用户名: 密码: 验证码:
稀土氧化物和氟化物纳米晶上转换荧光光谱的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续光频率上转换在医学探测和编码、人体内部疾病光动力治疗、开发连续短波长激光器、立体成像、显示等方面都有美好的应用前景。然而,目前在上转换荧光发射方面还存在着诸如光光转换效率不高、光谱人工设计严重不足、紫外上转换发射很少被设计等问题,从而影响了上转换在医学和光子学方面的应用。本文以稀土氧化物和氟化物为研究对象,在上转换荧光光谱设计、荧光增强方法、紫外上转换荧光的获得,以及在医学中应用等方面开展了系统的研究。
     开展了氧化物单色和白光上转换发光的设计研究。通过调节Yb3+离子掺杂浓度,在980 nm激光激发下,获得了单红和单绿上转换荧光;通过激发光和荧光功率关系分析、荧光光谱分析,和速率方程理论分析,阐明了单色上转换发射机制;通过定义“抑制比”概念,提出了对单色上转换发射的评价标准;通过Er3+、Tm3+和Yb3+的合理配比,获得了在宽功率范围内的980 nm激光激发下纳米粒子的白光上转换发射;通过实验和理论分析,阐明了白光上转换发射机制。
     对氧化物上转换发光增强方法进行了研究。通过在稀土上转换纳米材料中,进一步引入Li+离子掺杂,获得了二个数量级增强的上转换发光。通过大量的实验和理论分析,提出了其增强机制:Li+离子的引入,使其在晶格中占位,从而修饰了晶格场,使稀土离子相关能级的寿命增加,从而实现了上转换发光增强。实验结果表明这种增强方法不仅适用于不同的稀土离子的上转换发光增强,而且适用于不同基质中稀土离子的上转换发光增强。证明了这种增强方法是普适的。
     对紫外上转换发光进行了研究。在Yb3+/Tm3+掺杂的氧化物中,在980 nm激光激发下观察到300 nm附近的紫外上转换发光,激发光和荧光功率关系表明其紫外辐射为五光子和六光子过程;提出了其上转换发光机制。提出并证实了Yb3+/Er3+掺杂的氧化物中蓝色和紫外上转换荧光的发光机制。观察到980 nm激光激发下240-490 nm波段的Yb3+/Ho3+掺杂的氟化物的上转换发射,提出并证实了其发光机制并解释了观察到的饱和现象。采用Ho3+离子敏化Gd3+离子设计获得NaGdF4:Yb3+/Ho3+纳米晶中Gd3+离子紫外上转换发光,并解释了其发光机制。观察到在氟化物中掺杂Er3+以及Er3+敏化Gd3+离子的近真空紫外上转换发光和超级饱和效应,提出并解释其发光机制。
     对医用纳米粒子制备、上转换发光和医学应用进行了研究。采用湿化学方法,探索出不同尺寸氟化物纳米粒子及其包壳的制备工艺,制备出可控尺寸和形貌的氟化物纳米材料和核壳结构的氟化物纳米材料。通过Ce3+、Yb3+离子掺杂浓度的调节,获得了氟化物纳米粒子在红外光激发下的红光上转换辐射,并阐明了其光谱调节机制。设计了核壳结构氟化物纳米粒子,获得了增强的上转换发光,提出并解释了上转换增强机制。利用制备的氟化物纳米材料,证明了在组织液成像中上转换发光成像在空间分辨率方面大大优于传统荧光标记的荧光成像。通过动物实验,证明了我们制备的氟化物纳米粒子能够做到无背景、多色、活体成像。
Contiuous-wave-induced photon upconversion has prosmising applications in many fields, such as biomedical detection and encoding, photodynamic therapy of human diseases, continous-wave short-wavelength lasers, volumetric color imaging and displays, etc. Unfortunately, upconversion materials currently have several serious spectrocscopic problems, including low upconversion efficiency, unsatisfied emission spectra without design, and scarce realization of ultraviolet upconversion emissions, etc. These problems seriously limit their applications in photonics and biomedicine. Based on rare-earth-ion-doped oxide and fluoride materials, we have performed systematic investigations on upconversion emission spectral design, upconversion emission enhancement, ultraviolet upconversion emission realization, as well as practical applications of designed nanocrystals in biomedicine.
     Green, red and white color upconversion emissions were designed in rare-earth-ion-doped oxide nanocrystals. Single green and red colors were obtained in oxide nanocrystals through controlling the doped Yb3+ ion concentrations under the excitation of 980 nm diode laser. Their corresponding mechanisms were prosposed and verified based on systematic analyses of pump power dependence, fluorescence spectroscopy, and theoretical calculations. The parameter of“suppression ratio”was introduced, which can quantitatively define the monochromonity of upconversion biolabels. White color output was achieved in oxide nanocrystals by controlling appropriate ion concentrations of Er3+、Tm3+ and Yb3+. The mechanism for white upconversion was proposed based on experimental observations and theortical analysis.
     A general strategy for upconversion emission enhancement in oxide nanocrystals is proposed. Upconversion emissions in rare-earth-ion-doped oxide nanocrystal were increased by two orders of magnitude via introducing monovalent Li+ ions in the host lattice. Mechanisms for the enhancement were proposed and verified based on substantial experimental observations and theoretical analyses. Introducing Li+ ions in the host lattice can modify rare-earth ions’local crystal filed, lengthen the lifetime of energy levels involved, and finally lead to the significant increase in upconversion radiations. The proposed strategy not only can apply to nanocrystals of different oxide host lattices, but also can apply to diverse codoping and tridoping rare-earth ions. Hence, the proposed strategy has general validity in rare-earth-ion-doped oxide nanocrystals.
     Ultraviolet upconversion emissions were investigated. Ultraviolet upconversion emissions around 300 nm were observed in Yb3+/Tm3+-codoped oxide nanocrystals under diode laser excitation of 980 nm. Pump power dependence investigations indicate that they arise from five- and six-photon processes, which can be well explained by using the proposed upconversion mechanisms. Upconversion mechanisms for blue and ultraviolet emissions in Yb3+/Er3+ -codoped oxide nanocrystals were proposed and demonstrated. Ultraviolet upconversion emissions of 240-490 nm were observed in Yb3+/Ho3+-codoped fluoride materials. Their generation mechanisms and saturation effects were explained. Ho3+-sensitized ultraviolet upconversion of Gd3+ ions were designed in NaGdF4:Yb3+/Ho3+ nanocrystals. Near vaccum ultraviolet upconversion emission of Er3+ and Er3+-sensitized Gd3+ ions as well as their“super saturation effect”were experimentally observed in fluoride materials, which can be well explained by the proposed upconversion mechanisms.
     Synthesis, upconversion emission design, and biomedical applications of fluoride nanocrystals were performed. Size- and morphology-controllable fluoride nanocrystals and core/shell fluoride nanocrystals were prepared by wet chemical methods. Single red upconversion in fluoride nanocrystals were realized in nanocrystals NaYF4:Yb3+/Ho3+/Ce3+ and NaYF4:Yb3+/Er3+ by adjusting Ce3+ and Yb3+ contents, respectively. A novel core/shell structure was developed in fluoride nanocrystals, which can greatly increase the intensity of upconversion emission. The prepared fluoride nanocrystals were applied to optical tomorgraph in tissue, and it was found that upconversion fluoride nanocrystals can produce higher space resolution images than conventional fluorescent labels. Through animal experimentals, it is demonstrated that our designed fluoride nanocrystals can be successfully applied to autofluorescence-free in vivo multicolor imaging.
引文
1. F. Auzel. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104:139~173
    2. N. Bloemvergen. Solid State Infrared Quantum Counter. Phys. Rev. Lett. 1959, 2:84~85
    3.张希艳.稀土发光材料.国防工业出版社. 2004:203~205
    4. F. Auzel. C. R. Acad. Sci. (Paris) 1966, 262:1016.
    5. F. Auzel. C. R. Acad. Sci. (Paris) 1966, 263:819.
    6. J. S. Chivian, W. E. Case and D. D. Eden. The Photon Avalanche: A New Phenomenon in Pr3+-based Infrared Quantum Counter. Appl. Phys. Lett. 1979, 35(2):124~125.
    7. F. Tong, W. P. Risk, R. M. Macfarlane and W. Lenth. 551 nm Diode-Laser-Pumped Upconversion Laser. Electron. Lett. 1989, 25(20):1389~1391.
    8. S. Heer, O. Lehmann, M. Haase and H. U. Güdel. Blue, Green, and Red Upconversion Emission from Lanthanide-Doped LuPO4 and YbPO4 nanocrystals in A Transparent Colloidal Solution. Angew. Chem. Int. Ed. 2003, 42:3179~3182
    9. E. Heumann, S. B?r, K. Rademaker and Günter Huber. Semiconductor-Laser-Pumped High-Power Upconversion Laser. Appl. Phys. Lett. 2006, 88:061108.
    10. S. Sivakumar, F. C. J. M van Veggel and P. Stanley May. Near-Infrared (NIR) to Red and Green Upconversion Emission from Silica Sol-Gel Thin Films Made with La0.45Yb0.50Er0.05F3 Nanoparticles, Hetero-Looping-Enhanced Energy Transfer (Hetero-LEET):A New Upconversion Process. J. Am. Chem. Soc. 2007, 129: 620~625
    11.苏锵.稀土化学.河南科学技术出版社,1993:1~20
    12.王锋.镧系掺杂氟化物发光生物标记纳米材料的制备与性能研究.浙江大学博士论文. 2006:10~15.
    13. Sune Svanberg. Atomic and Molecular Spectroscopy:Basic Aspects and Practical Applications. Springer. 2001:10~17.
    14.黄世华.离子中心的发光动力学.科学出版社. 2002:6~14.
    15.张思远.稀土光谱理论.吉林科技出版社. 1991:31~66.
    16. G. H. Dieke. Spectra and Energy Levels of Rare-Earth Ions in Crystals. New York:Wiley-Interscience. 1968:1~50.
    17.杨建虎,戴世勋,姜中宏.稀土离子的上转换发光及研究进展. 2003,23(3):284~298
    18. J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kr?mer, C. Reinhard and H. U. Güdel. Novel Materials Doped with Trivalent Lanthanides and Transition Metal Ions Showing Near-Infrared to Visible Photon Upconversion. Opt. Mater. 2005, 27:1111~1130
    19. E. Nakazawa and S. Shiononya. Cooperative Luminescence in YbPO4. Phys. Rev. Lett. 1970, 25(25):1710~1712.
    20. Ph. Goldner and F. Pellé. Photon Avalanche Fluorescence and Lasers. Opt. Mater. 1996, 2:239~249.
    21. M. F. Joubert. Photon Avalanche Upconversion in Rare Earth Laser Materials. Opt. Mater. 1999, 11:181~203.
    22.闫若雪.稀土纳米荧光材料的控制合成、表征和光学性能研究.清华大学硕士论文. 2005:4~10.
    23. L. F. Johnson and H. J. Guggenheim. Infrared-Pumped Visible Laser. Appl. Phys. Lett. 1971, 19(2):44~47.
    24. S. G. Grubb, K. W. Bennett, R. S. Cannon and W. F. Humer. CW Room-Temperature Blue Upconversion Fiber Laser. Electron. Lett. 1992, 28(3):1243~1244.
    25. T. Sandrock, H. Scheife, E. Heumann and G. Huber. High-Power Continuous-Wave Upconversion Fiber Laser at Room Temperature. 1997, 22(11):808~810.
    26. F. Liu, E. Ma, D. Q. Chen, Y. L. Yu and Y. S. Wang. Tunable Red-Green Upconversion Luminescence in Novel Transparent Glass Ceramics Containing Er: NaYF4 Nanocrystals. J. Phys. Chem. B. 2006, 110:20843~20846.
    27. D. Q. Chen, Y. S. Wang, Y. L. Yu and P. Huang. Intense Ultraviolet Upconversion Luminescence from Tm3+/Yb3+:β-YF3 Nanocrytals Embedded Glass Ceramic. Appl. Phys. Lett. 2007, 91:051920.
    28. R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. W?rhoff, A. Driessen, J. W. Stouwdm and F. C. J. M. van Veggel. Stimulated Emission and Optical Gain in LaF3:Nd Nanoparticle-Doped Polymer-Based Waveguides. Appl. Phys. Lett. 2004, 85(25):6104~6106.
    29. D. Zhang, C. Chen, C. M. Chen, C. S. Ma, D. M. Zhang, S. H. Bo and Z. Zhen.Optical Gain at 1535 nm in LaF3:Er,Yb Nanoparticle-Doped Organic-Inorganic Hybrid Material Waveguide. Appl. Phys. Lett. 2007, 91:161109.
    30. X. F. Liu, Y. Z. Chi, G. P. Dong, E. Wu, Y. B. Qiao, H. P. Zeng and J. R. Qiu. Optical Gain at 1550 nm from Colloidal Solution of Er3+-Yb3+codoped NaYF4 nanocubes. Opt. Exp. 2009, 17(7):5885~5890.
    31.曾伟,周时凤,徐时清,邱建荣.基于上转换荧光的三维立体显示. Laser&Opoelectronics Progress. 2007, 44(3):69~73.
    32. E. Downing, L. Hesselink, J. Ralston and R. Macfarlane. A Three-Color, Solid-State, Three-Dimensional Display. Science 1996, 273:1185~1189.
    33. D. Miyazaki, M. Lasher and Y. Fainman. Fluorescent Volumetric Display Excited by A Single Infrared Beam. Appl. Opt. 2005, 44:5281~5285.
    34. X. F. Liu, G. P. Dong, Y. B. Qiao, and J. R. Qiu. Transparent Colloid Containing Upconverting Nanocrystals: An Alternative Medium for Three-Dimensional Volumetric Display. Appl. Opt. 2008, 47(34):6416~6421.
    35. B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, C. R. Li, T. Yang and S. M. Miao. Optical Thermometry Through Infrared Excited Green Upconversion Emissions in Er3+–Yb3+ codoped Al2O3. Appl. Phys. Lett. 2007, 90:181117
    36. X. Wang, X. G. Kong, Y. Yu, Y. J. Sun and H. Zhang. Effect of Annealing on Upconversion Luminescence of ZnO:Er3+ Nanocrystals and High Thermal Sensitivity. J. Phys. Chem. C 2007, 111:15119~15124.
    37. S. K. Singh, K. Kumar and S. B. Rai. Er3+/Yb3+ Codoped Gd2O3 Nanophosphor for Optical Thermometry. Sens. Actuators A. 2009, 149:16~20.
    38. S. Sivakumar, P. R. Diamente and F. C. J. M. van Veggel. Silica-Coated Ln3+-Doped LaF3 NanoparticlesasRobus t Down- and Upconverting Biolabels. Chem. Eur. J. 2006, 12:5878~5884.
    39. G. Y. Chen, Y. G. Zhang, G. Somesfalean, Z. G. Zhang,Q. Sun and F. P. Wang. Two-Color Upconversion in Rare-Earth-Ion-Doped ZrO2 Nanocrystals. Appl. Phys. Lett. 2006, 89:163105
    40. S. Heer, K. K?mpe, H. U. Güdel, and M. Haase. Highly Efficient Multicolour Upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16:2102~2105
    41. G. S. Yi and G. M. Chow. Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm Nanocrystals with Multicolor Upconversion Fluorescence. J. Mater. Chem. 2005, 15:4460~4464
    42. Feng Wang, Wee Beng Tan, Yong Zhang, Xianping Fan and Minquan Wang.Luminescent nanomaterials for biological labeling. Nanotechnology. 2006, 17:R1-R13
    43. R. S. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle and R. Vallejo. Detection of Analytes by Immunoassay Using Up-Converting Phosphor Technology. Anal. Biochem. 2001, 293:22~30.
    44. J. Hampl, M. Hall, N. A. Mufti, Y. M. Yao, D. B. MacQueen, W. H. Wright, and David E. Cooper. Upconverting Phosphor Reporters in Immunochromatographic Assays. Anal. Biochem. 2001, 288:176~187.
    45. H. J. M. A. A. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, and H. J. Tanke. Detection of Cell and Tissue Surface Antigens Using Up-Converting Phosphors: A New Reporter Technology. Anal. Biochem.1999, 267:30~36.
    46. S. F. Lim, R. Riehn, W. S. Ryu, N. Khanarian, C. K. Tung, D. Tank, and R. H. Austin. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano. Lett. 2006, 6:169~174.
    47. Dev K. Chatterjeea, A. J. Rufaihaha and Y. Zhang. Upconversion Fluorescence Imaging of Cells and Small Animals Using Lanthanide Doped Nanocrystals. Biomater. 2008, 29:937~943.
    48. Rufaihah Abdul Jalil a, Yong Zhang Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomater. 2008, 29:4122~4128.
    49. F. Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala and H. J. Tanke. Up-converting phosphor reports for nucleic acid microarrays. Nature. Biotech. 2001, 19:273~276.
    50. P. Corstjens, M. Zuiderwijk, A. Brink, S. Li, H. Feindt, S. Niedbala and H. J. Tanke. Use of Up-Converting Phosphor Reporters in Lateral-Flow Assays to Detect Specific Nucleic Acid Sequences: A Rapid, Sensitive DNA Test to Identify Human Papillomavirus Type 16 Infection. Clin. Chem. 2001, 47(10):1885~1893
    51. P. N. Prasad. Introduction to Biophotonics. Wiley: New York. 2003:534-535.
    52. P. Zhang, W. Steelant, M. Kumar and M. Scholfield. Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation. J. Am. Chem. Soc. 2007, 129:4526~4527
    53. R. H. Page, K. I. Schaffers, P. A. Waide, J. B. Tassano, S. A. Payne, W. F. Krupke and W. K. Bischel. Upconversion-Pumped Luminescence Efficiency of Rare-Earth-Doped Hosts Sensitized with Trivalent Ytterbium. J. Opt. Soc. Am.B 1998, 15(3):996~1008
    54. G. Seisenberger, M.U. Ried, T. Endreβ, H. Büning, M. Hallek, and C. Br?uchle. Real-Time Single-Molecule Imaging of the Infection Pathway of an Adeno-Associated Virus. Science 2001, 294:1929~1932
    55. A. Demuro and I. Parker. Optical Single-Channel Recording: Imaging Ca2+ Flux Through Individual Ion Channels with High Temporal and Spatial Resolution. J. Biomed. Opt. 2005, 10: 011002.
    56. J. Suh, M. Dawson, and J. Hanes, Real-Time Multiple-Particle Tracking: Applications to Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2005, 57:63~78.
    57. P. Tinnefeld and M. Sauer. Branching Out of Single-Molecule Fluorescence Spectroscopy: Challenges for Chemistry and Influence on Biology. Angew. Chem. Int. Ed. 2005, 44:2642~2671
    58. S. Weiss. Fluorescence Spectroscopy of Single Biomolecules. Science1999,283: 1676~1683
    59. T.M. Jovin. Quantum Dots Finally Come of Age. Nat. Biotechnol. 2003, 21:32~33
    60. L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng and Y. Li. Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles. Angew. Chem. Int. Ed. 2005, 44:6054~6057
    61. J. H. Zeng, J. Su, Z.H. Li, R.X. Yan and Y. D. Li. Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb,Er3+ Phosphors of Controlled Size and Morphology. Adv. Mater. 2005, 17:2119~2123
    62. G. S. Yi, H.C. Chang, S.Y. Zhao, Y. Ge, W. J. Yang, D.P. Chen and L.H. Guo. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors. Nano Lett. 2004, 4:2191~2196
    63. K. Kuningas, T. Rantanen, T. Ukonaho, T. L?vgren and T. Soukka. Homogeneous Assay Technology Based on Upconverting Phosphors. Anal. Chem. 2005, 77:7348~7355
    64. Y. H. Chen, R. Kalas and G. Faris. Spectroscopic Properties of Upconverting Phosphor Reporters. Proc. of SPIE 1999, 3600:151~154
    65. H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou and S. D. Xia. Visible Upconversion in Rare Earth Ion-Doped Gd2O3 Nanocrystals. J. Phys. Chem. B 2004, 108:19205~19209
    66. A. Patra, C. S. Friend, R. Kapoor and P. N. Prasad. Effect of Crystal Nature on Upconversion Luminescence in Er3+:ZrO2 Nanocrystals. Appl. Phys. Lett. 2003, 83:284~286
    67. X. H. Gao, L. L. Yang, J. A Petros, F. F Marshall, J. W Simons and S. M. Nie. In Vivo Molecular and Cellular Imaging with Quantum Dots. Curr. Opin. Biotechnol. 2005, 16:63~72
    68. E. De la Rosa-Cruz, L. A. Diaz-Torres, P. Salas, R.A. Rordiguez. Visible Emission of Rare Earth Doped ZrO2 Nanocrystalline Phosphor under UV and IR Excitation. Proc. of SPIE 2004, 5187:150~160
    69. A. Aebisher, S. Heer, D. Biner, K. Kr?mer, M. Haase and H. Güdel. Visible Light Emission upon Near-Infrared Excitation in a Transparent Solution of Nanocrystallineβ-NaGdF4:Yb3+, Er3+. Chem. Phys. Lett. 2005, 407:124~128.
    70. M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281:2013~2016
    71. A. Patra, S. Saha, M.A.R.C. Alencar, N. Rakov and G.S. Maciel. Blue Upconversion Emission of Tm3+-Yb3+ in ZrO2 Nanocrystals:Role of Yb3+ Ions. Chem. Phys. Lett. 2005, 407: 477~481
    72. F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini and M. Bettinelli. A Spectroscopic Analysis of Blue and Ultraviolet Upconverted Emissions from Gd3Ga5O12:Tm3+, Yb3+ Nanocrystals. J. Phys. Chem. B 2005, 109:17400~17405
    73. N. C. Chang, J. B. Gruber, R. P. Leavitt and C. A. Morrison. Optical Spectra, Energy Levels, and Crystal-Field Analysis of Tripositive Rare-Earth-Ions in Y2O3. I. Kramers Ions in C2 Sites. J. Chem. Phys. 1982, 76:3877~3889.
    74. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli. Effect of Yb3+ Codoping on the Upconversion Emission in Nanocrystalline Y2O3:Er3+. J. Phys. Chem. B 2003, 107:1107~1112
    75. H. W. Song, B. J. Sun, T. Wang, S. Z. Lu, L. M. Yang, B. J. Chen, X. J. Wang and X. G. Kong. Three-Photon Upconversion Luminescence Phenomenon for The Green Levels in Er3+/Yb3+ Codoped Cubic Nanocrystalline Yttria. Solid State Commun. 2004, 132:409~413
    76. F. Song, G. Y. Zhang, M. R. Shang, H. Tan, J. Yang and F. Z. Meng. Three-Photon Phenomena in The Upconversion Luminescence of Erbium–Ytterbium-Codoped Phosphate Glass. Appl. Phys. Lett. 2001, 79:1748~1750
    77. M. Pollnau, D. R. Gamelin, S. R. Lüthi and H. U. Güdel. Power Dependence of Upconversion Luminescence in Lanthanide and Transition-Metal-Ion Systems. Phys. Rev. B 2000, 61:3337~3346
    78. D. Matsuura. Red, Green, and Blue Upconversion Luminescence of Trivalent-Rare-Earth Ion-Doped Y2O3 Nanocrystals. Appl. Phys. Lett. 2002, 81:4526~4528.
    79. P. Salas, C. Angeles-Chávez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martínez, M. A. Romero-Romo, and J. Morales. Synthesis, Characterization and Luminescence Properties of ZrO2:Yb3+/Er3+ Nanophosphor. Opt. Mater. 2005, 27:1295~1300.
    80. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini and M. Bettinelli. Concentration-Dependent Near-Infrared to Visible Upconversion in Nanocrystalline and Bulk Y2O3:Er3+. Chem. Mater. 2003, 15:2737~2743
    81. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini and M. Bettinelli. Significance of Yb3+ Concentration on The Upconversion Mechanisms in Codoped Y2O3:Er3+, Yb3+ Nanocrystals. J. Appl. Phys. 2004, 96:661~667.
    82. Y. Guyot, R. Moncogé, L.D. Merkle, A. Pinto, B. Mclntosh and H. Verdun. Luminescence Properties of Y2O3 Single Crystals Doped with Pr3+ or Tm3+ and Codoped with Yb3+, Tb3+ or Ho3+ Ions. Opt. Mater. 1996, 5:127~136
    83. G. Y. Chen, G. Somesfalen, Z. G. Zhang, Q. Sun and F. P. Wang. Ultraviolet Upconversion Fluorescence in Rare-Earth-Ion-Doped Y2O3 Induced by Infrared Diode Laser Excitation. Optt. Lett. 2007, 32:87~89
    84. W. F. Krupke and J. M. Poindexter. Crystal-Field Splitting of Trivalent Thulium and Erbium J Levels in Yttrium Oxide. J. Chem. Phys. 1964, 41:3363~3377
    85. T. R. Hinklin, S. C. Rand and R. M. Laine. Transparent, Polycrystalline Upconverting Nanoceramics:Towards 3-D Displays. Adv. Mater. 2008, 20:1270~1273
    86. Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh and H. Verdun. Luminescence Properties of Y2O3 single crystals doped with Pr3+or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions. Opt. Mater. 1996, 5:127~136
    87. A. M. Pires, O. A. Serraa, S. Heer, and H. U. Güdel. Low-Temperature Upconversion Spectroscopy of Nanosized Y2O3 Er,Yb Phosphor. J. Appl. Phys. 2005, 98:063529
    88. A. M. Pires, O. A. Serraa and M. R. Davolos. Morphological and Luminescent Studies on Nanosized Er,Yb–Yttrium Oxide Up-converter Prepared fromDifferent Precursors. J. Lumin. 2005, 113:174~182
    89. X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai and L. B. Fan. Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects. J. Phys. Chem. C 2007, 111:13611~13617
    90. G. S. Qin, W. P. Qin, S. H. Huang, C. F. Wu, D. Zhao, B. J. Chen, S. Z. Lu, and E. Shulin. Infrared-to-Violet Upconversion from Yb3+and Er3+ codoped Amorphous Fluoride Film Prepared by Pulsed Laser Deposition. J. Appl. Phys. 2002, 92:6936~6938
    91. J. A. Capobianco, F. Vetrone, J. C. Boyer, A. Speghini and M. Bettinelli. Enhancement of Red Emission (4F9/2→4I15/2) via Upconversion in Bulk and NanocrystallineCubic Y2O3:Er3+. J. Phys. Chem. B 2002, 106:1181~1187
    92. M. J. Weber. Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3. Phys. Rev. 1968, 171:283~291
    93. P. Egger and J. Hulliger. Optical Materials for Short Wavelength Genegeration. Coor. Chem. Rev. 1999,183:101~115
    94. S. Heer, K. K?mpe, H. U. Güdel and M. Haase. Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals. Adv. Mater. 2004, 16:2102~2105
    95. G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, and F. P. Wang. Upconversion Mechanism for Two-Color Emission in Rare-Earth-Ion-Doped ZrO2 Nanocrystals. Phys. Rev. B 2007, 75:195204
    96. X. Zhang, C. Serrano, E. Daran, F. Lahoz, G. Lacoste and A. Mu?oz-Yagüe. Infrared-Laser-Induced Upconversion from Nd3+:LaF3 Heteroepitaxial Layers on CaF2 (111) Substrates by Molecular Beam Epitaxy. Phys. Rev. B 2000, 62:4446~4454
    97. F. Xu, Z. Lv, Y.G. Zhang, G. Somesfalean, and Z.G. Zhang. Concentration Evaluation Method using Broadband Absorption Spectroscopy for Sulfur Dioxide Monitoring. Appl. Phys. Lett. 2006, 88:231109
    98. A. Averchi, D. Faccio, R. Berlasso, M. Kolesik, J. V. Moloney, A. Couairon and P. D. Trapani. Phase Matching with Pulsed Bessel Beams for High-Order Harmonic Generation. Phys. Rev. A 2008,77:021802
    99. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping and A. L. Gaeta Four-Wave-Mixing Parametric Oscillations in Dispersion-Compensated High-Q Silica Microspheres. Phys. Rev. A 2007, 76:043837
    100. G. Qin, W. P. Qin, C. F. Wu, S. H. Huang, D. Zhao, J. S. Zhang and S.Z. Lu. Intense Ultraviolet Upconversion Luminescence from Yb3+ and Tm3+ Codoped Amorphous Fluoride Particles Synthesized by Pulsed Laser Ablation. Opt. Comm. 2004, 242:215~219
    101. F. Varsanyi and G. H. Dieke. Ion-Pair Resonance Mechanims of Energy Transfer in Rare Earth Crystal Fluorescence. Phys. Rev. Lett. 1961, 7:441~443
    102. L. de S. Menezes, Cid B. de Araújo, G.S. Maciel, Y. Messaddeq and M.A. Aegerter. Continuous Wave Ultraviolet Frequency Upconversion Due to Triads of Nd3+ Ions in Fluoroindate Glass. Appl. Phys. Lett. 1996, 70:683~685
    103. Sune Svanberg. Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications. Springer. 2001:341~347
    104. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner and H. U. Güdel. Anomalous Power Dependence of Sensitized Upconversion Luminescence. Phys. Rev. B 2005, 71:125123.
    105. F. Song, G. Y. Zhang, M. Shang, H. Tan, J. Yang and F. Z. Meng. Three-Photon Phenomena in The Upconversion Luminescence of Erbium–Ytterbium-Codoped Phosphate Glass. Appl. Phys. Lett. 2001, 79:1748~1750
    106. W. F. Krupke. Probabilities for Radiative and Nonradiative Decay of Er3+ in LaF3. Phys. Rev. 1967, 157:262~272
    107. K. W. Kr?mer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen and S. R. Lüthi. Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors. Chem. Mater. 2004, 16:1244~1251
    108. W. T. Carnal, P. R. Fields, and K. Rajnak. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 1968, 49:4424~4442
    109. M. Malinowski, M. Kaczkan, A. Wnuk and M. Szufli?ska. Emission from the high lying excited states of Ho3+ ions in YAP and YAG crystals. J. Lumin. 2004, 106:269~279
    110. M. Malinowski, R. Piramidowicz, Z. Frukacz, G. Chadeyron, R. Mahiou and M. F. Joubert. Spectroscopy and Upconversion Processes in YAlO3:Ho3+ Crystals. Opt. Mater. 1999, 12:409~423
    111. N. K. Giri, D. K. Rai and S. B. Rai. Multicolor Upconversion Emission from Tm3++Ho3++Yb3+ Codoped Tellurite Glass on NIR Excitations Appl. Phys. B 2008, 91:437~441
    112. E. de la Rosa, P. Salas, H. Desirena, C. Angeles-Chavez and R. A. Rodríguez.Strong Green Upconversion Emission in ZrO2:Yb3+–Ho3+ Nanocrystals. Appl. Phys. Lett. 2005, 87:241912
    113. J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini and M. Bettinelli. Yb3+ ion as a sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+ Chem. Phys. Lett. 2004, 390:403~407
    114. W. T. Carnall, P. R. Fields and K. Rajnak. J. Chem. Phys. Electronic Energy Levels of the Trivalent Lanthaide Aquo Ions. II. Gd3+.1968, 49:4443~4446
    115. J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kr?mer, C. Reinhard and H. U. Güdel. Upconversion Spectroscopy and Properties of NaYF4 Doped with Er3+, Tm3+ and/or Yb3+. Opt. Mat. 2005, 27:1111
    116. E. van der Kolk, P. Dorenbos, K. Kr?mer, D. Biner and H. U. Güdel. High-Resolution Luminescence Spectroscopy Study of Down-Conversion Routes in NaGdF4:Nd3+and NaGdF4:Tm3+ using Synchrotron Radiation. Phys. Rev. B 2008, 77:125110
    117. H. L. Xu and Z. K. Jiang. Ultraviolet and Violet Upconversion Luminescence in Er3+-Doped Yttrium Aluminum Garnet Crystals. Phys. Rev. B 2002, 66:035103
    118. G. Y. Chen, Y. Liu, Z. G. Zhang, B. Aghahadi, G. Somesfalean, Q. Sun and F. P. Wang. Four-Photon Upconversion Induced by Infrared Diode Laser Excitation in Rare-Earth-Ion-Doped Y2O3 Nanocrystals Chem. Phys. Lett. 2007 448:127~131
    119. F. Wang and X. G. Liu. Recent Advances in The Chemistry of Lanthanide-Doped Upconversion Nanocrystals. Chem. Soc. Rev. 2009, 38:976~989
    120. F. Wang, W. B. Tan, Y. Zhang, X. P. Fan and M. Q. Wang. Luminescent Nanomaterials for Biological Labelling. Nanotechnology 2006, 17:R1~R13
    121. H. Sch?fer, P. Ptacek, K. K?mpe and M. Haase. Lanthanide-Doped NaYF4 Nanocrystals in Aqueous Solution Displaying Strong Up-Conversion Emission. Chem. Mater. 2007,19:1396~1400
    122. J. C. Boyer, F. Vetrone, L. A. Cuccia and J. A. Capobianco, Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+,Yb3+ and Tm3+, Yb3+ via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors. J. Am. Chem. Soc. 2006,128:7444~7445
    123. J. C. Boyer, L. A. Cuccia and J. A. Capobianco, Synthesis of Colloidal Upconverting NaYF4 Doped with Er3+/Yb3+ and Tm3+/Yb3+ MonodisperseNanocrystals. Nano Lett. 2007, 7:847~852
    124. R. Naccache, F. Vetrone, V. Mahalingam, L. A. Cuccia and J. A. Capobianco. Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles. Chem. Mater. 2009, 21:717~723
    125. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey and P. N. Prasad. High Contrast in Vitro and in Vivo PhotoluminescenceBioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors. Nano Lett. 2008, 8:3834~3838
    126. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, C. A. Flask and P. N. Prasad. Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals. Adv. Func. Mater. 2009, 19:1~7
    127. W. J. Kim, M. Nyk and P. N. Prasad. Color-Coded Multilayer Photopatterned Microstructures using Lanthanide (III) Ion Co-doped NaYF4 Nanoparticles with Upconversion Luminescence for Possible Applications in Security. Nanotechnology 2009, 20:185301
    128. J. N. Shan and Y. G. Ju. Controlled Synthesis of Lanthanide-Doped NaYF4 Upconversion Nanocrystals via Ligand Induced Crystal Phase Transition and Silica Coating. Appl. Phys. Lett. 2007, 91:123103
    129. J. N. Shan, X. Qin, N. Yao and Y. G. Ju. Synthesis of Monodisperse Hexagonal NaYF4:Yb, Ln (Ln = Er, Ho and Tm) Upconversion Nanocrystals in TOPO. Nanotechnology 2007, 18:445607
    130. B. Ungun, R. K. Prud’homme, S. J. Budijono, J. N. Shan, S. F. Lim, Y. G. Ju and R. Austin. Nanofabricated Upconversion Nanoparticles for Photodynamic Therapy. Opt. Exp. 2009, 17:80~86
    131. Z. Q. Li and Y. Zhang. Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4 Nanocrystals with Multicolor Upconversion Fluorescence Emission. Angew. Chem. Int. Ed. 2006, 45:1-5
    132. Z. Q. Li, Y. Zhang and S. Jian. Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles. 2008, 20:4756~4769
    133. H. S. Qian and Y. Zhang. Synthesis of Hexagonal-Phase Core-Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence. Langumuir. 2008, 24: 12123~12125
    134. Z. Q. Li and Y. Zhang. An Efficient and User-friendly Method for The Synthesis of Hexagonal-Phase NaYF4:Yb, Er/Tm Nanocrystals with Controllable Shape and Upconversion Fluorescence. Nanotechnology 2008,19:345606
    135. H. S. Qian, Z. Q. Li and Y. Zhang. Multicolor Polystyrene Nanospheres Tagged with Up-conversion Fluorescent Nanocrystals. Nanotechnology 2008, 19:255601
    136. Feng Wang and Xiaogang Liu. Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. J. Am. Chem. Soc. 2008, 130:5642~5643
    137. G. S. Yi and G. M. Choow. Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence. Adv. Funct. Mater. 2006, 16:2324~2329
    138. G. S. Yi and G. M. Choow. Water-Soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence. Chem. Mater. 2007, 19:341~343
    139. X. Liang, X. Wang, J. Zhuang, Q. Peng and Y. D. Li. Synthesis of NaYF4 Nanocrystals with Predictable Phase and Shape. Adv. Func. Mater. 2007, 17:2757~2765
    140. X. Wang, J. Zhuang, Q. Peng and Y. D. Li. A General Strategy for Nanocrystal Synthesis. Nature 2005, 437:121~124
    141. L. Y. Wang and Y. D. Li. Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Multicolor Luminescent Materials. Nano Lett. 2006, 8:1645~1649
    142. J. H. Zeng, Z. H. Li, J. Su, L. Y. Wang, R. X. Yan andY. D. Li. Synthesis of Complex Rare Earth Fluoride Nanocrystal Phosphors. Nanotechnology 2006, 7:3549~3555
    143. L. Y. Wang and Y. D. Li. Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals. Chem. Mater. 2007, 19:727~734
    144. H. X. Mai, Y. W. Zhang, L. D. Sun and C. H. Yan Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals. J. Phys. Chem. C 2007, 111:13721~13729
    145. H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan. High-Quality Sodium Rare-Earth Fluoride Nanocrystals:Controlled Synthesis and Optical Properties. J. Am. Chem. Soc. 2006, 128:6426~6436
    146. H. X. Mai, Y. W. Zhang, L. D. Sun, L. P. You and C. H. Yan. Size- and Phase-Controlled Synthesis of Monodisperse NaYF4:Yb,Er Nanocrystals from a Unique Delayed Nucleation Pathway Monitored with UpconversionSpectroscopy. J. Phys. Chem.C 2007, 111:13730~13739
    147. F. Zhang, Y. Wan, T. Yu, F. Q. Zhang, Y. F.Shi, S. Xie, Y. Li, L. Xu, B. Tu and D. Zhao. Uniform Nanostructured Arrays of Sodium Rare-Earth Fluorides for Highly Efficient Multicolor Upconversion Luminescence. Angew. Chem. Int. Ed. 2007,46:7976~7979
    148. F. Zhan and D. Y. Zhao. Synthesis of Uniform Rare Earth Fluoride (NaMF4) Nanotubes by In Situ Ion Exchange from Their Hydroxide [M(OH)3] Parents. Nano. 2009, 3:159~164
    149. F. Zhang, Y. Wan, Y. Shi, B. Tu, and D. Zhao. Ordered Mesostructured Rare-Earth Fluoride Nanowire Arrays with Upconversion Fluorescence. Chem. Mater. 2008, 20:3778~3784
    150. Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao and H. Zhang. Controlled Synthesis and Morphology Dependent Upconversion Luminescence of NaYF4:Yb, Er Nanocrystals. Nanotechnology. 2007, 18:275609
    151. Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong and H. Zhang. Upconversion Luminescence of NaYF4:Yb3+/Er3+/NaYF4 Core/Shell Nanoparticles: Excitation Power Density and Surface Dependence. J. Phys. Chem. C 2009,113:7164~7169
    152. M. Malinowskia, M. Kaczkana, A. Wnukb and M. Szuflinskab. Emission from The High Lying Excited States of Ho3+ Ions in YAP and YAG Crystals. J. Lumin. 2004, 106:269~279
    153. I.R. Martín, V.D. Rodríguez, V. Lavín, U.R. Rodríguez-Mendoza. Upconversion Dynamics in Yb–Ho Doped Fluoroindate Glasses. J. Alloy. Compd. 1998, 275-277:345-348
    154. X. Wang, Y. Bu, S. Xiao, X. Yang and J. W. Ding. Upconversion in Ho3+-Doped YbF3 Particle Prepared by Coprecipitation Method. Appl. Phys. B 2008, 93:801~807
    155. R. P. Leavitt J. B. Gruber, N. C. Chang and C. A. Morrison. Optical Spectra, Energy Levels, and Crystal-Field Analysis of Tripositive Rare-Earth-Ions in Y2O3.ⅡKramers Ions in C2 Sites. J. Chem. Phys. 1982, 76:4775~4788
    156. A. S. Gouveia-Netoa, E.B. da Costaa, L.A. Buenob and S.J.L. Ribeiro. Intense Red Upconversion Emission in Infrared Excited Holmium-Doped PbGeO3–PbF2–CdF2 Transparent Glass Ceramic. J. Lumin. 2004, 110:79~84
    157. A.S. Gouveia-Neto, L.A. Bueno, A.C.M. Afonso, J.F. Nascimento, E. B.Costa,Y. Messaddeq and S. J. L. Ribeiro. Upconversion Luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-Codoped Fluorogermanate Glass and Glass Ceramic. J. Non-Cryst. Solid 2008, 354:509~514
    158. L. Q. An, J. Zhang, M. Liu, S. W. Wang. Up-conversion Properties of Yb3+, Ho3+: Lu2O3 Sintered Ceramic. J. Lumin. 2007, 122-123:125~127
    159. J. F. Suyer, J. Grimm K. W. Kr?mer and H. U. Güdel. Highly efficient near-infraredto visible up-conversion processin NaYF4:Er3+, Yb3+. J. Lumin. 2005, 114:53~59
    160. A. Burns, H. Ow and U. Wiesner. Fluorescent Core–Shell Silica Nanoparticles: Towards‘‘Lab on a Particle’’Architectures for Nanobiotechnology. Chem. Soc. Rev. 2006, 35:1028~1042
    161. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307:538~544
    162. E. Alerstam, S. Andersson-Engels and T. Svensson. White Monte Carlo for Time-Resolved Photon Migration. J. Biomed. Opt. 2008. 13:041304

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700