用户名: 密码: 验证码:
新型桨尖弹性旋翼气动特性的Navier-Stokes方程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直升机弹性旋翼流场和气动特性的数值计算是直升机空气动力学领域具有挑战性的研究课题。本文开展了适用于计入桨叶弹性变形运动的旋翼运动嵌套网格生成方法和高效贡献单元搜索策略、旋翼流场数值模拟以及桨叶动力学分析方法等研究,发展了与该网格系统对应的基于Navier-Stokes方程的旋翼非定常流场的数值计算方法和程序。分别针对直升机刚性/弹性旋翼的流场和气动特性进行了数值模拟与分析,同时,开展了新型桨尖对弹性旋翼气动特性的影响研究。主要工作包括以下几个方面:
     作为前提和背景,本文首先阐述了论文的研究目的,并对直升机旋翼气动特性计算、桨叶结构动力学分析、新型桨尖弹性旋翼气动特性研究等的国内外现状进行了概述,指出了现有研究中存在的不足及难点,提出了本文拟采用的研究方法和内容。
     针对旋翼桨叶多种复杂运动和旋翼流场求解的特点,首先建立了一套用于旋翼粘性流场模拟的结构运动嵌套网格生成方法。为了更好地模拟贴体网格随桨叶在背景网格中的运动和弹性变形,给出了一个基于改进的弹簧模拟方法的桨叶网格变形方法,以适用于弹性旋翼流场的求解。同时,建立了一种新的与该网格系统相对应的高效嵌套网格洞边界确定和贡献单元搜索的策略。
     基于所建立的嵌套网格系统,本文又发展了一套适合于悬停、前飞状态旋翼流场与气动特性数值计算的方法及程序。在求解N-S方程时,空间方向上采用低数值耗散的Roe格式并结合三阶逆风格式(MUSCL),以减少旋翼尾迹数值耗散、提高计算精度。时间方向则使用双时间方法来模拟前飞流场的非定常变化过程。另一方面,依据Hamilton原理和中等变形梁理论,建立了一个基于有限元方法的适合于新型桨尖旋翼桨叶动力学分析的模型,并在该模型中耦合了旋翼配平分析。
     结合所建立的旋翼流场求解方法和弹性桨叶结构分析模型,本文还提出了一个弹性旋翼流场/结构弱耦合求解的策略,建立了一个用于弹性旋翼悬停和前飞气动特性计算的模型。应用该耦合求解器,着重针对UH-60A直升机旋翼、7A旋翼及SA349/2直升机旋翼等不同外形桨叶,分别进行了刚性和弹性旋翼流场和气动特性的数值计算,并验证了方法的有效性。
     最后,应用所建立的弹性旋翼气动特性计算方法,着重进行了后掠、尖削、下反及其组合形状的新型桨尖弹性旋翼在悬停和前飞状态下的旋翼性能与气动特性计算,分析了不同桨尖形状对弹性旋翼性能和气动特性的影响,得出了对旋翼设计有实际指导意义的结论。
The numerical computation of flowfields and aerodynamic characteristics for helicopter elastic rotors is a highly challenging subject in the field of Helicopter Aerodynamics. The moving-embedded grid methodology with actual blade elastic deformation and a corresponding effective donor-element searching strategy, the rotor flowfield numerical simulation method, and the blade dynamic analysis approach have been investigated in this thesis. By employing the moving-embedded grid and Navier-Stokes equations, a high-accuracy numerical method and code is developed to simulate the helicopter rotor unsteady flowfield. The flowfield and aerodynamic characteristics for rigid/elastic rotors are computed and analyzed. Meanwhile, the effects of blade-tip shape on rotor aerodynamics of elastic rotor are also simulated. The major contributions of the author’s research work are as follows: As the background of present work, the objectives of the research are firstly described. The research and development in the field of calculation of rotor aerodynamic characteristics, blade structural analysis, and aerodynamic calculation for elastic rotors with new tip are briefly reviewed. The difficulties in the current research are also pointed out. In addition, the methods used in the present research are briefly introduced.
     Aiming at the simulation of the complex rotor flowfield in which there are many blade movements, a structured moving-embedded grid method has been firstly developed in the thesis. At the same time, in order to model blade body-fitted grid movement and elastic deformation, a mesh deformation approach based on the modified spring analogy is presented, which is suitable for the flowfield numerical simulation of elastic rotors. Then, an efficient method for hole-cutting and donor searching of overset grids is given.
     Based on the developed moving-embedded grid system, a numerical method and solver is developed to solve the flowflied and aerodynamic characteristics of helicopter rotors in hover and forward flight. For the solution of N-S equations, both the low dissipation Roe scheme and the third-order upwind scheme (MUSCL) are employed, which can reduce the false dissipation of the rotor wake vorticity effectively. Also, the dual-time stepping method is used for simulating the unsteady phenomenon in helicopter flowfield. Meanwhile, based on the Hamilton’s principle and the moderate-deformation beam theory, a finite-element analysis model for the rotor with new blade tips is established, a trim algorithm for the rotor system is also coupled into the blade structural analysis.
     By combining the rotor flowfield analysis with the elastic-blade structural analysis, the flowfield/structure loose coupled solving algorithm for the elastic rotor aerodynamic characteristics is presented. Base on this, the flowfield and aerodynamic characteristics of rigid and elastic rotors have been calculated on UH-60A rotor, 7A rotor and SA349/2 rotor respectively, and the capability of this method is demonstrated by comparing with available experimental data.
     Finally, the rotor performance and aerodynamic characteristics of elastic blades in hover and forward flight with such new blade tips as swept, tapered, anhedral and combined shapes are calculated by the method developed, and the influence of different blade-tip shapes on elastic rotor performance and aerodynamic characteristics is analysed. Some meaningful conclusions for rotor design are also drawn.
引文
[1] Strawn R. C., Caradonna F. X., Duque E. P. N., 30 Years of Rotorcraft Computational Fluid Dynamics Research and Development. Journal of the American Helicopter Society, 2006, 51(1):5-21.
    [2] Leishman J. G., Principles of Helicopter Aerodynamics. Second Edition, Cambridge: Cambridge Uniersity Press, 2006.
    [3] Benoit C., Jeanfaivre G., Canonne E., Synthesis of ONERA Chimera Method Developed in the Frame of Chance Program. Presented at the 31th European Rotorcraft Forum, Italy, 2005.
    [4] Shinoda P. M., Yeo H., Norman T. R., et al., Rotor Performance of a UH-60 Rotor System in the NASA Ames 80- by 120-Foot Wind Tunnel. Proceedings of the 58th Annual Forum of the American Helicopter Society, 2002.
    [5] Heffernan R., Gaubert M., Structural and Aerodynamic Loads and Performance Measurements of an SA 349/2 Helicopter with an Advanced Geometry Rotor. NASA TM-88370, 1986.
    [6] Miller R. H., Rotor Hovering Performance Using the Method of Fast Free Wake Analysis. AIAA 82-0094, 1982.
    [7]徐国华,使用自由尾迹分析的新型桨尖旋翼气动特性研究.博士学位论文.南京航空航天大学, 1996.
    [8] Hariharan N., Sankar L. N., A Review of Computational Techniques for Rotor Wake Modeling. AIAA 2000-0114, 2000.
    [9] Srinivasan G. R., Baeder J. D., Obayashi S., et al., Flowfield of a Lifting Rotor in Hover: a Navier-Stokes Simulation. AIAA Journal, 1992, 30(10):2371-2378.
    [10] Le Pape A., Eeaumier P., Numerical Optimization of Helicopter Rotor Aerodynamic Performance in Hover. Aerospace Scinece and Technology, 2005, 9:191-201.
    [11] Ahmad J., Duque E. P. N., Helicopter Rotor Blade Computation in Unsteady Flows using Moving Overset Grids. Journal of Aircraft, 1996, 33(1):54-60
    [12] Johnson W., Rotorcraft Dynamics Models for a Comprehensive Analysis. Proceedings of the 54th Annual Forum of the American Helicopter Society, 1998.
    [13] Tanner W. H., Charts for Estimating of the Rotary Wing Performance in Hover and at High Forward Speeds. NASA CR-114, 1964.
    [14] Quackenbush T. R., Bliss D. B., Wachspress D. A., Ong C. C., Free Wake Analysis of HoverPerformance Using a New Influence Coefficient Method. NASA CR-4309, 1990.
    [15]韩忠华,旋翼绕流的高效数值计算方法及主动流动控制研究.博士学位论文.西北工业大学, 2007.
    [16] Kroll N., Computation of the Flow Fields of Propellers and Hovering Rotors Using EulerEquations. Proceedings of the 12th European Rotorcraft Forum, 1986.
    [17] Roberts T. W., Murman E. M., Solution Method for Hovering Helicopter Rotor Using the EulerEquations. AIAA 1985-0436, 1985.
    [18] Chen C. L., McCroskey W. J., Numerical Simulation of Helicopter Multi-bladed Rotor Flow.AIAA 1988-0046, 1988.
    [19] Boniface J. C., Mialon B., Sides J., Numerical Simulation of Unsteady Euler Flow AroundMulti-bladed Rotor in Forward Flight Using a Moving Grid Approach. Proceedings of the 51thAnnual Forum of the American Helicopter Society, 1995.
    [20] Rruno J. C., Numerical Simulation of Unsteady Euler Flow Around Multi-bladed Rotor inForward Flight Using a Moving Grid Approach. Proceedings of the 51th Annual Forum of theAmerican Helicopter Society, 1995.
    [21] Sheffer S. G., Alonso J. J., Martinelli L., et al., Time-Accurate Simulation of Helicopter RotorFlows Including Aeroelastic Effects. AIAA 1997-0399, 1997.
    [22] Renzoni P., D'Alascio A., Kroll N., et al., EROS-a Common European Euler Code for theAnalysis of the Helicopter Rotor Flowfield. Progress in Aeospace Sciences, 2000, 36:437-485.
    [23] Srinivasan G. R., Baeder J. D., TURNS: A Free Wake Euler/Navier-Stokes Numerical Method forHelicopter Rotors. AIAA Journal, 1993, 31(5):959-962.
    [24] Srinivasan G. R., Raghavan V., Duque E. P. N., et al., Flowfield Analysis of Modern helicopterrotors in Hover by Navier-Stokes method. Journal of the American Helicopter Society, 1993,38(3):3-13.
    [25] Wake B. E., Baeder J. D., Evaluation of a Navier-Stokes Analysis Method for HoverPerformance Prediction. Proceedings of the American Helicopter Society AeromechanicsSpecialists Conference, 1994.
    [26] Bangalore A., Sankar L. N., Forward Flight Analysis of Slatted Rotors Using Navier-StokesMethods. AIAA 1996-0675, 1996.
    [27] Pomin H., Wagner, S., Navier-Stokes Analysis of Helicopter Rotor Aerodynamics in Hover andForward Flight. Journal of Aircraft, 2001, 39(5):813-821.
    [28] Kim J. W., Park S. H., Yu Y. H., Euler and Navier-Stokes Simulation of Helicopter Rotor Bladein Forward Flight Using an Overlapped Grid Solver. AIAA 2009-4268, 2009.
    [29] Chattot J. J., Calculation of Three-dimensional Unsteady Transonic Flows past Helicopter Blades. NASA TP-1721, 1980.
    [30] Agarwal R. K., Deese J. E., Euler Calculation for Flowfield of a Helicopter in Hover. AIAA Journal, 1987, 24(4):231-238.
    [31] Mello O. A. F., An Improved Hybrid Naiver-Stokes/Full Potential Method for Computation of Unsteady Compressible Flows. Ph.D. Dissertation, Georgia Institute of Technology, 1994.
    [32] Berezin C. R., Sankar L. N., An Improved Navier-Stokes/Full Potential Coupled Analysis for Rotors. Mathematical Computational Modeling, 1994, 19(3-4):125-133.
    [33] Moulton M. A., Bridgeman J. O., Caradonna F. X., Development of an Overset/Hybrid CFD Method for the Prediction of Hovering Performance. Proceedings of the 53th Annual Forum of the American Helicopter Society, 1997.
    [34] Yang Z., Sankar L. N., Smkith M. J., et al., Recent Improvements to a Hybrid Method for Rotors in Forward Flight. AIAA 2000-0260, 2000.
    [35] Hariharan N. S., Sankar L. N., First-Principles Based High Order Methodologies for Rotorcraft Flowfield studies. Proceedings of the 55th Annual Forum of the American Helicopter Society, 1999.
    [36] Yeshala N., Egolf T. A., Vasilescu R., et al., Application of Higher Order Spatially Accurate Schemes to Rotors in Hover. AIAA 2006-2818, 2006.
    [37] Steinhoff J., Suryanarayana K., The Treatment of Vortex Sheets in Compressible Potential Flow. Proceedings of AIAA Computational Fluid Dynamics Conference, 1983
    [38] Steinhoff J., Ramachandran K., Free-Wake Analysis of Compressible Rotor Flows. AIAA Journal, 1990, 28(3):427-431.
    [39] Steinhoff J., A Vortex Embedding Method for Free-Wake Analysis of Helicopter Rotors Blades in Hover. Proceedings of the 13th European Rotorcraft Forum, 1987.
    [40] Ramachandran K., Owen S. J., Caradonna F. K., et al., Hover Performance Prediction Using CFD. Proceedings of the 50th Annual Forum of the American Helicopter Society, 1994.
    [41] Bhagwat M., Moulton M., Caradonna F. K., Hybrid CFD for Rotor Hover Performance Prediction. AIAA 2006-3474, 2006.
    [42]王立群,乔志德,钟伯文.直升机旋翼悬停流场的欧拉方程计算.空气动力学学报, 1998, 16(3):282-287
    [43] Jiang Xiong, Chen Zuobin, Zhang Yulun, Numerical Simulation of a Hovering Rotor FlowfieldUsing a Dual Time Method, ACTA Aerodynamica Sinica, 1998, 16(3):288-296.
    [44]杨爱明,乔志德,基于运动嵌套网格的前飞旋翼绕流N-S方程数值计算.航空学报, 2001, 22(5):434-436.
    [45]许和勇,叶正寅,王刚,等,基于非结构嵌套网格的旋翼前飞流场计算.西北工业大学学报, 2006, 24(6):763-767.
    [46]许和勇,叶正寅,王刚,等,聚合多重网格法在旋翼前飞流场计算中的应用.航空动力学报, 2007, 22(2):251-256.
    [47]叶靓,基于非结构网格的直升机旋翼流场及噪声研究.博士学位论文.南京航空航天大学, 2009.
    [48]叶靓,招启军,徐国华,基于非结构嵌套网格方法的旋翼地面效应数值模拟.航空学报, 2009, 30(5):780-786.
    [49]童自力,孙茂,共轴式双旋翼流动的N-S方程模拟.航空学报, 1999, 19(1):1-5.
    [50] Kang N., Sun M., Simulated Flowfields in Near-Ground Operation of Single-and Twin-Rotor Configurations. Journal of Aircraft, 2000, 37(2): 214-220.
    [51]曹义华,王吉飞,苏媛,等, Jameson/TVD格式应用旋翼翼型绕流分析.航空动力学报, 2002, 17(3):297-301.
    [52]于子文,曹义华,前飞旋翼三维湍流场的数值模拟.北京航空航天大学学报, 2006, 32(7):751-755.
    [53] Cao Y. H., Yu Z. Q., Su, Y., Combined Free Wake/CFD Methodology for Predicting Transonic Rotor Flow in Hover. Chinese Journal of Aeronautics, 2002, 15(2): 65-71.
    [54]招启军,新型桨尖旋翼流场及噪声的数值模拟研究.博士学位论文.南京航空航天大学, 2005.
    [55]肖中云,旋翼流场数值模拟方法研究.博士学位论文.中国空气动力研究与发展中心, 2007.
    [56] Houbolt J. C., Brooks G. W., Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending, and Torsion of Twisted Nonuniform Rotor Blades. NACA Report 1346, 1958.
    [57] Arcidiacono P., Steady Flight Differential Equations of Motion for a Flexible Helicopter Blade with Chordwise Mass Unbalance. USAAVLABS. TR 68-188, 1969.
    [58] Ormiston R. A., Hodges D. H., Linear Flap-Lag Dynamics of Hingeless Helicopter Rotor Blades in Hover. Journal of American Helicopter Society, 1972, 17(2):2-14.
    [59] Hodges D. H., Dowell E. H., Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades. NASA TN-D-7818, 1974.
    [60] Kvaternik Raymond G., Kaza., Krishna R. V., Nonlinear Curvature Expressions for Combined Flapwise Bending, Chordwise Bending, Torsion, and Extension of Twisted Rotor Blades. NASA TM X-73997, 1976.
    [61] Rosen A., Friedmann P. P., Nonlinear Equations of Equilibrium for Elastic Helicopter or Wind Turbine Blades Undergoing Moderate Deformation. NASA CR-159478, 1978.
    [62] Hodges D.H., A Mixed Variational Formulation Based on Exact Intrinsic Equations for Dynamics of Moving Beams. International Journal of Solids and Structures, 1990, 26(11):1253-1273.
    [63] Bauchau O. A., Hong C.H., Nonlinear Composite Beam Theory. Journal of Applied Mechanics, 1988, 55(1):156–163.
    [64] Smith E. C., Chopra, I., Aeroelastic Response, Loads, and Stability of a Composite Rotor in Forward Flight. AIAA Journal, 1993, 31(7):1265-1273.
    [65]王海,计入桨叶结构弹性的新型桨尖旋翼流场数值模拟研究.博士学位论文.南京航空航天大学, 2010.
    [66] Straub F. K., Friedmann P. P., Galerkin Type Finite Element Method for Rotary-Wing Aeroelasticity in Hover and Forward Flight. Proceedings of the 6th European Rotorcraft and Powered Lift Forum, 1980.
    [67] Chopra I., Sivaneri N. T., Aeroelastic Stability of Rotor Blades Using Finite Element Analysis. NASA CR-166389, 1982.
    [68] Sivanseri N. T., Chopra, I., Finite Element Analysis for Bearingless Rotor Blade Aeroelasticity. Journal of the American Helicopter Society, 1984, 29(2):42-51.
    [69] Bauchau O. A., Kang N. K., A Multibody Formulation for Helicopter Structural Dynamic Analysis. Journal of the American Helicopter Society, 1993, 38(2):3-14.
    [70] Johnson W., Rotorcraft Dynamics Models for a Comprehensive Analysis. Proceedings of the 54th Annual Forum of the American Helicopter Society, 1998.
    [71] Ghiringhelli G. L., Masarati P., Mantegazza P., et al., Multi-Body Analysis of the 1/5 scale Wind Tunnel Model of the V-22 Tiltrotor. Proceedings of the 55th Annual Forum of the American Helicopter Society, 1999.
    [72]夏品奇,徐桂祺,伽辽金有限元素法对旋翼气弹稳定性的应用,应用力学学报, 1997, 14(2(2):41-46.
    [73] Hu G. C., Xiang. W., Zhang, X. G., Dynamic Stability Analysis for Helicopter Rotor/Fuselage Coupled Nonlinear Systems. Chinese Journal of Aeronautics, 2003, 16(1):22-28.
    [74] Wang Haowen, Gao Zheng, Rotor Vibratory Load Prediction Based on Generalized Forces. Chinese Journal of Aeronautics, 2004, 17(1):28-33.
    [75]杨卫东,邓景辉,直升机后掠桨尖旋翼气弹稳定性研究.南京航空航天大学学报, 2003, 35(3):248-252.
    [76] Tung C., Caradonna F., X., Johnson, W., The Prediction of Transonic Flows on an Advancing Rotor. Journal of the American Helicopter Society, 1986, 32(7):4-9.
    [77] Johnson W., Development of Comprehensive Analysis for Rotorcraft I: Rotor Model and Wake Analysis; II: Aircraft Model, Solution Procedure and Applications. Vertica, 1981, Vol.5:99-130 and 185-216.
    [78] Strawn R.C., Caradonna F.X., Conservative Full Potential Model for Unsteady Transoncic Rotor Flows. AIAA Journal, 1987, 25(2):193-198.
    [79] Strawn R. C., Desopper A., Miller J., et al., Correlation of Puma Airloads - Evaluation of CFD Prediction Methods. Proceedings of the 15th European Rotorcraft Forum, 1989.
    [80] Strawn R. C., Tung C., Prediction of Unsteady Transonic Rotor Loads with a Full-Potential Rotor Code. Proceedings of the 43th Annual Forum of the American Helicopter Society, 1987.
    [81] Strawn R. C., Bridgeman J. O., An Improved Three-Dimensional Aerodynamics Model for Helicopter Airloads Prediction. AIAA 1991-0767, 1991.
    [82] Kim K. C., Desopper A., Chopra I., Blade Response Calculations Using Three-Dimensional Aerodynamic Modeling. Journal of the American Helicopter Society, 1991, 36(1):68-77.
    [83] Bir G., Chopra I., Nguyen K., Development of UMARC (University of Maryland Advanced Rotor Code). Proceedings of the 46th Annual Forum of the American Helicopter Society, 1990.
    [84] Lee C. S., Saberi H., Ormiston, R. A., Aerodynamic and Numerical Issues for Coupling CFD into Comprehensive Rotorcraft Analysis. Proceedings of the 53th Annual Forum of the American Helicopter Society, 1997.
    [85] Servera G., Beaumier P., Costes, M., A Weak Coupling Method between the Dynamics Code Host and the 3D Unsteady Euler Code Waves. Proceedings of the 26th European Rotorcraft Forum, 2000.
    [86] Potsdam M., Yeo H., Johnson W., Rotor Airloads Prediction Using Loose Aerodynamic/Structural Coupling. Journal of Aircraft, 2006, 43(3):732-742.
    [87] Biedron R. T., Lee-Rausch E. M., Rotor Airloads Prediction Using Unstructured Meshes and Loose CFD/CSD Coupling. AIAA 2008-7341, 2008.
    [88] Bauchau O. A., Ahmad J. U., Advanced CFD and CSD Methods for MultidisciplinaryApplications in Rotorcraft Problems. AIAA 1996-4151, 1996.
    [89] Chen S. Y., Bauchau O. A., Sopher R., Evaluation of an Advanced Finite Element Analysis for Rotor Blades. Proceedings of the 47th Annual Forum of the American Helicopter Society, 1991.
    [90] Lee C. S., Saberi H., Ormiston, R. A., Aerodynamic and Numerical Issues for Coupling CFD into Comprehensive Rotorcraft Analysis. Proceedings of the 53th Annual Forum of the American Helicopter Society, 1997.
    [91] Bridgeman J. O., Prichard D., Caradonna F.X., The Development of a CFD Potential Method for the Analysis of Tilt-Rotors. Proceedings of the AHS Technical Specialist Meeting on Rotorcraft Acoustics and Fluid Dynamics, 1991.
    [92] Rutkowski M. J., Ruzicka G. C., Ormiston R. A., et al., Comprehensive Aeromechanics Analysis of Complex Rotorcraft Using 2GCHAS. Journal of the American Helicopter Society, 1995, 40(4):3-15.
    [93] Pomin H., Wagner S., Navier-Stokes Analysis of Helicopter Rotor Aerodynamics in Hover and Forward Flight. AIAA 2001-0998, 2001.
    [94] Pomin H., Wagner S., Aeroelastic Analysis of Helicopter Rotor Blades on Deformable Chimera Grids. AIAA 2002-0951, 2002.
    [95] Phanse S., Sankar L. N., Bauchau O., An Efficient Tightly Coupled Fluid-Solid Interaction Approach for Modeling Rotors in Forward Flight. Proceedings of the 2nd International Basic Research Conference on Rotorcraft Technology, 2005.
    [96] Yang Z., Smith M. J., Bauchau O., et al., A Hybrid Flow Analysis for Rotors in Forward Flight. Proceedings of the American Helicopter Society Aeromechanics Specialists’Meeting, 2000.
    [97] Sitaraman J., CFD Based Unsteady Aerodynamic Modeling for Rotor Aeroelastic Analysis. PhD. Dissertation, University of Maryland, 2003.
    [98]白俊强,直升机旋翼流场三维NS方程计算及及结构动态响应研究.博士学位论文,西北工业大学, 1997.
    [99] Harrison R., Stacey S., Hansford B., BERP IV: the Design, Development and Testing of an Advanced Rotor Blade. Proceedings of the 64th Annual Forum of the American Helicopter Society, 2008.
    [100] Conlisk A. T., Modern Helicopter Rotor Aerodynamics. Progress in Aerospace Science, 2001, 37(5):419-476.
    [101] Stroub R. H., Full-Scale Wind Test of a Modern Helicopter Main Rotor Investigation of Tip Mach Number Effects and Comparisons of Four Tip Shapes. Proceedings of the 34th AnnualForum of the American Helicopter Society, 1978.
    [102] Desopper P., Lafon P., Céroni P., et al., Ten Years of Rotor Flow Flow Studies at ONERA. Journal of the American Helicopter Society, 1989, 34(1):34-41.
    [103] Desopper A., Study of the Unsteady Transonic Flow on Rotor Blades with Different Tip Shapes. Proceedings of the 10th European Rotorcraft Forum, 1984.
    [104] Perry F. J., Aerodynamics of the Helicopter World Speed Record. Proceedings of the 44th Annual Forum of the American Helicopter Society, 1988.
    [105] Quackenbush T. R., Boschitsch A. H., Wachspress D. A., et al., Rotor Design Optimization Using a Free Wake Analysis, NASA CR-177612,1993.
    [106]徐国华,王适存,具有后掠桨尖的旋翼气动特性计算方法.空气动力学学报, 1999, 17(3):356-361.
    [107] Nam C. J., and Lee, D.. Navier-Stokes Calculations of Rotating BERP Planform Blade Flowfields, AIAA 1993-3527, 1993.
    [108]宋文萍,韩忠华,王立群,等,旋翼桨尖几何形状对旋翼气动噪声影响的定量计算分析.计算物理, 2001, 18(6):569-572.
    [109]招启军,徐国华,新型桨尖旋翼悬停气动性能试验及数值研究.航空学报, 2009, 30(3):422-429.
    [110] Kim K. C., Chopra I., Aeroelastic Analysis of Rotor Blades with Advanced Tip Shapes. Proceedings of the 31th AIAA/ASME/ASCE/ASC/AHS Structures, Structural Dynamics and Materials Conference, 1990.
    [111]杨卫东,后掠桨尖旋翼气弹耦合分析及优化研究.博士学位论文,南京航空航天大学, 1995.
    [112] Fejtek I., Roberts L., Navier-Stokes Computation of Wing/Rotor Interaction for a Tilt Rotor in Hover. AIAA Journal, 1992, 30(11): 2595-2603.
    [113] Webster R. S., Chen J. P., Whitfield D. L., Numerical Simulation of a Helicopter Rotor in Hover and Forward Flight. AIAA 95-0193, 1995.
    [114] Acikgoz N., Bottasso C. L., A Unified Approach to the Deformation of Simplicial and Non-Simplicial Meshes in Two and Three Dimensions with Guaranteed Validity. Computers and Structures, 2007, 85(11-14):944-954.
    [115] Thompson J. E., Warsi Z. U. A., Mastin C., Numerical Grid Generation. Elsevier Science Publishing, 1985.
    [116] Hilgenstock A., A Fast Method for the Elliptic Generation of Three-Dimensional Grids withFull Boundary Control. Proceedings of the Second International Conference, 1988.
    [117] Degand C., Farhat C., A Three-dimensional Torsional Spring Analogy Method for Unstructured Dynamic Meshes. Computers and Structures, 2002, 80(3-4):305-316.
    [118] Saad Y., Iterative Methods for Sparse Linear Systems. First Edition, PWS, 1996.
    [119] Landon R. H., Compendium of Unsteady Aerodynamic Measurements. AGARD-R-702, 1982.
    [120] Chiu I T., Meakin R L., On Automating Domain Connectivity for Overset Grids. AIAA 95-0854, 1995.
    [121] Meakin R. L., Domain Connectivity among Systems of Overset Grids. NASA CR-193390, 1993.
    [122] Meakin R. L., A New Method for Establishing Intergrid Communication among Systems of Overs Grids. AIAA 91-1586, 1991.
    [123]王博,徐广,招启军,等,基于新型运动嵌套网格方法的旋翼非定常前飞流场模拟.第十四届全国计算流体力学会议论文集:计算流体力学研究进展, 2009.
    [124] Blazek J., Computational Fluid Dynamics: Principles and Applications, Second Edition, Elsevier Ltd, 2005.
    [125] Anderson J. D., Computational Fluid Dynamics: The Basics with Applications. Proceedings by McGraw-Hill Companies, Inc, 1995.
    [126] Roe P. L., Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. Journal of Computational Physics, 1981, 43(2):357-372.
    [127] Venkatakrishnan V., On the Accuracy of Limiters and Convergence to Steady State Solutions. AIAA 93-0880, 1993.
    [128] Harten A., Hyman J. M., Self Adjusting Grid Methods for One-Dimensional Hyperbolic Conservation Laws. Journal of Computational Physics, 1983, 50:235-269.
    [129] Jameson A., Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows past Airfoils and Wings. AIAA 91-1596, 1991.
    [130] Thomas P. D., Lombard C. K., Geometric Conservation Law and its Application to Flow Computations on Moving Grids. AIAA Journal, 1979, 17(10):1030-1037.
    [131] Baldwin B., Lomax H., Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA 78-257, 1978.
    [132] Spalart P. R., Allmaras S. R., A one-Equation Turbulence Model for Aerodynamic Flows. AIAA 92-439, 1992.
    [133] Johnson W., Helicopter Theory. Princeton: Princeton University Press, 1980.
    [134] Strawn R. C., Ahmad J., Computational Modeling of Hovering Rotors and Wakes. AIAA 2000-0110, 2000.
    [135] Cook P. H., McDonald M. A., Firmin M. C. P., Aerofoil RAE2822-Pressure Distributions, and Boundary Layer and Wake Measurements. AGARD-AR-138, 1979, A6-1to A6-77.
    [136] Abid R., Vatsa V. N., Prediction of Separated Transonic Wing Flows With Nonequilibrium Algebraic Turbulence Model. AIAA Journal, 1990, 28(8): 1426-1431.
    [137] Caradonna F. X., Tung C., Experimental and Analytical Studies of a Model Helicopter Rotor in Hover. Vertica, 1981, 5(1): 149-161.
    [138] Caradonna F. X., Laub G. H., Tung C., An Experimental Investigation of the Parallel Blade-Vortex Interaction. NASA TM 86005, 1984.
    [139] Yu Y. H., Tung C., Gallman J., et al., Aerodynamics and Acoustics of Rotor Blade-Vortex Interactions. Journal of Aircraft, 1995, 32(5):970-977.
    [140] Bagai A., Leishman J. G., Free-Wkae Analysis of Tandem, Tilt-Rotor and Coaxial Rotor Configurations, Proceedings of the 51th Annual Forum of the American Helicopter Society, 1995.
    [141] Steijl R., Barakos G. N., Badcock K. J., A CFD Framework for Analysis of Helicopter Rotors. AIAA 2005-5124, 2005.
    [142] Lorber P. F., Stauter R. C., Landgrebe A. J., A Comprehensive Hover Test of the Airloads and Airflow of Anextensively Instrumented Model Helicopter Rotor. Proceedings of the 45th Annual Forum of the American Helicopter Society, 1989.
    [143] Ahmad J. U., Strawn R. C., Hovering Rotor and Wake Calculations with an Overset-Grid Navier-Stokes Solver. Proceedings of the 55th Annual Forum of the American Helicopter Society, 1999.
    [144] Van Dam C. P., Recent Experience with Different Methods of Drag Prediction. Progress in Aerospace Sciences, 1999, 35:751-798.
    [145] Cross J. F., Watts M. E., Tip Aerodynamics and Acoustics Test. NASA RP-1179, 1988.
    [146] Biava M., Bindolino G., Vigevano L., Single Blade Computations of Helicopter Rotors in Forward Flight. AIAA 2003-52, 2003.
    [147] Abhishek A., Data A., Chopra I., Prediction of UH-60A Structural Loads Using Multibody Analysis and Swashplate Dynamics. Journal of Aircraft, 2009, 46(2):474-490.
    [148] Sitaraman J., Baeder J. D., Chopra I., Validation of UH-60A Rotor Blade Aerodynamic Characteristics using CFD. Proceedings of the 59th Annual Forum of the American HelicopterSociety, 2003.
    [149] Arnold, VI.. Mathematical Methods of Classical Mechanics, Second Edition, Springer Verlag, 1989.
    [150] Yuan K. A., Friedmann P. P., Aeroelasticity and Structural Optimization of Composite Helicopter Rotor Blades with Swept Tips. NASA CR-4665, 1995.
    [151] Wilson E. L., Three-Dimensional Static and Dynamic Analysis of Structures. Third Edition, Computers and Structures, Inc., 2005.
    [152] Davis S. J., Predesign Study for a Modern 4-Bladed Rotor for RSRA. NASA CR-166155, 1981.
    [153] Datta A., Fundamental Understanding, Prediction and Validation of Rotor Vibratory Loads in Steady Level Flight. PhD. Dissertation, the University of Maryland, 2004.
    [154] Dowell E. H., Traybar J., Hodges D. H., An Experimental-Theoretical Correlation Study of Non-Linear Bending and Torsion Deformations of a Cantilever Beam. Journal of Sound and Vibration, 1977, 50(4):533–544.
    [155] Farhat C., Lesoinne M., LeTallec P., Load and Motion Transfer Algorithms for Fluid/Structure Interaction Problems with Non-matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity. Computer Methods in Applied Mechanics and Engineering, 1998, 157: 95-114.
    [156] Farhat C., Lesoinne M., Enhanced Partitioned Procedures for Solving Nonlinear Transient Aeroelastic Problems. AIAA 1998-1806, 1998.
    [157] Lee H. K., Yoon S. H., Kwak J. S., Shin S, et al., Coupled Analysis Between CFD and CSD for a Helicopter Rotor in Hover and Forward Flight. AIAA 2009-2322, 2009.
    [158]王适存,徐国华,直升机旋翼空气动力学的发展.南京航空航天大学学报, 2001, 33(3):203-211.
    [159] Balch D. T., Lombardi J., Experimental Study of Main Rotor Tip Geometry and Tail Rotor Interactions in Hover. Volume 1-Text and Figures. NASA CR-177336, 1985.
    [160] Kim K. C., Dynamic Analysis of Advanced Tip Rotors Including Three-Dimensional Aerodynamics. PhD. Dissertation, the University of Maryland, 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700