酚红DMEM培养基与经活性炭/葡聚糖处理的胎牛血清。确定使用无酚红DMEM培养基最优预培养时间为7 d。确定加入待测样品后最优培养时间为48 h。
     应用优化后重组基因酵母方法和人乳腺癌细胞(MCF-7)增殖方法检测由雌酮、17β-雌二醇、雌三醇及17α-乙炔基雌二醇4种雌激素组成的二元混合体系的复合雌激素效应,并使用浓度加和模型(CA)与独立作用模型(IA)对二元混合体系的复合雌激素效应进行预测,结果证明CA模型更适用于重组基因酵母检测体系,IA模型更适用于人乳腺癌细胞(MCF-7)增殖检测体系。在重组基因酵母检测体系中,二元混合溶液表现出的复合雌激素效应比大于1的比例为19.0 %,在人乳腺癌细胞(MCF-7)增殖检测体系中,二元混合溶液表现出的复合雌激素效应比大于1的比例仅为6.2 %。
Pharmaceuticals and Personal Care Products as Pollutants (PPCPs) comprise a diverse collection of chemical substances, including any product used by individuals for personal health or cosmetic reasons or used by agribusiness to enhance growth or health of livestock. In this paper, fluoroquinolones, tetracyclines and sulfonamides were selected as traget compounds, considering that they are the the three most commonly used antibiotic groups in China. The combined estrogenic activity of binary mixtures of estrone, 17β-estradiol, estiol and 17α-ethynylestradiol at different equipotent concentrations were also tested.
     The simultaneous analysis method for multiple classes of antibiotics in water samples via solid phase extraction and liquid chromatography-tandem mass spectrometry were established and optimized. The limit of detection of target antibiotics were at the range of 0.4-3.2 ng/L, the recoveries were between 60% and 105%, and the relative standard deviation was less than 15%.
     This optimized analytical method were applied for the detection of fluoroquinolones, tetracyclines and sulfonamides in rivers, discharge river, wastewater treatment effluent, reclaimed water, drinking water resource and tap water.
     Thirteen target antibiotics were detected in the river, with the concentration of 3.0-1080.0 ng/L. Nine target antibiotics were detected in the discharge river, with the concentration of 4.7-448.4 ng/L. In the wastewater treatment effluent, twelve target antibiotics were determined, of which the contents were at the range between 43.0 ng/L and 486.0 ng/L. Nine target antibiotics were detected in the reclaimed water, with the concentration of 4.0-311.0 ng/L. None of the target antibiotics were detected in drinking water resource and tap water.
     Moreover, the simultaneous analysis method for multiple classes of antibiotics in soil samples via solid phase extraction and liquid chromatography-tandem mass spectrometry were established and optimized. The limit of detection of target antibiotics were at the range of 0.1-1.9μg/kg, the recoveries were between 56% and 97%, and the relative standard deviation was less than 20%.
     This optimized analytical method were applied for the detection of fluoroquinolones, tetracyclines and sulfonamides in soil samples collected from the irrigation area of Dagu discharge river and Beitang discharge river. The soil samples collected from the farmland and orchard near the Yvqiao reservoir were also analysed.
     Twelve target antibiotics were detected in the samples collected from the irrigation area of Dagu discharge river, the concentration were from 1.4μg/kg to114.8μg/kg. Nine target antibiotics were detected in the samples collected from the irrigation area of Beitang discharge river, with the concentration of 0.7-306.9μg/kg. All of the target antibiotics were detected in the samples collected from Yvqiao reservoir, with the concentration of 0.5-20343.2μg/kg.
     The procedure of recombined yeast estrogen screen were optimized by adjusting the sample reaction time to 2 h and set the color reaction time as 30 min.
     The parameters for cell proliferation assay using MCF-7 human breast cancer cells were optimized. The DMEM medium without phenol was selected as the solvent for analytical compounds. The fetal bovine serum treated by activated carbon / dextran was necessary for the proliferation test. The optimized pro-incubation time with DMEM medium without phenol was 7 d. The analytical reaction time was set as 48 h.
     The optimized recombined yeast estrogen screen and cell proliferation assay were applied for the test of combined estrogenic activity of binary mixtures of estrone, 17β-estradiol, estiol and 17α-thynylestradiol at different equipotent concentrations. Concentration addition model and independent action model were used to predict the combined estrogenic activity of binary mixtures. The results demonstrated that the prediction of concentration addition model was less deviated in the recombined yeast estrogen screen than the prediction of independent action model. However, the independent action model was better than concentration addition model in the cell proliferation assay.
引文
[1] J.A. Field, C.A. Johnson, and J.B. Rose, What is "emerging"? Environmental Science & Technology 40 (2006) 7105-7105.
    [2]杨红莲,袭著革,闫峻,张伟,新型污染物及其生态和环境健康效应.生态毒理学报(2009) 28-34.
    [3]胡洪营,王超,郭美婷,药品和个人护理用品(PPCPs)对环境的污染现状与研究进展.生态环境(2005) 947-952.
    [4] K. Fent, A.A. Weston, and D. Caminada, Ecotoxicology of human pharmaceuticals. Aquatic Toxicology 76 (2006) 122-159.
    [5] J.M. Brausch, and G.M. Rand, A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 82 (2011) 1518-1532.
    [6] T.A. Ternes, M. Meisenheimer, D. McDowell, F. Sacher, H.J. Brauch, B.H. Gulde, G. Preuss, U. Wilme, and N.Z. Seibert, Removal of pharmaceuticals during drinking water treatment. Environmental Science & Technology 36 (2002) 3855-3863.
    [7]吕妍,袁涛,王文华,个人护理用品生态风险评价研究进展.环境与健康杂志(2007) 650-653.
    [8] E.M. Golet, I. Xifra, H. Siegrist, A.C. Alder, and W. Giger, Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science & Technology 37 (2003) 3243-3249.
    [9] A. Joss, E. Keller, A.C. Alder, A. Gobel, C.S. McArdell, T. Ternes, and H. Siegrist, Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Research 39 (2005) 3139-3152.
    [10] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, and H.T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environmental Science & Technology 36 (2002) 1202-1211.
    [11] S.T. Glassmeyer, E.T. Furlong, D.W. Kolpin, J.D. Cahill, S.D. Zaugg, S.L. Werner, M.T. Meyer, and D.D. Kryak, Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination. Environmental Science & Technology 39 (2005) 5157-5169.
    [12] R. Hirsch, T.A. Ternes, K. Haberer, A. Mehlich, F. Ballwanz, and K.L. Kratz, Determination of antibiotics in different water compartments via liquid chromatography electrospray tandem mass spectrometry. Journal of Chromatography A 815 (1998) 213-223.
    [13] T.A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers. Water Research 32 (1998) 3245-3260.
    [14] C.G. Daughton, and T.A. Ternes, Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environmental Health Perspectives 107 (1999) 907-938.
    [15] X.S. Miao, F. Bishay, M. Chen, and C.D. Metcalfe, Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental Science & Technology 38 (2004) 3533-3541.
    [16] M.J. Gomez, M. Petrovic, A.R. Fernandez-Alba, and D. Barcelo, Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters, 7th International Symposium on Advances in Extraction Technologies, Elsevier Science Bv, Carmpinas, BRAZIL, 2005, pp. 224-233.
    [17] N. Lindqvist, T. Tuhkanen, and L. Kronberg, Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Research 39 (2005) 2219-2228.
    [18] A. Joss, S. Zabczynski, A. Gobel, B. Hoffmann, D. Loffler, C.S. McArdell, T.A. Ternes, A. Thomsen, and H. Siegrist, Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Research 40 (2006) 1686-1696.
    [19] M.D. Hernando, M. Mezcua, A.R. Fernandez-Alba, and D. Barcelo, Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69 (2006) 334-342.
    [20] A. Nikolaou, S. Meric, and D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry 387 (2007) 1225-1234.
    [21] C. Carlsson, A.K. Johansson, G. Alvan, K. Bergman, and T. Kuhler, Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients. Science of The Total Environment 364 (2006) 67-87.
    [22] B.I. Escher, N. Bramaz, R.I.L. Eggen, and M. Richter, In vitro assessment of modes of toxic action of pharmaceuticals in aquatic life. Environmental Science & Technology 39 (2005) 3090-3100.
    [23] M. Gros, M. Petrovic, and D. Barcelo, Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the ebro river basin (northeast spain). Environmental Toxicology and Chemistry 26 (2007) 1553-1562.
    [24] E.J. Routledge, D. Sheahan, C. Desbrow, G.C. Brighty, M. Waldock, and J.P. Sumpter, Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environmental Science & Technology 32 (1998) 1559-1565.
    [25] C. Desbrow, E.J. Routledge, G.C. Brighty, J.P. Sumpter, and M. Waldock, Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Science & Technology 32 (1998) 1549-1558.
    [26] R. Triebskorn, H. Casper, A. Heyd, R. Eikemper, H.R. Kohler, and J. Schwaiger, Toxic effects of the non-steroidal anti-inflammatory drug diclofenac Part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 68 (2004) 151-166.
    [27] J.L. Oaks, M. Gilbert, M.Z. Virani, R.T. Watson, C.U. Meteyer, B.A. Rideout, H.L. Shivaprasad, S. Ahmed, M.J.I. Chaudhry, M. Arshad, S. Mahmood, A. Ali, and A.A. Khan, Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427 (2004) 630-633.
    [28] W.H. Xu, G. Zhang, X.D. Li, S.C. Zou, P. Li, Z.H. Hu, and J. Li, Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research 41 (2007) 4526-4534.
    [29] S. Borjesson, S. Melin, A. Matussek, and P.E. Lindgren, A seasonal study of the mecA gene and Staphylococcus aureus including methicillin-resistant S. aureus in a municipal wastewater treatment plant. Water Research 43 (2009) 925-932.
    [30] G.C. Ghosh, T. Okuda, N. Yamashita, and H. Tanaka, Occurrence and elimination of antibiotics at four sewage treatment plants in Japan and their effects on bacterial ammonia oxidation. Water Science and Technology 59 (2009) 779-786.
    [31] S. Suarez, J.M. Lerna, and F. Omil, Pre-treatment of hospital wastewater by coagulation-flocculation and flotation. Bioresource Technology 100 (2009) 2138-2146.
    [32] L. Tong, P. Li, Y. Wang, and K. Zhu, Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere 74 (2009) 1090-1097.
    [33] C.X. Wu, J.D. Witter, A.L. Spongberg, and K.P. Czakowski, Occurrence of selected pharmaceuticals in an agricultural landscape, western Lake Erie basin. Water Research 43 (2009) 3407-3416.
    [34] G.G. Ying, R.S. Kookana, and D.W. Kolpin, Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies. Journal of Environmental Monitoring 11 (2009) 1498-1505.
    [35] U. Jux, R.M. Baginski, H.G. Arnold, M. Kronke, and P.N. Seng, Detection of pharmaceutical contaminations of river, pond, and tap water from Cologne (Germany) and surroundings. International Journal of Hygiene and Environmental Health 205 (2002) 393-398.
    [36] K. Reddersen, T. Heberer, and U. Dunnbier, Identification and significance of phenazone drugs and their metabolites in ground- and drinking water. Chemosphere 49 (2002) 539-544.
    [37]周海东,黄霞,文湘华,城市污水中有关新型微污染物PPCPs归趋研究的进展.环境工程学报(2007) 1-7.
    [38]马永民,渠志华,刘克明,李维宏,郭昌胜,王玉秋,城市再生水生产工艺中典型紫外防晒剂的去除.生态毒理学报(2006) 278-282.
    [39]徐维海,张干,邹世春,李向东,刘玉春,固相萃取-液相色谱/串联质谱法分析水体中痕量抗生素.环境化学25 (2006) 232-233.
    [40]叶计朋,邹世春,张干,徐维海,典型抗生素类药物在珠江三角洲水体中的污染特征.生态环境16 (2007) 384-388.
    [41] X.Z. Peng, Y.J. Yu, C.M. Tang, J.H. Tan, Q.X. Huang, and Z.D. Wang, Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Science of the Total Environment 397 (2008) 158-166.
    [42]刘小云,舒为群,水中抗生素污染现状及检测技术研究进展.中国卫生检验杂志(2005) 1011-1014.
    [43]徐维海,典型抗生素类药物在珠江三角洲水环境中的分布、行为与归宿,中国科学院研究生院(广州地球化学研究所),中国科学院研究生院(广州地球化学研究所),广州, 2007.
    [44]谭建华,城市水环境中抗菌药物的分析,中国科学院研究生院(广州地球化学研究所),中国科学院研究生院(广州地球化学研究所),广州, 2007.
    [45] K. Kummerer, Pharmaceuticals in the environment- Source, fate, effects and risks., Springer, Berlin Heidelberg New York, 2004.
    [46] C.S. McArdell, E. Molnar, M.J.F. Suter, and W. Giger, Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland. Environmental Science & Technology 37 (2003) 5479-5486.
    [47]王冰,孙成,胡冠九,环境中抗生素残留潜在风险及其研究进展.环境科学与技术(2007) 108-112.
    [48] R. Hirsch, T. Ternes, K. Haberer, and K.L. Kratz, Occurrence of antibiotics in the aquatic environment. Science of the Total Environment 225 (1999) 109-118.
    [49] E.M. Golet, A.C. Alder, A. Hartmann, T.A. Ternes, and W. Giger, Trace determination of fluoroquinolone antibacterial agents in solid-phase extraction urban wastewater by and liquid chromatography with fluorescence detection. Analytical Chemistry 73 (2001) 3632-3638.
    [50] E.M. Golet, A.C. Alder, and W. Giger, Environmental exposure and riskassessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environmental Science & Technology 36 (2002) 3645-3651.
    [51] M.E. Lindsey, M. Meyer, and E.M. Thurman, Analysis of trace levels of sulfonamide and tetracycline antimicrobials, in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry 73 (2001) 4640-4646.
    [52] K.G. Karthikeyan, and M.T. Meyer, Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment 361 (2006) 196-207.
    [53] A.L. Batt, D.D. Snow, and D.S. Aga, Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA. Chemosphere 64 (2006) 1963-1971.
    [54] F. Sacher, F.T. Lang, H.J. Brauch, and I. Blankenhorn, Pharmaceuticals in groundwaters - Analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany. Journal of Chromatography A 938 (2001) 199-210.
    [55] H. Muckter, T. Ternes, N. Hermann, H. Meiser, and B. Liebl, Sulfamethoxazole (SMZ) in drinking water. Naunyn-Schmiedebergs Archives of Pharmacology 369 (2004) 576.
    [56] G. Hamscher, S. Sczesny, H. Hoper, and H. Nau, Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry 74 (2002) 1509-1518.
    [57] T. Christian, R.J. Schneider, H.A. Farber, D. Skutlarek, M.T. Meyer, and H.E. Goldbach, Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochimica Et Hydrobiologica 31 (2003) 36-44.
    [58] E. Martinez-Carballo, C. Gonzalez-Barreiro, S. Scharf, and O. Gans, Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution 148 (2007) 570-579.
    [59] M.J. Hilton, and K.V. Thomas, Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography A 1015 (2003) 129-141.
    [60] S. Reverte, F. Borrull, E. Pocurull, and R.M. Marce, Determination of antibiotic compounds in water by solid-phase extraction-high-performance liquid chromatography-(electrospray) mass spectrometry. Journal of Chromatography A 1010 (2003) 225-232.
    [61]徐维海,张干,邹世春,李向东,刘玉春,香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其季节变化.环境科学27 (2006) 2458-2462.
    [62]徐维海,张干,邹世春,李向东,李平,胡朝晖,李军,典型抗生素类药物在城市污水处理厂中的含量水平及其行为特征.环境科学28 (2007) 1779-1783.
    [63] Y.W. Li, C.H. Mo, N. Zhao, R.J. Zhang, and R.H. Yi, Determination of sulfonamides antibiotics in water and soil using high performance liquid chromatography. Chinese Journal of Analytical Chemistry 36 (2008) 954-958.
    [64]张慧敏,章明奎,顾国平,浙北地区畜禽粪便和农田土壤中四环素类抗生素残留.生态与农村环境学报(2008) 69-73.
    [65]陈昦,董元华,王辉,安琼,张劲强,刘新程,江苏省畜禽粪便中磺胺类药物残留特征.农业环境科学学报(2008) 385-389.
    [66]孙广大,苏仲毅,陈猛,袁东星,固相萃取-超高压液相色谱-串联质谱同时分析环境水样中四环素类和喹诺酮类抗生素.色谱(2009) 54-58.
    [67] B. Halling-Sorensen, S.N. Nielsen, P.F. Lanzky, F. Ingerslev, H.C.H.Lutzhoft, and S.E. Jorgensen, Occurrence, fate and effects of pharmaceutical substances in the environment - A review. Chemosphere 36 (1998) 357-394.
    [68] T.A. Ternes, A. Joss, and H. Siegrist, Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environmental Science & Technology 38 (2004) 392A-399A.
    [69] M. Petrovic, M.D. Hernando, M.S. Diaz-Cruz, and D. Barcelo, Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. Journal of Chromatography A 1067 (2005) 1-14.
    [70] S. Castiglioni, R. Bagnati, R. Fanelli, F. Pomati, D. Calamari, and E. Zuccato, Removal of pharmaceuticals in sewage treatment plants in Italy. Environmental Science & Technology 40 (2006) 357-363.
    [71] N.M. Vieno, T. Tuhkanen, and L. Kronberg, Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environmental Science & Technology 39 (2005) 8220-8226.
    [72] J. Tolls, Sorption of veterinary pharmaceuticals in soils: A review. Environmental Science & Technology 35 (2001) 3397-3406.
    [73]叶赛,水环境抗生素分析及全国沿岸陆源排海浓度分布研究,大连海事大学,大连海事大学,大连, 2008.
    [74] M. Rabolle, and N.H. Spliid, Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40 (2000) 715-722.
    [75] F. Ingerslev, L. Torang, M.L. Loke, B. Halling-Sorensen, and N. Nyholm, Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44 (2001) 865-872.
    [76] A. Al-Ahmad, F.D. Daschner, and K. Kummerer, Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Archives of Environmental Contamination and Toxicology 37 (1999) 158-163.
    [77]张从良,王岩,王福安,磺胺嘧啶在水中的微生物降解研究.生态环境(2007) 1679-1682.
    [78] D.A. Volmer, and J.P.M. Hui, Study of erythromycin A decomposition products in aqueous solution by solid-phase microextraction liquid chromatography tandem mass spectrometry. Rapid Communications in Mass Spectrometry 12 (1998) 123-129.
    [79] K.A. Loftin, C.D. Adams, M.T. Meyer, and R. Surampalli, Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. Journal of Environmental Quality 37 (2008) 378-386.
    [80]刘锋,陶然,应光国,杨基峰,张丽娟,抗生素的环境归宿与生态效应研究进展.生态学报(2010) 4503-4519.
    [81] F.F. Reinthaler, J. Posch, G. Feierl, G. Wust, D. Haas, G. Ruckenbauer, F. Mascher, and E. Marth, Antibiotic resistance of E-coli in sewage and sludge. Water Research 37 (2003) 1685-1690.
    [82] O.C. Stine, J.A. Johnson, A. Keefer-Norris, K.L. Perry, J. Tigno, S. Qaiyumi, M.S. Stine, and J.G. Morris, Widespread distribution of tetracycline resistance genes in a confined animal feeding facility. International Journal of Antimicrobial Agents 29 (2007) 348-352.
    [83] B. Halling-Sorensen, A.M. Jacobsen, J. Jensen, G. Sengelov, E. Vaclavik, and F. Ingerslev, Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: A field-scale study in southern Denmark. Environmental Toxicology and Chemistry 24 (2005) 802-810.
    [84] W.D. Kong, Y.G. Zhu, B.J. Fu, P. Marschner, and J.Z. He, The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbialcommunity. Environmental Pollution 143 (2006) 129-137.
    [85] F. Liu, G.G. Ying, R. Tao, Z. Jian-Liang, J.F. Yang, and L.F. Zhao, Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environmental Pollution 157 (2009) 1636-1642.
    [86] L.H. Yang, G.G. Ying, H.C. Su, J.L. Stauber, M.S. Adams, and M.T. Binet, Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environmental Toxicology and Chemistry 27 (2008) 1201-1208.
    [87] A.B.A. Boxall, P. Johnson, E.J. Smith, C.J. Sinclair, E. Stutt, and L.S. Levy, Uptake of veterinary medicines from soils into plants. Journal of Agricultural and Food Chemistry 54 (2006) 2288-2297.
    [88] K. Fent, C. Escher, and D. Caminada, Estrogenic activity of pharmaceuticals and pharmaceutical mixtures in a yeast reporter gene system. Reproductive Toxicology 22 (2006) 175-185.
    [89] P.Y. Kunz, and K. Fent, Estrogenic activity of UV filter mixtures. Toxicology and Applied Pharmacology 217 (2006) 86-99.
    [90] T.A. Ternes, M. Stumpf, J. Mueller, K. Haberer, R.D. Wilken, and M. Servos, Behavior and occurrence of estrogens in municipal sewage treatment plants - I. Investigations in Germany, Canada and Brazil. Science of The Total Environment 225 (1999) 81-90.
    [91]邓南圣,吴峰,环境中的内分泌干扰物,化学工业出版社, 2004.
    [92] A.D. Pickering, and J.P. Sumpter, Comprehending endocrine disrupters in aquatic environments. Environmental Science & Technology 37 (2003) 331A-336A.
    [93] J.J.A. Mendes, The endocrine disrupters: a major medical challenge. Food and Chemical Toxicology 40 (2002) 781-788.
    [94] N. Rajapakse, E. Silva, and A. Kortenkamp, Combining xenoestrogens at levels below individual No-observed-effect concentrations dramatically enhances steroid hormone action. Environmental Health Perspectives 110 (2002) 917-921.
    [95] E. Silva, N. Rajapakse, and A. Kortenkamp, Something from "nothing" - Eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environmental Science & Technology 36 (2002) 1751-1756.
    [96] W.V. Welshons, K.A. Thayer, B.M. Judy, J.A. Taylor, E.M. Curran, and F.S. vom Saal, Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environmental Health Perspectives 111 (2003) 994-1006.
    [97] B. Ferrari, R. Mons, B. Vollat, B. Fraysse, N. Paxeus, R. Lo Giudice, A. Pollio, and J. Garric, Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental Toxicology and Chemistry 23 (2004) 1344-1354.
    [98] J.C. O'Connor, J.C. Cook, M.S. Marty, L.G. Davis, A.M. Kaplan, and E.W. Carney, Evaluation of Tier I screening approaches for detecting endocrine-active compounds (EACs). Critical Reviews in Toxicology 32 (2002) 521-549.
    [99] N. Rajapakse, E. Silva, M. Scholze, and A. Kortenkamp, Deviation from additivity with estrogenic mixtures containing 4-nonylphenol and 4-tert-octylphenol detected in the E-SCREEN assay. Environmental Science & Technology 38 (2004) 6343-6352.
    [100] L.S. McCarty, and C.J. Borgert, Review of the toxicity of chemical mixtures: Theory, policy, and regulatory practice. Regulatory Toxicology and Pharmacology 45 (2006) 119-143.
    [101] E.J. Routledge, and J.P. Sumpter, Estrogenic activity of surfactants andsome of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry 15 (1996) 241-248.
    [102] F.D.L. Leusch, C. De Jager, Y. Levi, R. Lim, L. Puijker, F. Sacher, L.A. Tremblay, V.S. Wilson, and H.F. Chapman, Comparison of Five in Vitro Bioassays to Measure Estrogenic Activity in Environmental Waters. Environmental Science & Technology 44 (2010) 3853-3860.
    [103] K. Graumann, A. Breithofer, and A. Jungbauer, Monitoring of estrogen mimics by a recombinant yeast assay: synergy between natural and synthetic compounds? Science of The Total Environment 225 (1999) 69-79.
    [104] J. Payne, N. Rajapakse, M. Wilkins, and A. Kortenkamp, Prediction and assessment of the effects of mixtures of four xenoestrogens. Environmental Health Perspectives 108 (2000) 983-987.
    [105] J. Payne, M. Scholze, and A. Kortenkamp, Mixtures of four organochlorines enhance human breast cancer cell proliferation. Environmental Health Perspectives 109 (2001) 391-397.
    [106] M. Aube, C. Larochelle, and P. Ayotte, Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines. Environmental Research 111 (2011) 337-347.
    [107] A. Kortenkamp, Low dose mixture effects of endocrine disrupters: implications for risk assessment and epidemiology, 4th Copenhagen Workshop on Endocrine Disrupters, Blackwell Publishing, Copenhagen, DENMARK, 2007, pp. 233-237.
    [108] K.L. Thorpe, T.H. Hutchinson, M.J. Hetheridge, M. Scholze, J.P. Sumpter, and C.R. Tyler, Assessing the biological potency of binary mixtures of environmental estrogens using vitellogenin induction in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Science & Technology 35 (2001) 2476-2481.
    [109] K.L. Thorpe, M. Gross-Sorokin, I. Johnson, G. Brighty, and C.R. Tyler, An assessment of the model of concentration addition for predicting the estrogenic activity of chemical mixtures in wastewater treatment works effluents. Environmental Health Perspectives 114 (2006) 90-97.
    [110]宋福永,李杰,应用卵黄蛋白原检测内分泌干扰物质的研究进展.环境与健康杂志(2004) 264-266.
    [111]周庆祥,江桂斌,卵黄蛋白原的分离测定及其在环境内分泌干扰物质筛选中的应用.化学进展(2003) 67-73.
    [112]吴楠,张毅,李惠云,张高峰,刘青,魏华,壬基酚和雌二醇干扰罗氏沼虾卵黄蛋白原vtg基因表达的效应.动物学杂志(2007) 1-7.
    [113] G.D. Charles, C. Gennings, T.R. Zacharewski, B.B. Gollapudi, and E.W. Carney, An approach for assessing estrogen receptor-mediated interactions in mixtures of three chemicals: A pilot study. Toxicological Sciences 68 (2002) 349-360.
    [114] H. Tinwell, and J. Ashby, Sensitivity of the immature rat uterotrophic assay to mixtures of estrogens. Environmental Health Perspectives 112 (2004) 575-582.
    [115] A.L. Batt, and D.S. Aga, Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination. Analytical Chemistry 77 (2005) 2940-2947.
    [116] M. Gros, M. Petrovic, and D. Barcelo, Multi-residue analytical methods using LC-tandem MS for the determination of pharmaceuticals in environmental and wastewater samples: a review. Analytical and Bioanalytical Chemistry 386 (2006) 941-952.
    [117] K. Bester, Quantification with HPLC-MS/MS for environmental issues: quality assurance and quality assessment. Analytical and Bioanalytical Chemistry 391 (2008) 15-20.
    [118] M. Kostopoulou, and A. Nikolaou, Analytical problems and the need for sample preparation in the determination of pharmaceuticals and their metabolites in aqueous environmental matrices. Trac-Trends in Analytical Chemistry 27 (2008) 1023-1035.
    [119] C. Lacey, G. McMahon, J. Bones, L. Barron, A. Morrissey, and J.M. Tobin, An LC-MS method for the determination of pharmaceutical compounds in wastewater treatment plant influent and effluent samples. Talanta 75 (2008) 1089-1097.
    [120] I. Senta, S. Terzic, and M. Ahel, Simultaneous Determination of Sulfonamides, Fluoroquinolones, Macrolides and Trimethoprim in Wastewater and River Water by LC-Tandem-MS. Chromatographia 68 (2008) 747-758.
    [121] S. Grujic, T. Vasiljevic, and M. Lausevic, Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry. Journal of Chromatography A 1216 (2009) 4989-5000.
    [122] B. Kasprzyk-Hordern, R.M. Dinsdale, and A.J. Guwy, The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research 43 (2009) 363-380.
    [123] B. Li, T. Zhang, Z.Y. Xu, and H.H.P. Fang, Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta 645 (2009) 64-72.
    [124] M.C. Pietrogrande, G. Basaglia, and F. Dondi, Signal processing to evaluate parameters affecting SPE for multi-residue analysis of personal care products. Journal of Separation Science 32 (2009) 1249-1261.
    [125] F. Tamtam, F. Mercier, J. Eurin, M. Chevreuil, and B. Le Bot, Ultra performance liquid chromatography tandem mass spectrometry performance evaluation for analysis of antibiotics in natural waters. Analytical and Bioanalytical Chemistry 393 (2009) 1709-1718.
    [126] A.J. Watkinson, E.J. Murby, D.W. Kolpin, and S.D. Costanzo, The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Science of the Total Environment 407 (2009) 2711-2723.
    [127] W.H. Xu, G. Zhang, S.C. Zou, Z.H. Ling, G.L. Wang, and W. Yan, A Preliminary Investigation on the Occurrence and Distribution of Antibiotics in the Yellow River and its Tributaries, China. Water Environment Research 81 (2009) 248-254.
    [128]孙广大,苏仲毅,陈.猛,袁东星,固相萃取-超高压液相色谱-串联质谱同时分析环境水样中四环素类和喹诺酮类抗生素.色谱27 (2009) 54-58.
    [129]张桂香,刘希涛,赵烨,李艳霞,李帷,张学政,环境样品中抗生素残留分析研究进展.环境污染与防治(2009) 64-70.
    [130]高立红,史亚利,厉文辉,刘杰民,蔡亚岐,高效液相色谱-电喷雾串联质谱法检测环境水样中22种抗生素类药物.色谱(2010) 491-497.
    [131]赵晓峰,李云,张海军,倪余文,陈吉平,基于色谱-质谱联用的新型有机污染物分析方法与技术.色谱(2010) 435-441.
    [132] S.C. Kim, and K. Carlson, Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS. Analytical and Bioanalytical Chemistry 387 (2007) 1301-1315.
    [133] K.E. Maudens, G.F. Zhang, and W.E. Lambert, Quantitative analysis of twelve sulfonamides in honey after acidic hydrolysis by high-performance liquid chromatography with post-column derivatization and fluorescence detection. Journal of Chromatography A 1047 (2004) 85-92.
    [134] G. Gatidou, N.S. Thomaidis, A.S. Stasinakis, and T.D. Lekkas, Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography-mass spectrometry. Journal of Chromatography A 1138 (2007) 32-41.
    [135] D. Loffler, and T.A. Ternes, Analytical method for the determination of the aminoglycoside gentamicin in hospital wastewater via liquid chromatography electrospray-tandem mass spectrometry. Journal of Chromatography A 1000 (2003) 583-588.
    [136] T.A. Ternes, M. Bonerz, N. Herrmann, D. Loffler, E. Keller, B.B. Lacida, and A.C. Alder, Determination of pharmaceuticals, iodinated contrast media and musk fragrances in sludge by LC/tandem MS and GC/MS. Journal of Chromatography A 1067 (2005) 213-223.
    [137] P.A. Blackwell, H.C.H. Lutzhoft, H.P. Ma, B. Halling-Sorensen, A.B.A. Boxall, and P. Kay, Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection. Talanta 64 (2004) 1058-1064.
    [138] A.M. Jacobsen, B. Halling-Sorensen, F. Ingerslev, and S.H. Hansen, Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1038 (2004) 157-170.
    [139] S. Morales-Munoz, J.L. Luque-Garcia, and M.D.L. de Castro, Screening method for linear alkylbenzene sulfonates in sediments based on water Soxhlet extraction assisted by focused microwaves with on-line preconcentration/derivatization/detection. Journal of Chromatography A 1026 (2004) 41-46.
    [140] M.P. Schlusener, M. Spiteller, and K. Bester, Determination of antibiotics from soil by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1003 (2003) 21-28.
    [141] D. Loffler, and T.A. Ternes, Determination of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1021 (2003) 133-144.
    [142] S. Dupeyron, P.M. Dudermel, and D. Couturier, Focused microwave assisted extraction (FMAE) of polynuclear aromatic hydrocarbons from contaminated soil: role of acetone and water content impact oil microwave efficiency. Analusis 25 (1997) 286-292.
    [143] A. Gobel, C.S. McArdell, M.J.F. Suter, and W. Giger, Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. Analytical Chemistry 76 (2004) 4756-4764.
    [144] K. Stoob, H.P. Singer, S. Stettler, N. Hartmann, S.R. Mueller, and C.H. Stamm, Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction. Journal of Chromatography A 1128 (2006) 1-9.
    [145] J. Xu, L.S. Wu, W.P. Chen, and A.C. Chang, Simultaneous determination of pharmaceuticals, endocrine disrupting compounds and hormone in soils by gas chromatography-mass spectrometry. Journal of Chromatography A 1202 (2008) 189-195.
    [146] M. Lillenberg, S. Yurchenko, K. Kipper, K. Herodes, V. Pihl, K. Sepp, R. Lohmus, and L. Nei, Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry. Journal ofChromatography A 1216 (2009) 5949-5954.
    [147] K.D. Brown, J. Kulis, B. Thomson, T.H. Chapman, and D.B. Mawhinney, Occurrence of antibiotics in hospital, residential, and dairy, effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environment 366 (2006) 772-783.
    [148] H. Nakata, K. Kannan, P.D. Jones, and J.P. Giesy, Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. Chemosphere 58 (2005) 759-766.
    [149] A.L. Batt, I.B. Bruce, and D.S. Aga, Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environmental Pollution 142 (2006) 295-302.
    [150] R.H. Lindberg, P. Wennberg, M.I. Johansson, M. Tysklind, and B.A.V. Andersson, Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environmental Science & Technology 39 (2005) 3421-3429.
    [151]李亚男,李岩,张廷,孟宪禹,赵新华,天津市北塘排污河不同水期的水质状况评价.中国给水排水(2008) 102-105.
    [152] S.F. Arnold, D.M. Klotz, B.M. Collins, P.M. Vonier, L.J. Guillette, Jr., and J.A. McLachlan, Synergistic Activation of Estrogen Receptor with Combinations of Environmental Chemicals, 1996, pp. 1489-1492.
    [153] K.W. Gaido, L.S. Leonard, S. Lovell, J.C. Gould, D. Baba?, C.J. Portier, and D.P. McDonnell, Evaluation of Chemicals with Endocrine Modulating Activity in a Yeast-Based Steroid Hormone Receptor Gene Transcription Assay. Toxicology and Applied Pharmacology 143 (1997) 205-212.
    [154] L.C. Folmar, M.J. Hemmer, N.D. Denslow, K. Kroll, J. Chen, A. Cheek, H. Richman, H. Meredith, and E.G. Grau, A comparison of the estrogenic potencies of estradiol, ethynylestradiol, diethylstilbestrol, nonylphenol and methoxychlor in vivo and in vitro. Aquatic Toxicology 60 (2002) 101-110.
    [155] B. Gutendorf, and J. Westendorf, Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology 166 (2001) 79-89.
    [156] A. Matsumura, A. Ghosh, G.S. Pope, and P.D. Darbre, Comparative study of oestrogenic properties of eight phytoestrogens in MCF7 human breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology 94 (2005) 431-443.
    [157] M.R. Zhao, Y. Zhang, W.P. Liu, C. Xu, L.M. Wang, and J.Y. Gan, Estrogenic activity of lambda-cyhalothrin in the MCF-7 human breast carcinoma cell line. Environmental Toxicology and Chemistry 27 (2008) 1194-1200.
    [158] H.Y. Chen, J.G. Xiao, G. Hu, J.W. Zhou, H. Xiao, and X.R. Wang, Estrogenicity of organophosphorus and pyrethroid pesticides. Journal of Toxicology and Environmental Health-Part A 65 (2002) 1419-1435.
    [159] V. Go, J. Garey, M.S. Wolff, and B.G.T. Pogo, Estrogenic potential of certain pyrethroid compounds in the MCF-7 human breast carcinoma cell line. Environmental Health Perspectives 107 (1999) 173-177.
    [160] I.Y. Kim, J.H. Shin, H.S. Kim, S.J. Lee, I.H. Kang, T.S. Kim, H.J. Moon, K.S. Choi, A. Moon, and S.Y. Han, Assessing estrogenic activity of pyrethroid insecticides using in vitro combination assays. Journal of Reproduction and Development 50 (2004) 245-255.
    [161] K. Van den Belt, P. Berckmans, C. Vangenechten, R. Verheyen, and H. Witters, Comparative study on the in vitro in vivo estrogenic potencies of 17 beta-estradiol, estrone, 17 alpha-ethynylestradiol and nonylphenol. Aquatic Toxicology 66 (2004) 183-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700