用户名: 密码: 验证码:
水平轴潮流能转换系统能量转换率及功率控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潮流能转换系统是一种利用流体动能发电的新型的可再生能源利用机电系统。本文在对潮流能转换系统的水动力学及能量传递过程中的相关控制问题进行较全面的综述后,采用了理论分析、数学建模、数字预测及仿真试验、基于真实样机系统的试验台试运行试验、厂房试验、及实际海洋环境下的海上验证试验等研究方法,重点针对水平轴式潮流能转换系统的能量捕获装置的设计方法及水动力学特性、各能量转换环节的能量转换效率、潮流能系统的最大功率跟踪及变速恒频控制、及适用于潮流能系统的新型变桨距装置及相应的功率控制等关键问题展开研究。论文的各章节内容如下:第一章,概述了潮流能的特点、分布、及开发意义;分类综述了潮流能转换系统的特点及国内外研究现状,总结了潮流能转换技术所面临的挑战;综述了潮流能系统的水动力学、最大功率跟踪控制、功率稳定输出控制等方面的研究进展;结合课题的研究意义及来源,提出了论文的主要研究内容。第二章,分析了水平轴潮流能系统的能量转换原理。利用一维动量定量及叶素理论分别从宏观的能量变化角度及微观的叶片受力角度分析了水平轴潮流能透平装置的能量捕获原理,而将两者相结合的叶素动量理论给出了水平轴透平各项载荷的计算方法;分别介绍了基于机械传动及液压传动方法的系统二次能量转换原理;最后分析了潮流能系统最大功率跟踪运行及功率稳定输出运行的控制原理。第三章,采用了基于叶素动量理论的变速运行最优叶片设计方法设计了水平轴潮流能捕获装置;考虑了必要的模型修正后建立了捕能装置的水动力学性能预测的数字模型,利用该模型预测了不同安装角下的性能;针对25 kW试验样机,设计了后续的机电能量转换系统,并开展了样机系统的仿真试验、试验台试运行试验、及海上试验,各项试验结果显示潮流能捕获装置的功率特性、机电系统的能量转换效率、及整机系统的工作运行情况总体上令人满意,验证了潮流能捕获装置及机电能量转换系统的设计方法是合理有效的,所建立的水动力学性能预测模型是正确有效实用的,以及检验了整套潮流能试验样机系统的可靠性及鲁棒性。第四章,首先对采用机械传动方式的潮流能系统的最大功率跟踪控制开展研究,提出基于负载调节方法的功率控制方案,建立了系统的数学模型,并开展了仿真对比试验及静态最大功率跟踪控制试验来验证所提出的调控方法及实现方案;然后对液压传动式潮流能转换系统开展了探索性研究,提出了基于泵马达蓄能器配置的液压式潮流能系统的实现方案,通过Simulink及Amesim的联合仿真初步验证了方案的可行性并对液压元件的作用进行了评估;最后对基于容积调节结合负载调节方法的液压式潮流能系统的变速恒频控制开展了研究,建立了液压式潮流能系统的数学模型,提出通过调节泵的排量来控制透平转速,调节负载大小来控制发电机转速,及调节马达排量来控制系统压力的变速恒频恒压复合控制的调控原理,开展了联合仿真试验,仿真结果及对比分析验证了调控原理的正确性,并对系统的控制策略进行了讨论。第五章,对液压式潮流能转换试验样机进行了设计及试验研究。依次设计了样机的液压传动系统、机械系统及电气控制系统,估算了系统的能量转换效率,并对样机系统开展了拖动试运行试验,获得了试验样机的各项性能指标,检验了系统的可靠性和稳定性,真实地验证了液压传动在潮流能转换系统中应用的可行性。第六章,对潮流能系统的变桨距装置及控制开展研究,设计并测试了一套新型的液压式变桨距控制系统。通过基于理论力学及叶素动量理论的桨叶受力分析,提出了潮流能系统变桨载荷的理论计算方法,根据水平轴潮流能系统变桨运动的特点,设计了由前置液压缸、齿轮齿条等组成的新型的潮流能变桨距执行机构及相应的电液比例控制系统,开展了变桨距系统的建模仿真及厂房试验,仿真及试验结果显示系统能够实现大范围的变桨对流,节距角的控制具有较理想的响应速度和控制精度。第七章,总结了论文的主要工作,阐述了研究结论和创新点,并对后续的研究工作进行了展望。
Tidal current energy conversion systems (TCECS) are kind of innovative renewable energy systems which utilize the hydrokinetic energy for power generation. In this paper, the hydrodynamics of TCECS and some associated control issues in system's energy transfer process have been reviewed firstly. Then through theoretical analysis, mathematical modeling, numerical prediction, simulation tests, and the real prototype system's bench tests, workshop tests, and offshore validation tests, some key issues about TCECS have been studied, which include the design methods and the hydrodynamic performance of tidal current energy converters, the energy conversion efficiency of each part of TCECS, the maximum power tracking and variable-speed constant-frequency control of tidal system, the novel variable pitch device suitable for tidal current turbines and the associated power control, etc..The main contents of each chapter are as follows:In chapter 1, the features, distribution, and exploitation meanings of the tidal current energy are summarized firstly. Then the features and research status of the TCECS are reviewed by category, and the challenges of the tidal current energy conversion technologies are pointed out. The research development of the hydrodynamics, the maximum power tracking control, and the power stabilization control of the TCECS are summed up next. Finally, the supports, research significance, and main contents of this work are addressed.In chapter 2, the energy conversion principle of the horizontal axis TCECS are analyzed. First, based on the one-dimensional momentum theory and the blade element theory, the energy capture principle of horizontal axis tidal current turbines is analyzed from the point of view of energy change and the point of view of blade force. Then the calculation method of the load of the horizontal axis tidal current turbine is illustrated by the blade element momentum (BEM) theory introduced subsequently. In addition, the principle of the secondary energy conversion of the TCECS is presented from the aspects of the mechanical transmission and hydraulic transmission respectively. At the end, the control principles of the maximum power tracking operation and the power stabilization for TCECS are illuminated.In chapter 3, a horizontal axis tidal current energy converter is designed using the optimal blade design method for variable-speed operation based on BEM theory firstly. A hydrodynamic performance prediction numerical model including necessary modifications is then established, with which the turbine performance for various blade pitch angles is predicted. Subsequently, an electromechanical subsystem is designed and presented for a 25 kW TCECS prototype, and related numerical simulations, bench tests, and offshore tests are carried out in turn for the prototype. The results of these tests show that the power characteristic of the designed tidal current turbine, the energy conversion efficiency of the electromechanical subsystem, and the operation performance of the whole prototype system are basically satisfactory. This has illustrated that the design methods of the tidal current energy converter and the subsequent electromechanical subsystem are reasonable and valid, and the established hydrodynamic performance prediction model is correct and practical. Furthermore, the reliability and robustness of the whole tidal current energy conversion prototype are also validated.In chapter 4, the maximum power tracking control of the TCECS with mechanical transmission is studied firstly. A power control scheme based on the load regulation method is proposed. The system's mathematical model is established. Following that, simulation comparison and static power tracking tests are carried out to validate the proposed regulation method and implementation scheme. At the second part of this chapter, some exploratory research on the TCECS with hydraulic transmission is carried out. A scheme for a hydraulic TCECS with hydraulic pump, motor, and accumulator is proposed and then validated preliminary through the co-simulation with Simulink and Amesim, and the effects of the main hydraulic components are assessed as well. At the third part of this chapter, the variable-speed constant-frequency control of the hydraulic TCECS is studied. The mathematical modeling and theoretical analysis are performed for the whole system, and a regulation and control principle for the variable speed, constant frequency and pressure operation of the system is proposed, which is based on the adjustment of the pump displacement, the load size, and the motor displacement. Co-simulation is also carried out for validation. The results with comparison analysis have validated the correctness of the proposed control principle, and some corresponding system control strategies are discussed as well at the end.In chapter 5, a hydraulic TCECS prototype is designed and tested. The design of the hydraulic drive subsystem, mechanical subsystem, and electrical control subsystem of the prototype are described in turn. The energy conversion efficiency of the system is estimated. Then a running-in tests is performed for the prototype in a motor driving test bed, through which the operation performance characteristic of the prototype is obtained and the system's reliability and stability are checked. Thus, the feasibility of the application of the hydraulic transmission to the tidal current energy systems has been truly verified.In chapter 6, the variable pitch device suitable for TCECS and some related control issues are studied. Through the detail blade force analysis based on the theoretical mechanics and BEM theory, a pitching load calculation method is proposed firstly. Then according to the characteristics of the pitching motion of horizontal axis tidal current turbines, a novel variable pitch control system is designed, which consists of a pitching actuating mechanism with a fore hydraulic cylinder and a pinion-and-rack, and an associated electro-hydraulic proportional control subsystem. Subsequently, the mathematical modeling, simulation, and workshop tests of the pitch control system are performed. The Simulation and test results show that the designed pitching system has fast response and precise control of pitch angle, and also it is able to realize the bidirectional running of the TCECS with a large pitch adjustment range.In chapter 7, the major work of the study is summarized, and the conclusions and innovations are elaborated. Besides, the future work is also expected at the end.
引文
[1]中华人民共和国国务院新闻办公室.《中国的能源状况与政策》白皮书.北京,2007.
    [2]王传崑.海洋能的特点.太阳能,2008,(10):20-21.
    [3]王传崑.中国海洋能开发与研究的历史、现状及展望.第二届全国海洋能学术讨论会论文PPT集,哈尔滨,2009:1-12.
    [4] Ma HY, Oxley L, Gibson J, et al. A survey of China's renewable energy economy. Renewable and Sustainable Energy Reviews,2010,14(1):438-445.
    [5] Wang F, Yin HT, Li SD. China's renewable energy policy:Commitments and challenges. Energy Policy,2010,38(4):1872-1878.
    [6] Zhang PD, Yang YL, Shi J, et al. Opportunities and challenges for renewable energy policy in China. Renewable and Sustainable Energy Reviews,2009,13(2):439-449.
    [7]王传崑,卢苇.海洋能资源分析方法及存储评估.北京:海洋出版社,2009.
    [8] Fraenkel PL. Power from marine currents. Proc. IMechE, Part A:J. Power and Energy, 2002,216(1):1-14.
    [9] Bahaj AS, Myers LE. Fundamentals applicable to the utilisation of marine current turbines for energy production. Renewable Energy,2003,28(14):2205-2211.
    [10]Charlier RH. A "sleeper" awakes:tidal current power. Renewable and Sustainable Energy Reviews,2003,7(6):515-529.
    [11]Carballo R, Iglesias G, Castro A. Numerical model evaluation of tidal stream energy resources in the Ria de Muros (NW Spain). Renewable Energy,2009,34(6):1517-1524.
    [12]Grabbe M, Lalander E, Lundin S, et al. A review of the tidal current energy resource in Norway. Renewable and Sustainable Energy Reviews,2009,13(8):1898-1909.
    [13]Blunden LS, Bahaj AS. Initial evaluation of tidal stream energy resources at Portland Bill, UK. Renewable Energy,2006,31(2):121-132.
    [14] Brooks DA. The tidal-stream energy resource in Passamaquoddy-Cobscook Bays:A fresh look at an old story. Renewable Energy,2006,31(14):2284-2295.
    [15]Rourke FO, Boyle F, Reynolds A. Tidal current energy resource assessment in Ireland: Current status and future update. Renewable and Sustainable Energy Reviews,2010,14(9): 3206-3212.
    [16]王传崑,施伟勇.中国海洋能资源的储量及其评价.中国可再生能源学会海洋能专业委员会第一届学术讨论会文集,杭州,2008:175-177.
    [17] Khan MJ, Iqbal MT, Quaicoe JE. River current energy conversion systems:Progress, prospects and challenges. Renewable and Sustainable Energy Reviews,2008,12(8): 2177-2193.
    [18] Khan MJ, Bhuyan G, Iqbal MT, et al. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications:A technology status review. Applied Energy,2009,86(10):1823-1835.
    [19]Lago LI, Ponta FL, Chen L. Advances and trends in hydrokinetic turbine systems. Energy for Sustainable Development,2010,14(4):287-296.
    [20]Fraenkel PL. Tidal current energy technologies. Ibis,2006,148(sl):145-151.
    [21] Ponta FL, Jacovkis P M. Marine-current power generation by diffuser-augmented floating hydro-turbines. Renewable Energy,2008,33(4):665-673.
    [22]Fraenkel PL. Windmills below the sea:A commercial reality soon? Refocus,2004,5(2): 46-48.
    [23]Fraenkel PL. Marine Current Turbines:an emerging technology. Scottish Hydraulics Study Group Seminar, Glasgow, UK,19 March 2004.
    [24]Fraenkel PL. Marine current turbines:pioneering the development of marine kinetic energy converters. Proc. IMechE, Part A:J. Power and Energy,2007,221(2):159-169.
    [25]曹军,张榕林,林国庆等.变速恒频双馈电机风电场电压控制策略.电力系统自动化,2009,33(4):87-91.
    [26]陈学顺,许洪华.双馈电机变速恒频风力发电运行方式研究.太阳能学报,2004,25(5):582-586.
    [27] Stone R. Norway Goes With the Flow To Light Up Its Nights. Science,2003,299):339.
    [28]Rourke FO, Boyle F, Reynolds A. Tidal energy update 2009. Applied Energy,2010,87(2): 398-409.
    [29]郑家伟.新能源发电系统中的电力电子变换器.控制理论与应用,2008,25(1):125-132.
    [30]Larsen JW, Nielsen SRK. Non-linear dynamics of wind turbine wings. International Journal of Non-Linear Mechanics,2006,41(5):629-643.
    [31]De_Broe AM, Drouilhet S, Gevorgian V. A Peak Power Tracker for Small Wind Turbines in Battery Charging Applications. IEEE Transactions on Energy Conversion,1999,14(4): 1630-1635.
    [32] Ekelund T. Yaw Control for reduction of structural dynamic loads in wind turbines. Wind Eng Ind Aerodyn,2000,85(1):241-262.
    [33]Ben_Elghali SE, Benbouzid MEH, Charpentier JF. Marine Tidal Current Electric Power Generation Technology:State of the Art and Current Status. The IEEE International Electric Machines and Drives Conference, Antalya, Turkey,2007:2:1407-1412.
    [34]De_La_Salle SA. Review of wind turbine control. Int J Control,1990,52(6):1295-1310.
    [35] Underwater Electric Kite Corporation. USA, December 2010. http://www.uekus.com/.
    [36]Bedard R, Previsic M, Polagye B, et al. North America Tidal In-Stream Energy Conversion Technology Feasibility Study. EPRI,2006.
    [37] Ocean Flow Energy. UK, December 2010. http://www.oceanflowenergy.com/index.html.
    [38]Mirecki A, Roboam X, Richardeau F. Architecture Complexity and Energy Efficiency of Small Wind Turbines. IEEE Transactions on Industrial Electronics,2007,54(1):660-670.
    [39]Rourke FO, Boyle F, Reynolds A. Marine current energy devices:Current status and possible future applications in Ireland. Renewable and Sustainable Energy Reviews,2010, 14(3):1026-1036.
    [40] Blue Energy. Ocean energy technology:The Davis Hydro Turbine. Refocus,2001,2(2): 44-47.
    [41]Bossanyi EA. Further Load Reductions with Individual Pitch Control. WIND ENERGY, 2005, (8):481-485.
    [42]郭洪澈.兆瓦级风力发电机组变桨距系统控制技术研究.沈阳:沈阳工业大学,2008.
    [43]Selvam K, Kanev S, VanWingerden JW, et al. Feedback-feedforward individual pitch control for wind turbine load reduction. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL,2009, (19):72-91.
    [44]IHC Engineering Business Ltd. UK, December 2010. http://www.engb.com/.
    [45] Campbell M. Concept Development of an Oscillating Tidal Power Generator. Proceedings of ASME 2002 Fluids Engineering Division Summer Meeting, Montreal, Quebec. Canada, July 14-18,2002.
    [46] Brooks R. The World Offshore Renewable Energy Report 2004-2008.2008.
    [47] Hydro Venturi Limited. UK, December 2010. http://www.hydroventuri.com/.
    [48]高祥帆.潮流、海流发电.广州:中国科学院广州能源研究所综合研究室,1979.
    [49] Liu HW, Ma S, Li W, et al. A review on the development of tidal current energy in China. Renewable and Sustainable Energy Reviews,2011,15(2):1141-1146.
    [50]盛其虎,罗庆杰,张亮.40kW潮流电站载体设计.中国可再生能源学会海洋能专业委员会第一届学术讨论会文集,杭州,2008:159-168.
    [51] Wang LB, Zhang L, Zeng ND. A potential flow 2-D vortex panel model:Applications to vertical axis straight blade tidal turbine. Energy Conversion and Management,2007,48(2): 454-461.
    [52]张乐福,张亮,张梁等.混流式水轮机的三维空化湍流计算.水力发电学报,2008,27(1):135-138.
    [53]汪鲁兵,张亮,曾念东.一种竖轴潮流发电水轮机性能优化方法的初步研究.哈尔滨工程大学学报,2004,25(4):417-422.
    [54]汪鲁兵.竖轴潮流水轮机水动力性能理论与实验研究.哈尔滨:哈尔滨工程大学,2005.
    [55]王树杰,鹿兰帅,李东等.海洋潮流能驱动的柔性叶片转子发电装置试验研究.中国可再生能源学会海洋能专业委员会第一届学术讨论会文集,杭州,2008:102-115.
    [56]王树杰,赵龙武,李东等.柔性叶片水轮机流体动力特性数值模拟.中国可再生能源学会海洋能专业委员会第一届学术讨论会文集,杭州,2008:91-101.
    [57]王树杰.柔性叶片潮流能水轮机水动力学性能研究.青岛:中国海洋大学,2009.
    [58] Li D, Wang SJ, Yuan P. An overview of development of tidal current in China:Energy resource, conversion technology and opportunities. Renewable and Sustainable Energy Reviews,2010,14(9):2896-2905.
    [59]林勇刚,李伟,刘宏伟等.水下风车海流能发电技术.浙江大学学报(工学版),2008,42(7):1242-1246.
    [60]刘宏伟,李伟,林勇刚等.水平轴螺旋桨式海流能发电装置模型分析及试验研究.太阳能学报,2009,30(5):633-638.
    [61]刘宏伟.水平轴海流能发电机械关键技术研究.杭州:浙江大学,2009.
    [62]马舜,李伟,刘宏伟等.25kW独立运行式水平轴潮流能发电系统.电力系统自动化,
    2010,34(14):18-22.
    [63]马舜,李伟,刘宏伟等.水平轴潮流能发电系统能量捕获机构研究.机械工程学报,2010,46(18):150-156.
    [64]马舜,李伟,刘宏伟等.潮流能透平装置电液比例变桨距控制系统设计及其试验.电力系统自动化,2010,34(19):86-90.
    [65]Isay WH. On the treatment of the flow through a Voith-Schneider Propeller having a small advance coefficient. Burean of Ships Translation,1958).
    [66]Templin RJ. Aerodynamic performance theory for the NRC vertical axis wind turbine. NRC of Canada TR,1974.
    [67] Sullivan WN, Leonard TM. A computer Subroutine for estimating aerodynamic blade loads on Darrieus vertical axis wind turbines. Albuquerque, New Mexico:Sandia National Laboratories,1980.
    [68] Strickland JH. The Darrieus Turbine:A Performance Prediction model Using Multiple Stream tubes. Albuquerque,New Mexieo:Sandia National Laboratories,1975.
    [69] Paraschiviou I, Desy P. Aerodynamics of small-scale vertical axis wind turbines. Journal of Propulsion,1986,2(3).
    [70]Sharpe DJ. Wind Turbine Aerodynamies. Wind energy conversion system,1990):54-118.
    [71]Coiro DP, Nicolosi F. Numerical and Experimental Analysisof Kobold Turbine. Napoli, Italy,1996.
    [72] Camporeale SM, Magi V. Streamtube model for analysis of vertical axis variable pitch turbine for marine currents energy conversion. Energy Conversion and Management,2000, 41(16):1811-1827.
    [73] Wilson RE, Walker SN. Fixed wake theory for vertical axis turbines. Jounal of Fluid Engineering,1983,105(4):389-393.
    [74] Strickland JH, Webster BT, Nguyen T. A vortex model of the Darrieus turbine:an analytical and experimental study. Transactions of the ASME Journal of Fluids Engineering, 1979,101):500-505.
    [75]Ponta FL, Jacovkis PM. A vortex model for Darrieus turbine using finite element techniques. Renewable Energy,2001,24(1):1-18.
    [76]Kiho S, Shiono M, Suzuki K. The power generation from tidal currents by darrieus
    turbines. Proceedings of the world renewable energy congress, Denver, Colorado, USA,1996: vol.2.1242-1245.
    [77]Kiho S, Suzuki K, Shiono M. Study on the power generation from tidal currents by darrieus turbine. Proceedings of the international offshore and polar engineering conference, 1996:vol.1,97-102.
    [78]Kiho S, Shiono M, Suzuki K. The power generation from tidal currents by darrieus turbine. Renewable Energy,1996,9(1-4):1242-1245.
    [79] Li Y, Calisal SM. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renewable Energy,2010,35(10):2325-2334.
    [80] Li Y, Calisal SM. Modeling of twin-turbine systems with vertical axis tidal current turbines:Part Ⅰ—Power output. Ocean Engineering,2010,37(7):627-637.
    [81] Li Y, Calial SM. Numerical analysis of the characteristics of vertical axis tidal current turbines. Renewable Energy,2010,35(2):435-442.
    [82] Salter SH, Taylor JRM. Vertical-axis tidal-current generators and the Pentland Firth. Proc. IMechE, Part A:J. Power and Energy,2007,221(2):181-199.
    [83]Hansen MOL,译肖劲松.风力机空气动力学.北京:中国电力出版社,2009.
    [84]Hansen MOL, Sorensen JN, Voutsinas S, et al. State of the art in wind turbine aerodynamics and aeroelasticity. Progress in Aerospace Sciences,2006,42(4):285-330.
    [85] Batten WMJ, Bahaj AS, Molland AF, et al. Hydrodynamics of marine current turbines. Renewable Energy,2006,31(2):249-256.
    [86] Batten WMJ, Bahaj AS, Molland AF, et al. Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Engineering,2007,34(7): 1013-1020.
    [87] Batten WMJ, Bahaj AS, Molland AF, et al. The prediction of the hydrodynamic performance of marine current turbines. Renewable Energy,2008,33(5):1085-1096.
    [88] Molland AF, Bahaj AS, Chaplin JR, et al. Measurements and predictions of forces, pressures and cavitation on 2-D sections suitable for marine current turbines. Proc. IMechE, Part M:J. Engineering for the Maritime Environment,2004,218(2):127-138.
    [89] Bahaj AS, Batten WMJ, McCann G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renewable
    Energy,2007,32(15):2479-2490.
    [90]Bahaj AS, Molland AF, Chaplin JR., et al. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renewable Energy,2007,32(3):407-426.
    [91] Myers L, Bahaj AS. Power output performance characteristics of a horizontal axis marine current turbine. Renewable Energy,2006,31(2):197-208.
    [92] Myers L, Bahaj AS. Wake studies of a 1/30th scale horizontal axis marine current turbine. Ocean Engineering,2007,34(5-6):758-762.
    [93] Myers LE, Bahaj AS. Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocean Engineering,2010,37(2-3): 218-227.
    [94] Bahaj AS, Myers L. Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands) using marine current energy converters. Renewable Energy,2004, 29(12):1931-1945.
    [95] Myers L, Bahaj AS. Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race. Renewable Energy,2005,30(11):1713-1731.
    [96] Clarke JA, Connor G, Grant AD, et al. Design and testing of a contra-rotating tidal current turbine. Proc. IMechE, Part A:J. Power and Energy,2007,221(2):171-179.
    [97] Wang D, Atlar M, Sampson R. An experimental investigation on cavitation, noise, and slipstream characteristics of ocean stream turbines. Proc. IMechE, Part A:J. Power and Energy, 2007,221(2):219-231.
    [98]Barltrop N, Varyani KS, Grant A, et al. Investigation into wave-current interactions in marine current turbines. Proc. IMechE, Part A:J. Power and Energy,2007,221(2):233-242.
    [99] Orme JAC, Masters I. Design and testing of a direct drive tidal stream generator. Proc. MAREC 2004, France,2004:108-115.
    [100] Liu PF. A computational hydrodynamics method for horizontal axis turbine-Panel method modeling migration from propulsion to turbine energy. Energy,2010,35(7): 2843-2851.
    [101] Payne GS, Kiprakis AE, Ehsan M, et al. Efficiency and dynamic performance of Digital DisplacementTM hydraulic transmission in tidal current energy converters. Proc.
    IMechE, Part A:J. Power and Energy,2007,221(2):207-218.
    [102] Ehsan MD, Rampen WHS, Salter SH. Modeling of Digital-Displacement Pump-Motors and Their Application as Hydraulic Drives for Nonuniform Loads. Journal of Dynamic Systems, Measurement, and Control 2000,122(1):210-215.
    [103] 李建林,许洪华.风力发电中的电力电子变流技术.北京:机械工业出版社,2008.
    [104] Baroudi JA, Dinavahi V, Knight AM. A review of power converter topologies for wind generators. Renewable Energy,2007,32(14):2369-2385.
    [105] 叶杭冶.风力发电机组的控制技术.北京:机械工业出版社,2007.
    [106] 刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化,2003,27(20):62-67.
    [107] 赵栋利,郭金东,许洪华.变速恒频双馈风力发电机有功、无功解耦控制研究与实现.太阳能学报,2006,27(2):174-179.
    [108] 叶杭冶.大型并网风力发电机组控制算法研究.杭州:浙江大学,2008.
    [109] 杨俊华,吴捷,杨金明等.现代控制技术在风能转换系统中的应用.太阳能学报,2004,25(4):530-541.
    [110] SA De La Salle. Review of wind turbine control. Int J Control,1990,52(6): 1295-1310.
    [111] HD Battista. Sliding mode control of wind energy systems with DOIG-power efficiency and torsional dynamics optimization IEEE Trans Power Systems,2000,15(2): 728-734.
    [112] HD Battista. Dynamical sliding mode power control of wind driven induction generators. IEEE Trans EC,2000,15(4):451-457.
    [113] 包能胜,姜桐.微分几何在水平轴恒速风力发电机系统的应用.太阳能学报,1999,20(2):130-134.
    [114] 肖劲松,倪维斗,姜桐.偏航时风力机组鲁棒控制器的设计.太阳能学报,1997,18(3):337-345.
    [115] T Ekelund. Yaw Control for reduction of structural dynamic loads in wind turbines. Wind Eng Ind Aerodyn,2000,85(1):241-262.
    [116] EA Bossanyi. The Design of Closed Loop Controllers for Wind Turbines. WIND
    ENERGY,2000, (3):149-163.
    [117] C Jauch, T Cronin, P S(?)rensen. A Fuzzy Logic Pitch Angle Controller for Power System Stabilization. WIND ENERGY,2007, (10):19-30.
    [118] 宋卓彦,王锡凡,滕予非等.变速恒频风力发电机组控制技术综述.电力系统自动化,2010,34(10):8-17.
    [119] Burton T, Sharpe D, Jenkins N, et al. Wind energy handbook. Chichester:John Wiley & Sons Ltd,2001.
    [120] Kirke BK, Lazauskas L. Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch. Renewable Energy,2011,36(3):893-897.
    [121] Schonborn A, Chantzidakis M. Development of a hydraulic control mechanism for cyclic pitch marine current turbines. Renewable Energy,2007,32(4):662-679.
    [122] Hwang IS, Lee YH, Kim SJ. Optimization of cycloidal water turbine and the performance improvement by individual blade control. Applied Energy,2009,86(9): 1532-1540.
    [123] 章宏甲,黄谊.液压传动.北京:机械工业出版社,2004.
    [124] Yao XJ, Shan GK, Su DH. Study on variable pitch system characteristics of big wind turbine. International Technology and Innovation Conference, Hangzhou,2006:2239-2243.
    [125] 李强,姚兴佳,陈雷.兆瓦级风电机组变桨距机构分析.沈阳工业大学学报,2004,26(2):146-148.
    [126] Leijon M, Nilsson K. Direct electric energy conversion system for energy conversion from marine currents. Proc. IMechE, Part A:J. Power and Energy,2007,221(2):201-205.
    [127] 许洪华,倪受元.独立运行风电机组的最佳叶尖速比控制.太阳能学报,1998,19(1):30-35.
    [128] Viterna LA, Corrigan RD. Fixed pitch rotor performance of large horizontal axis wind turbines. Ohio:DOE/NASA workshop on large wind Turbines,1981.
    [129] 李杰,王乐勤.国内基于功率分支技术齿轮箱的发展现状.机械传动,2007,31(4):106-110.
    [130] 鲍和云,朱如鹏.两级星型齿轮传动动力学系统基本构件浮动量分析.机械科学与技术,2006,25(6):708-711.
    [131] 杨振,王三民,范叶森.一种新型功率分流齿轮传动系统动态特性研究.机械设
    计与制造,2007,(8):99-101.
    [132] 徐德鸿,马皓,汪槱生.电力电子技术.北京:科学出版社,2006.
    [133] 贺益康.电力电子技术.北京:电力电子出版社,2004.
    [134] 赵强.独立运行小型风力发电系统负载跟踪和充放电集成控制.呼和浩特:内蒙古工业大学,2006.
    [135] 钟勇.风光互补发电系统中蓄电池充放电控制器的研究.合肥:合肥工业大学,2006.
    [136] 王宇.风光互补发电控制系统的研究与开发.天津:天津大学,2004.
    [137] 杨乐平,李海涛,杨磊LabVIEW程序设计与应用(第2版).北京:电子工业出版社,2005.
    [138] 舒进,张保会,李鹏等.变速恒频风电机组运行控制.电力系统自动化,2008,32(16):89-93.
    [139] Jae SC,Rag GJ,Jae HS.New control method of maximum power point tracking for tidal energy generation system.Proceeding of International Conference on Electrical Machines and Systems,Seoul,Korea,2007:165-168.
    [140]Tanaka T,Toumiya T,Suzuki T.Output control by hill-climbing method for a small scale wind power generating system.Renewable Energy,1997,12(4):387-400.
    [141] 夏安俊.风力发电机组最大功率点跟踪控制系统的研究.无锡:江南大学,2008.
    [142] 春兰.独立运行光伏发电系统功率控制研究.呼和浩特:内蒙古工业大学,2007.
    [143] Femia N,Petrone G, Spagnuoloe G, et al.Optimization of perturb and observe maximum power point tracking method.IEEE Transactions on Power Electronics,2005,20(4): 963-973.
    [144] Piegari L,Rizzo R.Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking.IET Renewable Power Generation,2010,4(4):317-328.
    [145] Koutroulis E,Kalaitzakis K.Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Transactions on Industrial Electronics,2006, 53(2):486-494.
    [146] Datta R,Ranganathan VT.A method of tracking the peak power points for a variable speed wind energy conversion system.IEEE Transactions on Energy Conversion,2003,18(1): 163-168.
    [147] Henderson R. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renewable Energy,2006,31(2):271-283.
    [148] Antonio F, Falcao O. Wave energy utilization:A review of the technologies. Renewable and Sustainable Energy Reviews,2010,14):899-918.
    [149] 吴必军,游亚戈,马玉久等.波浪能独立稳定发电自动控制系统.电力系统自动化,2007,31(24):75-79.
    [150] 吴必军,邓赞高,游亚戈.基于波浪能的蓄能稳压独立发电系统仿真.电力系统自动化,2007,31(5):50-56.
    [151] Schmitz J, Vatheuer N, Murrenhoff H. Development of a Hydrostatic Transmission for Wind Turbines.7th International Fliud Power Conference, Germany, Aachen,22-24 March 2010.
    [152] 付永领,祁晓野AMESim系统建模和仿真--从入门到精通.北京:北京航空航天大学出版社,2006.
    [153]陈宏亮,李华聪AMESim与Matlab/Simulink联合仿真接口技术应用研究.流体传动与控制,2006,14(1):14-16.
    [154] 李谨,邓卫华AMESim与MATLAB/Simulink联合仿真技术及应用.情报指挥控制系统与仿真技术,2004,26(5):61-64.
    [155] 成大先.机械设计手册(第四版).北京:化学工业出版社,2002.
    [156] Westwood A. Wave and tidal-project review. Renewable Energy Focus,2007,8(4): 30-33.
    [157] 林勇刚.大型风力机变桨距控制技术研究.杭州:浙江大学,2005.
    [158] 王献孚,韩久瑞.机翼理论.北京:人民交通出版社,1987.
    [159] 骆涵秀,李式伦,朱捷等.机电控制.杭州:浙江大学出版社,1994.
    [160] 吴振顺,郑慧奇,于华艳.基于误差多项式的模型参考自适应控制在阀控非对称缸系统中的应用.机械工程学报,2006,42(8):56-59.
    [161] Bossanyi EA. The Design of Closed Loop Controllers for Wind Turbines. WIND ENERGY,2000, (3):149-163.
    [162] Jauch C, Cronin T, S(?)rensen P. A Fuzzy Logic Pitch Angle Controller for Power System Stabilization. WIND ENERGY,2007, (10):19-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700