用户名: 密码: 验证码:
群发性崩塌灾害形成机制与减灾技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
危岩崩塌是一种全球性泛生型山地灾害,是我国矿山生产、山区公路、水运交通、山地城镇的重大地质安全隐患,每年造成直接经济损失超过20亿元。如2009年6月5日重庆市武隆县鸡尾山发生特大型山体崩塌,80余人遇难;2009年7月25日四川省汶川县国道213线都江堰至汶川高速公路44km+200彻底关大桥处发生山体崩塌,落石砸断桥墩,桥面坍塌,2辆货车坠入岷江,死亡6人,经济损失1亿元左右。显然,着眼于单体危岩系统实施群发性崩塌灾害的形成机制及减灾技术研究,是矿业、交通、城建减灾的国家需求,也是安全与减灾学科发展的逻辑需求。
     本文采用现场调查、模型试验、数值模拟、地貌学、断裂力学、运动学、波动理论、传感技术等研究方法,对危岩崩塌演化规律、危岩稳定性、群发性崩塌激振效应、崩塌落石运动路径、群发性崩塌运动力学机制及应急减灾与安全警报技术等科学问题进行深入系统研究,取得的主要研究性成果如下:
     (1)针对三峡库区大范围砂岩或灰岩与泥岩软硬相间的岩石边坡,揭示了岩腔的形成机制,包括差异风化机制和压裂风化机制;提出了缓倾角岩质边坡危岩崩塌的宏观链和微观链概念,据此揭示了危岩群发性崩塌的链式演绎规律,可分为简单模式和复合嵌套模式两类。
     (2)基于极限平衡原理,从作用在危岩体上的荷载类型及荷载组合、稳定性评价标准、不同类型危岩等方面系科学修正了危岩稳定性分析方法;着眼于危岩主控结构面断裂扩展是危岩破坏本质这一的科学认识,采用断裂力学构建了危岩断裂稳定性分析方法,该方法可以连续表征危岩体的实时稳定性,是实施突发性崩塌灾害应急安全警报的科学依据。
     (3)分析了陡崖上危岩块之间的相互作用力学关系,基于损伤和断裂力学探讨了群发性危岩块崩落序列,验证了危岩链式规律;构建了危岩块崩落产生的激振效应对相邻危岩块的动力振动力学方程,通过实验验证了危岩崩落激振效应,理论计算值与试验值基本趋于一致。建立的动力激振方程符合客观实际.
     (4)基于下垫面岩土介质动力恢复系数试验,通过建立的最大冲击力公式反演碎石土垫层的法向恢复系数,介于0.258-0.314之间,符合客观实际;将崩塌落石的运动阶段划分为自由坠落、初始碰撞、空中飞行和后继碰撞等形式,建立了不同运动形式下落石运动速度及运动距离的计算方法,提出了落石运动形式判别标准,并通过现场试验及数值模拟予以验证。
     (5)推导了群发性崩塌体底部空气压缩方程,通过崩塌体空气压缩特性试验,初步获得了崩塌体底部空气外泄系数与崩塌体速度之间的关系曲线,通过空气压缩试验得到了不同高度、不同孔隙比下的气垫作用的气垫荷载和外泄系数及临界外泄系数,成果对于深入开展群发性崩塌体运动过程研究有重要的积极意义。
     (6)针对危岩突发性崩塌灾害应急减灾需求,研发了危岩应急锚固、应变型钻孔应力传感器、压电型钻孔应力传感器、落石消能棚洞及崩塌灾害安全警报系统等新技术及专用设备,为崩塌灾害应急安全警报及防灾避灾提供了技术保障。
     将前述主要研究成果浓缩为4个创新点:
     (1)基于三峡库区危岩崩塌链式演化规律和危岩块之间的力学关系,运用断裂力学和等效弯矩作用产生的应力强度因子、等效应力强度因子等构建了危岩崩落的时间方程,揭示了软弱基座陡崖上危岩的崩落序列。
     (2)针对坠落式危岩,建立了危岩崩落的激振模型,基于断裂力学和波动理论构建了激振效应下的断裂联合应力强度因子方程,基于能量构建了危岩崩落瞬间启程速度、质点位移速度、激振波强度的计算方法,系统揭示了危岩崩落激振效应。
     (3)通过试验揭示了碎石土垫层的法向恢复系数介于0.258-0.314之间,将崩塌落石的运动阶段划分为自由坠落、初始碰撞、空中飞行和后继碰撞等形式,据此提出了落石运动路径计算新方法。
     (4)针对危岩突发性崩塌灾害防治需求,研发了危岩应急锚固、应变型钻孔应力传感器、压电型钻孔应力传感器、落石消能棚洞及崩塌灾害安全警报系统等新技术及专用设备。
Perilous rock is a global and widely generated geologic hazard, which has a great geological hidden danger for the safety on mining product, mountainous highway, shipping traffic and mountainous towns. The direct economic loss exceeds two billion Yuan per year. For instance, on 5th, June, 2009, in Wulong County, Chongqing City, Jiwei Mountain had a oversized collapse, it caused over 80 dead. On 25th, July, 2009, on the Chediguan Bridge, position 44km+200, the highway from Dujiangyan to Wenchuan in G213, Wenchuan County, Sichuan Province, it arose mountainous landslip, and the rockfall broke the bridge pier, collapsed the bridge deck, caused 2 trucks fell into Min River, 6 dead and about one hundred million Yuan economic loss. Obviously, to take research on the formation mechanism and disaster reduction technology of massive collapse by single rockfall system is the national demand for the disaster reduction of mining, traffic and urban construction and the logical demand for the development of safety and disaster mitigation science.
     This paper adopts some research methods, such as, field survey, model experiment, numerical simulation, geomorphology, fracture mechanics, kinematics, wave theory, sensor technology, etc., to process some scientific problems on perilous rock systematically, for example, evolutional rules of rock avalanche, stability of perilous rock, ringing effect of massive collapse, movement routes of landslip rocks, mechanism of movement mechanics on massive collapse, technology on the emergency response, disaster mitigation and safety alarm, etc. The main innovative achievements are as follows:
     (1) According to the large-scale rock slope in the syncline structural zone within soft-hard interphase sandstone (limestone) and mudstone around Three Gorges Reservoir area, it reveals the developing mechanism of rock cavity, including difference weathering mechanism and fracturing weathering mechanism. It proposes concepts of macroscopic chain and microcosmic chain about landslip in rock slope with gentle inclined angle. Based on that, it posts the chained evolution rule of massive collapse, and divides the rules into two types, simple model and composite nested model.
     (2) It constructs the stability analysis method of perilous rock systematically, with the limit equilibrium theory, load types and combination on rock mass, stability evaluation standard and calculating methods on the coefficient of stability for different perilous rocks, etc. To focus on the fracture propagation at the dominant structural plane of perilous rock, is a scientific cognition for the essence of perilous rock failure. This article adopts the fracture mechanics to build stability analysis method of perilous rock’s fracture, this method can reflect the online stability of perilous rock mass continuously, and it is the scientific basis for the emergency safety alarm of abrupt collapse hazard.
     (3) It analyzes the interactional mechanics relationship among perilous rock masses on the cliff, it discusses the rock avalanche sequence of packets collapse by damaage and fracture mechanics and it tests and verifies chained regular of perilous rock ,and it constructs the mechanics equations for dynamic vibrating on the ringing effect of perilous rock avalanche to the adjacent rock mass. It confirms ringing effect of perilous rock Landslip through the experiments, for that, the theoretical calculation is basically consistent with the experimental value, and the established dynamic vibrating formula accords with the objective reality.
     (4) Based on the dynamic recovery coefficient test on the lower cushion geotechnical medium, through the established maximal impact force formula to inverse the normal recovery coefficient of gravel cushion. The coefficient value lies between 0.258~0.314 and it accords with the objective reality. This paper divides the movement of landslip into four steps, free fall, initial collision, in-flight state and subsequent collision. It establishes calculating methods of the rock masses’motional velocity and distance under different motional forms. It proposes the discrimination standard of rockfall motional forms. And it confirms those conclusions by field experiments and numerical simulation.
     (5) This paper deduces the air compression equations for the bottom air of massive collapse. Through the air compression characteristic test of landslip rock mass, it primarily obtains the relation curve between air leakage coefficient at the bottom of collapse and the speed of collapse, and by the model of air compression experiment, it gains load of air cushion, air leakage coefficient and critical leakage coefficient at different height and different pore ratio. The production takes important positive significance for the further study on the movement process of packets collapse.
     (6) To aim at the emergency and hazard mitigation demand for the abrupt rock avalanche hazards of perilous rock, it develops a series of new technology and special equipment, such as, jury anchorage for perilous rock, borehole stress sensor of strain-type, borehole stress sensor of piezoelectric-type, energy dissipation shed-hole of rockfall and the safety alarm system, etc. It provides technical support for the emergency safety alarm and prevention of collapse hazard.
     To condense the above main research production into 4 innovations:
     (1) According to the mechanical relationship between the chained evolution rule of landslip and perilous rock mass in Three Gorges Reservoir area, this thesis adopts fracture mechanics, the produced stress intensity factors and equivalent stress intensity factors by the effect of equivalent bending moment, etc. to construct the time equation about the rockfall of perilous rock. And it reveals the collapse sequence of perilous rock on the cliff with soft base.
     (2) To take falling perilous rock as an aim, it establishes the vibrating model of rock avalanche. Based on fracture mechanics and wave theory, it constructs the formula of stress intensity factors under ringing effect. According to the collapse energy, it builds the calculating methods of transient departure speed, particle displacement speed and vibrating wave intensity for landslip. And it reveals the ringing effect of perilous rock systematically.
     (3) Through experiments, this thesis reveals that the normal recovery coefficient value of gravel cushion lies between 0.258~0.314, and it divides the movement of landslip into free fall, initial collision, in-light state and subsequent collision forms. Hereby, it puts forward some new calculating methods for the movement route of rockfall.
     (4) To aim at the prevention demand for the abrupt rock avalanche hazards of perilous rock, it develops a series of new technology and special equipment, such as, jury anchorage for perilous rock, borehole stress sensor of strain-type, borehole stress sensor of piezoelectric-type, energy dissipation shed-hole of rockfall and the safety alarm system, etc.
引文
[1]陈洪凯,唐红梅,叶四桥,等.危岩防治原理[M].北京:地震出版社,2006.
    [2]胡厚田.崩塌落石研究[J].铁道工程学报,2005,增(1).
    [3]岩土工程勘察规范[S](GB50021-2001).
    [4]重庆市地方标准.地质灾害防治工程设计规范[S]. DB50/5029-2004:58~72.
    [5]陈洪凯,唐红梅.长江三峡水库区危岩分类及宏观判据研究[J].中国地质灾害与防治学报,2005,16(4): 53~57.
    [6] Bertran P. The rock-avalanche of February 1995 at Claix(French Alps) . Geomorphology, 2003, 54(3):339~346.
    [7] Mitchell W A, McSaveney M J, Zondervan A, Kim K, Dunning S A, Taylor P J. The Keylong Serial rock avalanche, NW Indian Himalaya: geomorphology and palaeoseismic implications. Landslides, 2007,(4):245~254.
    [8] Cox S C, Allen S K. Vampire rock avalanches of january 2008 and 2003, Southern Alps, New Zealand. Landslides, 2009,(6):161~166.
    [9] McSaveney M J. Recent rock falls and rock avalanches in Mount Cook National Park, New Zealand. Geol Soc Am Rev Eng Geol, 2002,ⅩⅤ:35~70.
    [10] Braathen A., Blikra L.H., and S.S.& Karlsen. Rock-slope failure in Norway: type, geometry, deformation mechanisms and stability. Norweigian Journal of Geology, 2004, 84: 67~88.
    [11] CHEN H K, TANG H M. Method to calculate fatigue fracture life of control fissure in perilous rock. APPLIED MATHEMATICS AND MECHANICS,2007,28(5): 643~649.
    [12] CHEN H K, TANG H M, YE S Q. Research on damage model of control fissure in perilous rock. APPLIED MATHEMATICS AND MECHANICS,2006,27(7):967~974.
    [13]唐红梅,叶四桥,陈洪凯.危岩主控结构面损伤-断裂数值模拟研究[J].重庆交通学院学报,2005,24(4):84~88.
    [14]唐红梅,叶四桥,陈洪凯.危岩主控结构面应力强度因子求解分析[J].地下空间与工程学报,2006,2(3):393~397.
    [15]姜克春.层状岩体边坡破坏机理研究[D].重庆交通大学硕士学位论文,2008.
    [16]陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报,2003,35(4),180~484.
    [17]陈洪凯,唐红梅.拉剪型危岩发育过程的模型试验[J].重庆大学学报,2006,29(6):115~119.
    [18]陈亚军,王家臣,常来山,等.节理岩体边坡渐进破坏的试验研究[J].金属矿山,2005,(8):11~13.
    [19]李术才.加锚节理岩体裂纹扩展失稳的突变模型研究[J].岩石力学与工程学报.2003,22(10):1661~166.
    [20]刘宪权,朱建明,冯锦艳,等.水平厚煤层露井联合开采下边坡破坏机理[J].煤炭学报,2008,33(12):1346~1350.
    [21]王家臣,谭文辉.边坡渐进破坏三维随机分析[J].煤炭学报,1997,22(1):27~31.
    [22]黄润秋.岩石高边坡发育的动力过程及其稳定性控制[J].岩石力学与工程学报,2008,27(8):1525~1544.
    [23]骆银辉,胡斌,朱荣华,等.崩塌的形成机理与防治方法[J],西部探矿工程。2008,12.
    [24]陈洪凯,唐红梅.三峡库区危岩发育规律研究.第二届全国岩土与工程学术大会论文集(上[C]).北京:科学出版社,2006.
    [25]陈洪凯,唐红梅,鲜学福.缓倾角层状岩体边坡链式演化规律[J].兰州大学学报(自科版),2009,45(1): 20~25.
    [26]陈洪凯.三峡库区危岩链式规律的地貌学解译[J].重庆交通大学学报,2008,27(1):91-95.
    [27]唐红梅,陈洪凯,王林峰,等.岩质陡坡上危岩崩落机理研究[J].金属矿山.2008,总393期(2):40~44.
    [28]陈洪凯,唐红梅,王蓉.三峡库区危岩稳定性计算方法及应用[J].岩石力学与工程学报,2004,23(4):614~619.
    [29]陈洪凯,欧阳仲春,廖世荣.三峡库区危岩综合治理技术及其应用[J].地下空间,2002,22(2):97~101.
    [30]陈洪凯,唐红梅.危岩主控结构面强度参数计算方法[J].工程地质学报,2008,16(1):37~41.
    [31] Chen H K, TANG H M, WANG R, et al. Research on equivalent processes of rock mass parameters with anchor piles. APPLIED MATHEMATICS AND MECHANICS,2001,22(8):965~971.
    [32]胡杰刚,俞,敏,全洪波,等.桂柳高速公路边坡岩石风化速度的研究.水文地质工程地质,2003,(4):67~71.
    [33]唐红梅,陈洪凯.危岩裂隙水压力修正计算方法[J].中国地质灾害与防治学报,2008,19(4): 86~90.
    [34]陈洪凯,鲜学福,唐红梅,等.三峡库区危岩群发性机理与防治[J].重庆大学学报.2008,31(10):1178~1184.
    [35] Woltjer M, Rammer W, Brauner M, Seidl R, Mohren G M J, Lexer M J. Coupling a 3D patch model and a rockfall module to assess rockfall protection in mountain forests. Journal Environmental Management, 2008,87:373~388.
    [36] Manzella I, Labiouse V. Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Enginerring Geology(2009),doi:10.1016/j.enggeo.2008.11.006.
    [37] Dorren L K A, Maier B, Putters U S, Seijmonsbergen A C. Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps. Geomorphology, 57(2004):151-167.
    [38] Dorren L K A, Berger F, Putters U S. Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes. Natural Hazards and Earth System Sciences, 2006,(6):145-153.
    [39] Manzella I, Labiouse V. Qualitative analysis of rock avalanches propagation by means of physical modelling of non-constrained gravel flows. Rock Mechanics and Rock Engineering, 2008, 41(1):133-151.
    [40] Zambrano O M. Large rock avalanches: A kinematic model. Geotech Geo Eng, 2008,26:283-287.
    [41] Tommasi P, Campedel P, Consorti C, Ribacchi R. A diacontinous approach to the numerical modelling of rock avalanches. Rock Mechanics and Rock Enginnering, 2008, 41(1):37-58120.
    [42] Pirulli M, Mangeney A. Results of Back-Analysis of the Propagation of Rock Avalanches as a Function of the Assumed Rheology. Rock Mechanics and Rock Engineering, 2008, 41(1):59-84.
    [43] Crosta G B, Agliardi F. Parametric ecaluation of 3D dispersion of rockfall trajectories. Natural Hazards and Earth System Sciences,4 (2004):583-598.
    [44] Jibson R W, Harp E L, Schulz W, Keefer D K. lrge rock avalanches triggered by the M7.9 Denali fault, Alaska, earthquake of 3 November 2002. Engineering Geology, 2006,83:144-160.
    [45] Blasio F V D. Rheology of a wet, fragmenting granular flow and the riddle of the anomalous friction of large rock avalanches. Granular Matter, 2009,(11):179-184.
    [46] Stoffel M, Schneuwly D, Bollschweiler M, Lièver I, Delaloye R, Myint M, Monbaron M. Analyzing rockfall activity (1600-2002) in a protection forest—a case study using dendrogemorphology. Geomorphology, 68(2005):224-241.
    [47] Urska Petje, Mihael Pibicic, Matjaz Mikos. Computer simulation of stone falls and rockfalls. Acta geographica Slovenica.2005,45(2):93-120.
    [48] BOZZOLO D, PAMINI R. Simulation of rockfalls down a valley side. Acta Mech, 1986, 63: 113–130.
    [49] Azzoni A, Barbera G L,Zaninetti A. Analysis and prediction of rockfalls using a mathematical model. International Journal of Rock Mechanics and Mining Science,1995,32(7):709-724.
    [50] DAY R W. Case studies of rockfall in soft versus hard rock. Environmental and Engineering Geoscience, 1997, 3(1): 133–140.
    [51] Chau K T, Wong R H C, Wu J J. Coefficient of restitution and rotational motions of rockfall impacts. International Journal of Rock Mechanics & Mining Sciences, 2002,39: 69–77.
    [52] Fausto G, Giovanni C, Riccardo D, et al. Stone: a computer program for the three dimensional simulation of rock-falls. Computers & Geosciences, 2002, 28: 1079–1093.
    [53]唐红梅,易朋莹.危岩落石运动路径研究[J].重庆建筑大学学报,2003,25(1):17-23.
    [54]胡厚田.崩塌与落石[M].北京:中国铁道出版杜,1989.
    [55]铁道部工务局.铁路工务技术手册.路基[M].北京:中国铁道出版社.1993.
    [56]黄润秋,刘卫华,周江平,等。滚石运动特征试验研究[J].岩土工程学报,2007,29(9):1296-1302.
    [57]黄润秋,刘卫华.平台对滚石停积作用试验研究[J].岩石力学与工程学报,2009,28(3):516-524.
    [58]叶四桥.隧道洞口段危岩落石灾害研究与防治[D].成都:西南交通大学博士学位论文,2009.
    [59]吕庆,孙红月,翟三扣,等.边坡滚石运动的计算模型[J].自然灾害学报,2003,12(2):79- 84.
    [60] Kawahara S, Muro T. Effects of dry density and thickness of sandy soil on impact response due to rockfall. Journal of Terramechanics.2006,43:329~340.
    [61] Labiouse V, Descoeudres F, Montani S. Experimental study of rock sheds impacted by rock blocks. Struct Eng Int,1996,3(1):171~175.
    [62]杨其新,关宝树.落石冲击力计算方法的试验研究[J].铁道学报,1996,18(1):101-106.
    [63]铁道第二勘测设计院.铁路工程设计技术手册.隧道[M].北京:中国铁道出版社,1999.
    [64] Thornton C, Ning Z. A theoretical model for the stick/bounce behavior of adhesive, elastic-plastic spheres. Powder Technology,1998,99:157~162.
    [65] Eishacher,G H ,Clague,J.J.Destructive nlass movements in higllmountain:hazard and management[M].ORawa:Canadian Government Publishing Centre,1984:1-228.
    [66] Erismann , }L , Abele . G . Dynamics ofrockslides and rockfalls[M] . Berlin :Springer-Verlag,2001.310~316
    [67] Evans,S.G.. DeGraf,J.V.Catastrophic Landslides:Efects,Occurrence,and Mechanisms[M].Boulder,Colarado:The Geological Society of America.2002:1-41l.
    [68]胡广韬.滑坡动力学[M].北京:地质出版社,1995:16~22.
    [69]程谦恭,彭建兵,胡广韬,等.高速岩质滑坡动力学[M].成都:西南交通大学出版社,1999:1~7.
    [70] Vardoulakis,I.Dynamic thermo—poro-mechanical analysis of cata—strophiclandslides[J].Geotechnlque,2002,52(3):157~171.
    [71] Sassa Special lecture:Geotechnical model for the motion of landslides[A].In:Proceedings of the 5th International Symposiam on Landslide,Vo1.1[C].Rotterdam : A.Balkema,1988:37~55.
    [72] Sassa,k Mechanism offlows in granular soils[A].In:Geo-Eng2000-·An International Conference on Geotechnical and Geo-logical Engineering,V0L l:Invited Papers[c].Lancaster,Pennsylvania:Technomic Pubhshing Co.Inc,2000:1671~1702.
    [73] Foda,M.A.Landslides riding on basal pressure waves[J].Con-tinuum Mechanics and Thermodynamics,1994,6:61~79.
    [74] Kobayashi. Long runout hndsHdes riding on a basal guidedwave[A].In:Engineering Geology and the Environment[c].Rotterdam:A. Balkema.1997:761~766.
    [75]成都地质学院工程地质研究室.龙羊峡水电站重大工程地质问题研究[M].成都:成都科技大学出版社,1989:52~116.
    [76]王兰生,詹铮,苏道刚,等.新滩滑坡发育特征和起动滑动及制动机制的初步研究[A].见:中国典型滑坡[C].北京:科学出版社,1988:211~217.
    [77]胡广韬.石家坡多冲程剧动式高速滑坡[A].见:中国典型滑坡[c].北京:科学出版社,1988:39~44.
    [78]王思敬,王效宁.大型高速滑坡的能量分析及其灾害预测[A].见:一九八七年全国滑坡学术讨论会滑坡论文选集[C].成都:四川科学技术出版社,1989:117~124.
    [79]黄润秋,王士天.张倬元.斜坡岩体高速滑动的“滚动摩擦”机制[A].见:工程地质科学新进展[C].成都:成都科技大学出版社,1989:318~325.
    [80]卢万年.用空气动力学分析坡体高速滑坡的滑行问题[J].西安地质学院学报,1991,13(4):77~85.
    [81]徐峻龄.中国的高速滑坡及其基本类型[J].中国地质灾害与防治学报,1994,5(增刊):24~29.
    [82]徐峻龄.高速远程滑坡研究现状综述[A].见:滑坡文集(12)[C].北京:中国铁道出版社,1997:54~64.
    [83]程谦恭,胡厚田.剧冲式高速滑坡全程动力学机理分析[J].水文地质工程地质,1999,26(4):19~23.
    [84]程谦恭,胡厚田,彭建兵,等.剧冲式高速滑坡及滑坡坝演化过程分析[J].中国地质灾害与防治学报,1999,10(3):28~36.
    [85]程谦恭,胡厚田,胡广韬,等.高速岩质滑坡撞击弹落冲击夯实成坝的动力学机理[J].岩石力学与工程学报,2000,19(1):43~46.
    [86]程谦恭,胡厚田,胡广韬,等.高速岩质滑坡临床弹冲与峰残强降复合启程加速动力学机理[J].岩石力学与工程学报,2000,19(2):173~176.
    [87]程谦恭,胡厚田,彭建兵.侧翼锁固平面旋转式滑坡动力学机理分析[J].岩石力学与工程学报,2000,19(5):634~639.
    [88]程谦恭,胡厚田.剧冲式高速岩质滑坡全程运动学数值模拟[J].西南交通大学学报,2000,35(1):18~22.
    [89] Tiande,M.,Zhongyu,L ,Yonghong,N.A sliding block modelfor the runout prediction of hish—speed landslides[J].Canadian Geotechnical Journal,2001,38:217~226
    [90]程谦恭,张倬元,黄润秋.侧翼与滑床复合锁固切向层状岩体滑坡动力学机理与稳定性.
    [91] Tiande,M.,Zhongyu,L ,Yonghong,N.A sliding block modelfor the runout prediction of hish—speed landslides[J].Canadian Geotechnical Journal,2001,38:217~26.
    [92]程谦恭,张倬元,崔鹏等.中部“砥柱”锁固平面旋转切向层状岩体滑坡启动机理与稳定性判据[J].岩石力学与工程学报,2004,23(16):2718~2725.
    [93]程谦恭,张倬元,崔鹏.平卧“支撑拱”锁固滑坡动力学机理与稳定性判据[J].岩石力学与工程学报,2004,23(17):2855~2864.
    [94]李忠生.地震危险区黄土滑坡稳定性研究[M].北京:科学出版社,2004,104~135.
    [95]胡厚田,刘涌江,邢爱国,等.高速远程滑坡流体动力学理论的研究[M].成都:西南交通大学出版社,2003:51~75.
    [96]刘涌江,胡厚田,赵晓彦.高速滑坡岩体碰撞效应的试验研究[J].岩士力学,2004,25(2):255~260.
    [97]邢爱国,高广运,吴世明.高速滑坡飞行气动特性的风洞试验研究[J].同济大学学报,2002,30(5):633~638.
    [98]金涌,祝京旭,汪展文,等.流态化工程原理[M].北京:清华大学出版社,2001,17~54.
    [99]陈洪凯,唐红梅.三峡水库区危岩防治技术[J].中国地质灾害与防治学报,2005,16(2):105~110.
    [100]陈洪凯,唐红梅,王蓉,等.危岩锚固计算方法研究[J].岩石力学与工程学报,2005,24 (8):1121~1327.
    [101]陈洪凯,唐红梅,刘光华,等.危岩支撑及支撑-锚固联合计算方法研究[J].岩土工程学报,2004,26(3):383~388 .
    [102]陈洪凯,胡明,唐红梅.危岩锚固机理的断裂力学分析[J].重庆建筑大学学报,2006, 28(5):101~105.
    [103]伍佑伦,王元汉,许梦国.拉剪条件下节理岩体中锚杆的力学作用分析[J].岩石力学与工程学报.2003,22(5):769~772.
    [104]胡存亮.山区公路崩塌地质灾害评判模型研究[J].交通标准化,2007,7 .
    [105]任幼蓉,陈鹏,张军,等.重庆南川市甑子岩W12#危岩崩塌预警分析[J].中国地质灾害与防治学报,2005,16(2):28~31.
    [106]兰昌义,赵其华.基于GIS的某边坡崩塌落石运动特征分析[J].四川地震,2008,126(1).
    [107]谢全敏,夏元友.危岩块体稳定性的综合评价方法分析[J].岩土力学,2002,23(6):777~781.
    [108]常中华,陈厚军,张乐中,等.奎屯河龙口右岸山体崩塌原因及再次失稳可能性分析[J].工程地质学报,2005, 13(1):76~80.
    [109]叶四桥,陈洪凯,唐红梅.基于落石计算的半刚性拦石墙设计[J].中国铁道科学,2008,(2).
    [110]唐红梅.危岩拦石墙计算方法研究[J].中国地质灾害与防治学报,2005, 16(3): 17~15.
    [111]叶四桥,唐红梅,祝辉.基于落石运动特性分析的拦石网设计理念[J].岩土工程学报,2007,29(4):566~571.
    [112]陈祖煜,汪小刚,杨健等.岩质边坡稳定性分析原理.北京:中国水利水电出版社,2005.
    [113]袁建新.岩体损伤问题[J].岩土力学,1993,14(1):1~31.
    [114]洪起超.工程断裂力学基础[M].上海:上海交通大学出版社,1986.
    [115]匡振邦.裂纹端部场[M].西安:西安交通大学出版社,2002.
    [116]中国航空研究院应力强度因子手册[M].北京:科学出版社,1981.
    [117]唐红梅,陈涛.岩体结构面蠕变损伤机理研究[J].工程地质学报,2009,17(3):357~362.
    [118]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997:21~25.
    [119]唐红梅,王林峰,陈洪凯,等.软弱基座陡崖上危岩崩落序列[J].岩土工程学报,2010,32(2):205~210.
    [120] A. N. Nikitin, T. I. Ivankina, V. K. Ignatovich. The wave field patterns of the propagation of longitudinal and transverse elastic waves in grain-oriented rocks[J]. Physics of the Solid Earth, 2009, 45(5): 424~436.
    [121] Ju Yang, Wang HuiJie, Yang YongMing, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses[J]. Technological Sciences, 2010, 53(4): 1098~1113.
    [122] S. Kahraman, T. Yeken. Determination of physical properties of carbonate rocks from P-wave velocity[J]. Bull Eng Geol Environ, 2008, 67(1): 277~281.
    [123] A. Schubnel, P. M. Benson, B. D. Thompson, et al. Quantifying Damage, Saturation and Anisotropy in Cracked Rocks by Inverting Elastic Wave Velocities[J]. Pure appl. Geophys, 2006, 163(5-6): 947~973.
    [124]唐红梅,王智,陈洪凯,等.危岩崩落激振作用对危岩稳定性的贡献率[C]. FSNC 2011:111~116.
    [125]朱来东,廉小亲,江远志.小波变换在信号降噪中的应用及MATLAB实现[J].北京工商大学学报(自然科学版),2009,27(2):46~49.
    [126]赵选民.试验设计方法[M].北京:科学出版社,2006.
    [127]钱翼稷.空气动力学[M].北京航空航天大学出版社.北京:2004.
    [128]许强,黄润秋,殷跃平,等.2009年6.5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J].工程地质学报,2009,17(4):433~444.
    [129]唐红梅,陈洪凯,曹卫文.顺层岩体边坡开挖过程模型试验[J].岩土力学,2011,32(2):435~440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700