用户名: 密码: 验证码:
活性焦的制备及其烟气脱硫的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性焦(AC)烟气脱硫是一种可资源化烟气脱硫工艺,该工艺不但可以脱除烟气中的S02,还可实现硫资源回收,是当前研究的重要脱硫方法。本文以粘结性煤为原料,通过简化生产工艺(原煤破碎、预氧化、炭化和活化)制备活性焦,将此活性焦分别作为吸附剂和催化剂载体用于烟气脱硫和再生实验并进行了相关研究,最后进行了活性焦烟气脱硫中试研究。
     将粘结性煤破碎后在空气中氧化,通过炭化、活化制备活性焦。结果表明,粘结性煤经过氧化后,可降低煤的粘结性,增加煤的孔隙率;氧化温度越高、氧化时间越长,煤的粘结性越低,孔隙率越高。与煤未氧化得到的炭化料和活性焦相比,煤氧化后得到的炭化料和活性焦的比表面积、微孔容积和总孔容积有明显的提高。煤在270℃氧化1h后制备活性焦的最佳工艺条件为:炭化温度600℃、炭化时间1h、活化温度900℃、活化时间1.5h、水蒸气流量406mL·min-1。在此条件下制得的活性焦的机械强度为95.2%,硫容为65.8mg·g-1。
     利用固定床反应器,将活性焦作为吸附剂进行烟气脱硫实验,考察空速、床层温度、SO2浓度、O2浓度、水蒸气浓度和活性焦的表面性质对活性焦脱硫性能的影响。结果表明,空速越小、SO2浓度越低、O2浓度和水蒸气浓度越高,活性焦的脱硫效率越高,烟气脱硫床层温度80℃~100℃较适宜。活性焦的比表面积、微孔容积和总孔容积越大,活性焦的硫容越大,活性焦表面碱性基团浓度越高,活性焦的硫容越大。在实验数据基础上,建立了烟气脱硫动力学方程和数学模型,用其参数设计并建立了烟气量为1000Nm3·h-1的移动床活性焦脱硫中试装置,设计值与实验结果基本吻合。
     将活性焦作为催化剂载体制备CuO/AC,在工业锅炉排烟温度下直接脱硫,考察空速、床层温度、S02浓度、02浓度、水蒸气浓度和载铜量对CuO/AC脱硫性能的影响。结果表明,空速越小、床层温度越高、SO2浓度越低,CuO/AC的脱硫效率的越高,O2浓度对CuO/AC脱硫性能无影响,而水蒸气不参与脱硫反应。CuO/AC的硫容随载铜量的增加先增加后减小,综合考虑CuO/AC的硫容和活性组分CuO的利用率,负载5%-10%的铜较适宜。硝酸处理活性焦载体后制得的CuO/AC,其硫容明显提高。在实验数据基础上,建立CuO/AC烟气脱硫动力学模型方程,利用模型方程模拟Cu/S摩尔比随时间变化,模拟结果与实验测定基本一致。
     分别将饱和的活性焦和失活的CuO/AC在惰性气氛下加热再生,在400℃下,SO2再生较完全,再生后的活性焦和CuO/AC用于烟气脱硫,其脱硫性能几乎没有变化。升高再生温度、降低载气流量可提高再生气中SO2的浓度。
Flue gas desulfurization by activated coke is a resourceable technology that can not only remove SO2, but also recover sulfur element. Therefore, many researches have been done about flue gas desulfurization by activated coke. The key factors for applicating this technology are desulfurization and regeneration of activated coke. Broken activated coke was prepared with caking coal by simplifying the production process, which including coal crushing, preoxidation, carbonization and activation. The production process of preparing the broken activated coke overcame the complex production process of traditional activated coke. Experiments of flue gas desulfurization were conducted with broken activated coke as adsorbent and catalyst carrier respectively on a fixed-bed reactor. The effect of surface properties of activated coke and process conditions on desulfurization efficiency and sulfur capacity research was studied. And the regeneration characteristics of adsorbent and catalyst of activated coke after desulfurizaion was also studied. Finally pilot study was conducted.
     The effect of preoxidation of caking coal on the property of coal, char and activated coke was studied. The caking index of coal decreased and the porosity of coal increased after preoxidation of coal. Specific surface area, micropore volume and total pore volume of char increased with preoxidation of coal, compared to the char carbonizated without preoxidation of coal. With increasing preoxidation time, specific surface area, micropore volume and total pore volume of activated coke enhanced significantly, but mechanical intensity of activated coke decreased. After preoxidation of coal at 270℃for 1h, the best conditions for preparing activated coke was as follows:carbonization temperature is 600℃, carbonization time is 1h, activation temperature is 900℃, the activation time is 1.5h and the flow of steam is 406 mL·min-1. On these conditions, specific surface area, micropore pore volume, total pore volume mechanical strength and sulfur capacity of is 245.20m2·g-1,0.0968m3·g-1,0.1183m3·g-1, and 95.2% respectively. The sulfur capacity of activated carbon is 65.8mg·g-1.
     Experiments of desulfurization were conducted with activated coke as adsorben. The results show that activated coke has higher sulfur capacity and longer breakthrough time under lower inlet concentration of SO2, higher concentration of O2 and steam. Reducing the flow also can increase breakthrough time of activated coke. Reaction temperature of 80℃~100℃is suitable. Specific surface area, micropore volume and total pore volume of activated coke were greater, sulfur capacity is bigger. Surface basictiy concentration of activated coke was higher, sulfur capacity is bigger. Based on experimental data, dynamics equation and mathematical model of flue gas desulfurization by activated coke were established. Mobile bed desulfurization tower of dealing with the flow of 1000Nm3·h-1 was designed and established according to the parameter, the experimental results agreed well with the designed results.
     CuO/AC catalyst was prepared with activated coke, Experiments of desulfurization were conducted with CuO/AC. The results show that activated coke has higher sulfur capacity and longer breakthrough time under lower inlet concentration of SO2 and lower flow velocity in oxygen gas environment. Steam didn't participate in the reaction of flue gas desulfurization. Reaction temperature of 200℃-240℃is suitable. The sulfur capacity of CuO/AC first increases then decreases with increasing copper loading on activated carbon. Considering the sulfur capacity of CuO/AC and the utilization of copper, copper content of 5%~10% is prefer. CuO/AC was prepared by activated coke treated by nitric acid, the sulfur capacity of CuO/AC is improved obviously. Based on the experiment data, dynamics model of flue gas desulfurization by CuO/AC was established, Cu/S mole ratio of the simulation results and experimental results are almost the same using this model.
     Saturated activated coke and deactivated CuO/AC were regenerated at 400℃under inert atmosphere, the regeneration efficiency is close to 100%. The sulfur capacity of activated coke and CuO/AC has no change almost after several desulfurization-regeneration cycles. SO2 concentration of regeneration gas are higher at higher temperature or under smaller flow of carrier gas.
引文
[1]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].第二版.北京:化学工业出版社,2007
    [2]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2010
    [3]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001
    [4]中华人民共和国环境保护部.《中国环境状况公报》(2000年-2009年)
    [5]张永志.磷肥工业“十一五”发展规划思路[J].磷肥与氮肥,2006,21(1):7-10
    [6]武雪梅.2003年全国磷肥、硫酸生产及消费情况[J].磷肥与复肥,2004,19(4):6-8
    [7]齐焉.2004年全国硫酸磷肥生产情况[J].硫酸工业,2005,2:11-14
    [8]齐焉.2005年全国硫酸生产情况[J].硫酸工业,2006,2:1-4
    [9]齐焉.2006年全国硫酸生产情况[J].硫酸工业,2007,2:1-3
    [10]武雪梅.2007年我国硫酸磷肥生产情况[J].硫酸工业,2008,2:1-5
    [11]齐焉,武雪梅.2008年我国硫酸磷肥生产概述[J].硫酸工业,2009,2:1-5
    [12]齐焉.2009年我国硫酸磷肥生产概述[J].硫酸工业,2010,2:1-5
    [13]杨飏.二氧化硫减排技术与烟气脱硫工工程[M].北京:冶金工业出版社,2004
    [14]肖文德,吴志泉.二氧化硫脱除与回收[M].北京:化学工业出版社,2001
    [15]全国人民代表大会常务委员会.《中华人民共和国大气污染防治法》(修订草案送审稿),2010
    [16]中华人民共和国环境保护部.《火电厂大气污染物排放标准》(征求意见稿),2009
    [17]中华人民共和国环境保护部.《火电厂大气污染物排放标准》(二次征求意见稿),2011
    [18]张力,刘伟.活性炭吸附烟气脱硫的展望[J].辽宁化工,1996,5:16-18
    [19]朱世勇.环境与工业气体净化技术[M].第一版.北京:化学工业出版社,2001
    [20]Olson D G, Tsuji K, Shiraishi I. The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process[J]. Fuel Process Technology, 2000,65/66:393-405
    [21]Tsuji K, Shiraishi I. Combined desulfurization, denitrification and reduction of air toxics using activated coke:1. Activity of activated coke[J]. Fuel,1997,76(6):549-553
    [22]Tsuji K, Shiraishi I. Combined desulfurization, denitrification and reduction of air toxics using activated coke:2. Process applications and performance of activated coke[J]. Fuel,1997,76(6): 555-560
    [23]张守玉,曹晏,朱廷钰,等.活性炭(焦)脱除烟道气二氧化硫工艺[J].煤炭转化,1999,22(3):28-34
    [24]大连化物所802组.活性炭催化剂用于消除和回收烟气中低浓度的二氧化硫[J].催化学报,1982,3(3):188-204
    [25]蔡光宇,王作周,杨永和,等.消除及回收烟气中SO2的糠醛渣活性炭研究[J].环境科学,1992,14(2):2-6
    [26]杨毅,岑祖望.可资源化活性焦烟气脱硫技术简介[J].硫酸工业,2007,1:46-49
    [27]杨辉华.活性焦脱硫技术在江铜30万吨冶炼工程的应用[J].江西冶金,2007,27(5):16-18
    [28]Babel S. Kurniawan T A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan[J]. Chemosphere,2004, 54(7):951-967
    [29]Namasivayam C, Kavitha D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste[J]. Dyes and Pigments,2002,54(1):47-58
    [30]Shin H C. Park J W, Park K, et al. Removal characteristics of trace compounds of landfill gas by activated carbon adsorption[J]. Environmental Pollution,2002,119(2):227-236
    [31]Chung Y C, Lin Y Y, Tseng C P. Operational characteristics of effective removal of H2S and NH3 waste gases by activated carbon biofilter[J]. Journal of Air & Waste Management Association,2004, 54(4):450-458
    [32]Pal S, Lee K H, Kim J U, et al. Adsorption of cyanuric acid on activated carbon from aqueous solution: Effect of carbon surface modification and thermodynamic characteristics[J]. Journal of Colloid and Interface Science,2006,303(1):39-48
    [33]Wang J Y, Zhao F Y, Hu Y Q et al. Modification of activated carbon fiber by loading metals and their performance on SO2 removal[J]. Chinese Journal of Chemical Engineering,2006,14(4):478-485
    [34]Hussain S, Aziz H A, Isa M H, et al. Physico-chemical method for ammonia removal from synthetic wastewater using limestone and GAC in batch and column studies[J]. Bioresource Technology,2007, 98(4):874-880
    [35]Valdes H, Sanchez-Polo M, Rivera-Utrilla J, et al. Effect of ozone treatment on surface properties of activated carbon [J]. Langmuir,2002,18(6):2111-2116
    [36]Rivera-Utrilla J, Bautista-Toledo I, Ferro-Garcia M A, et al. Bioadsorption of Pb(II), Cd(II), and Cr(VI) on activated carbon from aqueous solutions[J]. Carbon,2003,41(2):323-330
    [37]Hameed B H, Ahmad A L. Latiff K N A. Adsorption of basic dye(methylene blue) onto activated carbon prepared from rattan sawdust[J]. Dyes and Pigments,2007,75(1):143-149
    [38]Krishnan K A. Adsorption of nitrilotriacetic acid onto activated carbon prepared by steam pyrolysis of sawdust:Kinetic and isotherm studies[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,317(1/3):344-351
    [39]Choy K K H, Barford J P, McKay G. Production of activated carbon from bamboo scaffolding waste-process design, evaluation and sensitivity analysis[J]. Chemical Engineering Journal,2005, 109(1/3):147-165
    [40]王志高,蒋剑春,邓先伦.磷酸法竹质颗粒活性炭的制备研究[J].林产化学与工业,2007,27(2):36-40
    [41]Afrane G, Achaw O W. Effect of the concentration of inherent mineral elements on the adsorption capacity of coconut shell-based activated carbons[J]. Bioresource Technology,2008.99(14): 6678-6682
    [42]Li W, Yang K B. Peng J H. et al. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars[J]. Industrial Crops and Products,2008,28(2):190-198
    [43]Gratuito M K B, Panyathanmaporn T, Chumnanklang R A, et al. Production of activated carbon from coconut shell:Optimization using response surface methodology[J]. Bioresource Technology,2008, 99(11):4887-4895
    [44]Achaw O W, Afrane G. The evolution of the pore structure of coconut shells during the preparation of coconut shell-based activated carbons[J]. Microporous and Mesoporous Materials,2008,112(1/3): 284-290
    [45]Mohd Din A T. Hameed B H, Ahmad A L. Batch adsorption of phenol onto physiochemical-activated coconut shell[J]. Journal of Hazardous Materials,2009,161(2/3):1522-1529
    [46]王玉新,苏伟,时志强,等.高比表面积椰壳活性炭的制备及其应用[J].天津大学学报,2008,41(6):703-708
    [47]张会平,肖新颜,杨立春.K2CO3活化法制备椰壳活性炭[J].华南理工大学学报:自然科学版,2006,34(3):63-66.
    [48]吴春华,赵黔榕,张加研,等.微波辐照核桃壳氯化锌法制备活性炭的研究[J].生物质化学工程,2007,41(1):25-27
    [49]Martinez M L, Torres M M, Guzman C A, et al. Preparation and characteristics of activated carbon from olive stones and walnut shells[J]. Industrial Crops and Products,2006.23(1):23-28
    [50]Kim J W, Sohn M H, Kim D S, et al. Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu2+ ion[J]. Journal of Hazardous Materials,2001.85(3): 301-315
    [51]张利波,彭金辉,夏洪应,等.微波加热制备烟杆基高比面积活性炭的研究[J].武汉理工大学学报,2008,30(12):76-79
    [52]Jambulingam M, Karthikeyan S, Sivakumar P. et al. Characteristic studies of some activated carbons from agricultural wastes[J]. Journal of Scientific & Industrial Research,2007,66:495-500
    [53]李大伟,朱锡锋.富含中、微孔稻壳活性炭的表征及液相吸附性能[J].中国环境科学,2010,30(12):1597-1601
    [54]Malik P K. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: A case study of Acid Yellow 36[J]. Dyes and Pigments,2003,56(3):239-249
    [55]Gupta V K, Mittal A, Jain R, et al. Adsorption of Safranin-T from wastewater using waste materials-activated carbon and activated rice husks[J]. Journal of Colloid and Interface Science,2006,303(1): 80-86
    [56]Karacan F, Ozden U, Karacan S. Optimization of manufacturing conditions for activated carbon from Turkish lignite by chemical activation using response surface methodology[J]. Applied Thermal Engineering,2007,27(7):1212-1218
    [57]Onal Y, Akmil-Basar C, Eren D, et al. Adsorption kinetics of malachite green onto activated carbon prepared from Tuncbilek lignite[J]. Journal of Hazardous Materials,2006,128(2/3):150-157
    [58]El Qada E N, Allen S J, Walker G M. Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal:A study of equilibrium adsorption isotherm[J]. Chemical Engineering Journal,2006,124(1/3):103-110
    [59]Bagreev A, Menendez J A, Dukhno I, et al. Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide[J]. Carbon,2004,42(3):469-476
    [60]Lozano-Castello D, Lillo-Rodenas M A, Cazorla-Amoro s D, et al. Preparation of activated carbons from Spanish anthracite:I. Activation by KOH[J]. Carbon,2001,39(5):741-749
    [61]Lillo-Rodenas M A, Lozano-Castello D, Cazorla-Amoros D, etal. Preparation of activated carbons from Spanish anthracite:Ⅱ. Activation by NaOH[J]. Carbon,2001,39(5):751-759
    [62]樊亚娟,张双全,朱文奎,等.添加剂作用下配煤法制备活性炭的试验研究[J].炭素技术,2005,24(4):12-14
    [63]Liu Z C, Ling L C, Qiao W M, et al. Preparation of pitch-based spherical activated carbon with developed mesopore by the aid of ferrocene[J]. Carbon,1999,37(4):663-667
    [64]Li X K, Zhang Q Y, Tang L L, et al. Catalytic ozonation ofp-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke[J]. Journal of Hazardous Materials,2009,163(1):115-120
    [65]Wang X N, Zhu N W, Yin B K. Preparation of sludge-based activated carbon and its application in dye wastewater treatment[J]. Journal of Hazardous Materials,2008,153(1/2):22-27
    [66]刘双喜,张翠,梁秀清,等.一种由废轮胎热解炭制备炭黑和活性炭的方法.CN101164876A,2008-04-23
    [67]冯治宇.活性焦制备与应用技术[M].大连:大连理工大学出版社,2007
    [68]梁大明.中国煤质活性炭[M].北京:化学工业出版社,2008
    [69]Bodoev N V, Gruber R, Kucherenko V A, et al. A novel process for preparation of active carbon from sapropeliticcoals[J]. Fuel,1998,77(6):473-478
    [70]陈雯,刘中华,范艳青,等.褐煤活性炭的制备与性能研究[J].煤炭转化,2004,27(2):61-64
    [71]韩露,李开喜,高峰.工艺参数及灰分对煤基活性炭吸附性能的影响[J].煤炭转化,2008,31(3):71-76
    [72]李书荣,张文辉,王岭,等.不同变质程度的煤制活性炭孔隙结构分析[J].洁净煤技术,2004,10(1):43-45
    [73]Juntgen H. Entstehung des proensystems bei der teilvergasung von koksen mit wasserdampf[J]. Carbon,1968,6(3):297-308
    [74]Morgan J J, Fink C E. Binders and base materials for active carbon-function of sugars, coal tar pitch, anthracite, and cellulose[J]. Industrial & Engineering Chemistry,1946,38(2):219-228
    [75]董丹丹,杨省师,程晓峰,等.煤基活性炭不同制备方法对其性质影响的研究[J].洁净煤技术,2009,16(2):87-89
    [76]Jankowska H, Swiatkowski A, Choma J. Active Carbon[M]. New York:Ellis Horwood,1991
    [77][日]炭素材料学会.活性炭基础应用[M].北京:中国林业出版社,1984
    [78]解强.神木煤制优质活性炭的研究[D].徐州:中国矿业大学,1992
    [79]Zygourakis K. Effect of pyrolysis conditions on the macropore structure of coal-derived chars[J]. Energy & Fuels,1993,7(1):33-41
    [80]柳来栓,刘振宇,黄张根,等.炭化温度对蜂窝活性炭孔结构和强度的影响[J].中北大学学报(自然科学版),2009,30(3):245-250
    [81]Jolly R, Charcosset H, Boudou J P, et al. Catalytic effect of ZnCl2 during coal pyrolysis[J]. Fuel Processing Technology,1988,20:51-60
    [82]Hsu L Y, Teng H S. Influence of different chemical reagents on the preparation of activated carbons from bituminous coal[J]. Fuel Processing Technology,2000,64(1/3):155-166
    [83]邢宝林,张传祥,潘兰英,等.高比表面积煤基活性炭的制备及其吸附性能的研究[J].洁净煤技术,2008,14(1):85-88
    [84]Rist L P, Harrison D P. Surface area and pore development during lignite activation[J]. Fuel,1985, 64(3):291-296
    [85]Smisek M, Cerny S. Active Carbon[M]. New York:Elservier,1970
    [86]Wigmans T. Industrial aspects of production and use of activated carbons[J]. Carbon,1989,27(1): 13-22
    [87]Wigmans T. Fundamentals and practical implications of activated carbon production by partial gasification of carbonaceous materials[J]. NATO ASI series. Series E:Applied Sciences,1986, 105:559-599
    [88]Wigmans T, Hoogland A, Tromp P, et al. The influence of potassium carbonate on surface area development and reactivity during gasification of activated carbon by carbon dioxide[J]. Carbon, 1983,21(1):13-22
    [89]Capon A, Maggs F A P. Compensation effect in the activation of fibrous chars prepared from viscose[J]. Carbon,1983,21(1):75-80
    [90]Skodras G, Orfanoudaki T, Kakaras E, et al. Production of special activated carbon from lignite for environmental purposes[J]. Fuel Processing Technology,2002,77/78:75-87
    [91]Eratg R. BF/Uhde烟气脱硫脱氮法[J].活性炭,1986,3:38-44
    [92]Bischoff W F, Habib Y. SO2 processing:the FW-BF dry adsorption system[J]. Chemical Engineering Progress,1975,71(5):59-60
    [93]Shiraishi I, Ninagawa Y, Tsuji K, et al. Process for producing formed active coke for desulfurization and denitrification with high detrification performance[P]. EP0515696,1992-12-02
    [94]Toshihisa Y, Masahiro M, Kazuhiko H, et al. Production of formed activated coke[P]. JP5105415, 1993-04-27
    [95]Toshihisa Y, Masahiro M, Kazuhiko H, et al. Activated moulded coke prodn. used as catalyst-comprises pre-coking coal to semi-coke, adjusting properties, forming moulded material, coking and activating[P]. DE4235368,1993-04-22
    [96]王洋,张守玉,房倚天,等.SO2脱硫剂-活性焦的制备方法[P].CN1304787A,2001-07-25
    [97]邹炎.烟气治理活性焦的制备方法及其制备的烟气治理活性焦[P].CN1 806910A,2006-07-26
    [98]梁大明,孙仲超,李兰廷,等.一种活性焦及其制备方法和应阳[P].CN101538038A,2009-09-23
    [99]张开元,龚得喜,肖永丰.煤基脱硫用活性焦及其制备方法[P].CN101485972A,2009-07-22
    [100]张守玉,吕俊复,岳光溪,等.煤种及炭化条件对活性焦孔隙结构的影响[J].煤炭学报,2003,28(2):167-172
    [101]张守玉,吕俊复,刘青,等.活化时间对煤制活性焦性质的影响[J].中国矿业大学学报,2003,32(3):289-292
    [102]张守玉,王洋,朱廷钰,等.活化条件对彬县煤活性焦孔隙结构的影响[J].化学反应工程与工艺,2003,19(3):221-226
    [103]冯治宇.褐煤基催化-吸附剂制备及其脱硫脱氮性能研究[D].沈阳:东北大学,2005
    [104]Moreno-Castilla C, Carrasco-Marin F, Utrera-Hidalgo E, et al. Activated carbons as adsorbents of SO2 in flowing air:Effect of their pore texture and surface basicity[J]. Langmuir,1993,9:1378-1383
    [105]Py X, Roizard C, Midoux N. Kinetics of sulfur dioxide oxidation in slurries of activated carbon and concentrated sulfuric acid[J]. Chemical Engineering Science,1995,50(13):2069-2079
    [106]Li K, Ling L, Lu C, et al. Catalytic removal of SO2 over ammonia-activated carbon fibers[J]. Carbon,2001,39(12):1803-1808
    [107]Mochida I, Kuroda K, Kawano S, et al. Kinetic study of the continuous removal of SOx on polyacrylonitrile-based activated carbon fibres:1. Catalytic activity of PAN-ACF heat-treated at 800 ℃[J]. Fuel,1997,76(6):533-536
    [108]Mochida I, Kuroda K, Kawano S, et al. Kinetic study of the continuous removal of SOx using polyacrylonitrile-based activated carbon fibres:2. kinetic model[J]. Fuel,1997.76(6):537-541
    [109]Raymundo-Pinero E, Cazorla-Amoros D, Linares-Solano A. Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon fibres[J]. Carbon,2001,39(2):231-242
    [110]Lizzio A A, DeBarr J A. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char[J]. Fuel,1996,75(13):1515-1522
    [111]Lizzio A A, DeBarr J A. Mechanism of SO2 removal by carbon[J]. Energy & Fuels,1997,11(2): 284-291
    [112]Lizzio A A. The mechanism of SO2 removal by carbon[J]. Prepr Pap-Am Chem Soc, Div Fuel Chem,1996,41(1):201-205
    [113]程振民,蒋正兴,袁渭康.活性炭表面SO2的催化氧化三相反应动力学[J].华东理工大学学报,1997,23(1):7-13
    [114]程振民,蒋正兴,袁渭康.活性炭脱硫研究(Ⅱ)水蒸气存在下SO2的氧化反应机理[J].环境科学学报,1997,17(3):273-277
    [115]Rubio B, Izquierdo M T. Low cost adsorbents for low temperature cleaning of flue gases[J]. Fuel, 1998,77(6):631-637
    [116]Zawadzki J. Infrared studies of SO2 on carbon-Ⅰ. Interaction of SO2 with carbon films[J]. Carbon, 1987,25(3):431-436
    [117]Zawadzki J. Infrared studies of SO2 on carbon-Ⅱ. The SO2 species adsorbed on carbon films[J]. Carbon,1987,25(4):495-502
    [118]Davini P. Adsorption and desorption of SO2 on active carbon:The effect of surface basic groups[J]. Carbon,1990,28(4):565-571
    [119]Davini P. Desulphurization properties of active carbons obtained from petroleum pitch pyrolysis[J]. Carbon,1999,37(9):1363-1371
    [120]Davini P. Adsorption of sulphur dioxide on thermally treated active carbon[J]. Fuel,1989,68(2): 145-148
    [121]Davini P. Adsorption and desorption of sulphur dioxide from simulated flue gas on active carbon: The effect of ash content[J]. Carbon,1993,31(1):47-51
    [122]Davini P. Investigation on the adsorption and desorption of sulphur dioxide on active carbon in the temperature range between 130℃and 170℃[J]. Carbon,1991,29(3):321-327
    [123]Carrasco-Marin F, Utrera-Hidalgo E, Rivera-Utrilla J, et al. Adsorption of SO2 in flowing air onto activated carbons from olive stones[J]. Fuel,1992,71(5):575-578
    [124]DeBarr J A, Lizzio A A. Adsorption of SO2 on bituminous coal char and activated carbon fiber[J]. Energy & Fuels,1997,11(2):267-271
    [125]Raymundo-Pinero E, Cazorla-Amoros D, Salinas-Martinez de Lecea C, et al. Factors control ing the SO2 removal by porous carbons:relevance of the SO2 oxidation step[J]. Carbon,2000,38(3): 335-344
    [126]Kisamori S, Kuroda K, Kawano S, et al. Oxidative removal of SO2 and recovery of H2SO4 over poly(acrylonitrile)-based active carbon fiber[J]. Energy & Fuels,1994,8(6):1337-1340
    [127]Kisamori S, Mochida I, Fujitsu H. Roles of surface oxygen groups on poly(acrylonitrile)-base active fibers in SO2 adsorption[J]. Langmuir,1994,10(4):1241-1245
    [128]刘吕见,李荫重,李文华.改性半焦烟气脱硫的机理研究[J].环境化学,1999,18(4):309-314
    [129]Tsuji K, Shiraishi I. Combined desulfurization, denitrification and reduction of air toxics using activated coke:1. Activity of activated coke[J]. Fuel,1997,76(6):549-553
    [130]Gomez-Serrano V, Acedo-Ramos M, Lopez-peinado A J. Study and characterisation of activated carbon treated with H2SO4 solutions[J]. Jouranl of Chemical and Biotechnology,1997,68(1):82-88
    [131]Rubio B, Izquierdo M T, Mastral A M. Influence of low-rank coal char properties on their SO2 removal capacity from flue gases.2. Activated chars[J]. Carbon,1998,36(3):263-268
    [132]Martyniuk H, Wieckowska J. The effect of coal rank and carbonization temperature on adsorption properties of coal chars[J]. Fuel,1997,76(7):563-565
    [133]Nishijima A, Hagiwara H, Kurita M, et al. Characterization of nitrogen-containing active carbon catalysts for SO2 removal[J]. Bulletin of the Chemical Society of Japan,1982,55(8):2618-2621
    [134]张守玉.煤制活性焦脱除烟道气中二氧化硫的研究[D].太原:中国科学院山西煤炭化学研究所,2001
    [135]黄戒介,杨之媛,张建民,等.移动床活性焦烟气脱硫实验研究[J].环境工程,1997,15(2):25-28
    [136]Knoblauch K, Richter E, Juntgen H. Application of active coke in processes of SO2 and NOx removal from flue gases[J]. Fuel,1981,60(9):832-838
    [137]张永奇.煤制烟气脱硫活性焦的研究[D].太原:中国科学院山西煤炭化学研究所,2004
    [138]余兰兰.污泥吸附剂的制备及应用研究[D].南京:南京理工大学,2006
    [139]上官炬.改性半焦烟气脱硫剂的物理结构和表面化学特性变化机理[D].太原:太原理工大学,2005
    [140]郑仙荣.改性活性半焦脱硫剂制备方法研究与性能测试[D].太原:太原理工大学,2003
    [141]Liu Q Y, LiCH, LiYX. SO2 removal from flue gas by activated semi-cokes:1. The preparation of catalysts and determination of operating conditions[J]. Carbon,2003,41(12):2217-2223
    [142]Gaur K, Asthana R, Verma N. Removal of SO2 by activated carbon fibers in the presence of O2 and H2O[J]. Carbon,2006,44(1):46-60
    [143]刘义.活性炭法烟气脱硫机理和应用研究[D].陕西:西安交通大学,2003
    [144]蒋文举.微波改性活性炭及其脱硫特性研究[D].四川:四川大学,2003
    [145]朱惠峰,钟秦.可资源化活性焦烟气脱硫的实验研究[J].中国煤炭,2009,35(6):79-82
    [146]Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994,32(5):759-769
    [147]Pis J J, Centeno TA, Mahamud M, et al. Preparation of active carbons from coal Part Ⅰ. Oxidation of coal[J]. Fuel Processing Technology,1996,47(2):119-138
    [148]亚当森A W著.表面的物理化学(下)[M].顾悌人译.北京:科学出版社,1985
    [149]邹勇,郭幼庭.高吸附性能木素活性炭表面含氧基团的研究[J].北京林业大学学报,1992,14(4):138-142
    [150]徐息.活性炭吸附烟气脱硫技术的工业性试验[J].电力环境保护,2001,17(1):1-3
    [151]菱沼孝夫.活性炭による最近の排胗脱硫技术[J].别册化学工业,1979,23(5):80-83
    [152]近藤精一,石川达雄,安部郁夫著.吸附科学[M].李国希译.北京:化学工业出版社,2006
    [153]Xie Y C, Tang Y Q. Spontaneous monolayer dispersion of oxide and salts onto surfaces of supports: Applications to heterogeneous catalysis. Advances in Catalysis,1990,37:1-43
    [154]Miguel S R, Heinen J C, Castro A A, et al. Effect of acid treatment on the properties of an activated carbon[J]. Reaction Kinetics and Catalysis Letters,1989,40(2):331-335
    [155]刘大齐,黄小林,邢连壁,等.三废处理工程技术手册-废气卷[M].北京:化学工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700