用户名: 密码: 验证码:
气候变化对塔里木河流域大气水循环的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个缺水严重的国家,不仅人均占有水量低,水资源时空分布不均且往往与用水不协调,形成了严重的供需结构矛盾。一方面受季风气候影响,我国的水资源经常呈现阶段变化,导致严重的洪涝与干旱;另一方面,我国经济在迅速发展的同时也造成了水资源的严重污染,加剧了我国水资源短缺的局势。水生态失调已经成为制约我国可持续发展的瓶颈。目前,我国的水资源供应已经出现不安全迹象,未来全球变化背景下水资源的形势将更加严峻。
     新疆塔里木河是中国最长的内陆河,也是世界第二大内陆河(仅次于伏尔加河)。位于干旱的塔里木盆地北部,占地约1.02×106平方公里,是该地区生态、自然和各民族生存的生命线,因而被誉为“生命之河”,或“母亲河”。
     塔里木河流是环塔里木河流域的阿克苏河、喀什噶尔河、叶尔羌河、和田河、开都河—孔雀河、迪那河、渭干河与库车河、克里雅河和车尔臣河等九大水系144条河流的总称,流域总面积102×104kmm2(约106万平方公里),占我国国土总面积的9.41%。塔里木河干流全长1321km,自身不产流,依靠源流补给维系其生态环境。塔里木河流域三面环山,使得该地区水汽输送十分复杂,其机理也一直是个悬而未决的问题。长期以来,气候变化和人类对水土资源的过度开发导致平原地区河道断流,湖泊枯竭,土地沙化。该地区生态环境发生了明显变化,经济和社会可持续发展受到严重制约,直接影响着整个西部地区的生态安全。所有这些,在很大程度上取决于空中水资源和大气水循环的变化及其趋势。因此,为了进一步理解该地区水汽输送状况以及未来发展趋势,研究该地区的水循环机理显得十分重要和迫切。
     由于塔里木河流域地形十分复杂,且塔里木河流域地处塔克拉玛干大沙漠腹地,受西风控制且处于季风边缘,三面环山,被一个背对西风的U形大地形包围,形成了该地区独特而复杂的区域地理特征。但大地形、西风环流以及季风在区域气候形成中的相互关系尚不清楚。为此本文要解决的两个主要问题是:1)影响塔里木河流域水汽输送的多尺度环流与大地形的相互作用关系;2)气候变化对不同下垫面状况的局地水循环和降水的影响机理。
     本文选择塔里木河流域空中水汽、降水、湿度、风场、温压和DEM等资料,分析其在气候变化背景下的时空演化特征;对流域按不同的坡向、高程以及不同的下垫面状况进行对比分析,揭示进行气候变化对流域尺度水汽输送变化的驱动机理,即影响塔河流域水循环的多尺度大气环流系统的相互作用关系,以此为背景,研究典型区域内部水汽交换过程及其与降水特别是山区降水的关系,探索发生的原因,揭示气候变化对水循环的影响机理。主要的研究内容和结论如下:
     (1)塔里木河流域水汽输送时空演化特征。结果表明,塔里木上空水平方向为水汽汇,且纬向贡献大于经向;水汽的水平和垂直净收支均具有季节性变化,且夏季辐合为主,冬季辐散为主;水汽的水平输送和经纬向净输入量都表现为较一致的年际变化,且均在1970s年代中后期出现了较明显的年代际突变;在1978年到2003年全球变暖明显的时段内,水平方向水汽净输入量呈减少趋势。
     (2)塔里木河流域水汽通量散度时空演化特征。结果表明,塔里木河整个流域均表现为水汽的辐合,辐合中心位于塔里木河流域的南边,昆仑山北坡和帕米尔高原东交界处的盆地内和田河流域,其空间分布大致呈由西北到东南逐渐增加的趋势;整个对流层水汽的辐合主要集中在600hPa高度以下的对流层下层;在年代际变化上,20世纪60年代辐合量较大,20世纪70年代开始减小,到了20世纪80年代整个水汽辐合量有所增加,20世纪90年代又有所下降,21世纪初10年(近10年)有回升的趋势,但不明显。
     (3)塔里木河流域大气可降水量时空演化特征。结果表明,塔里木河流域上空大气可降水量在塔里木河流域腹地平原区域为相对高值区,四周的山区为低值区;降水量多年大气可降水量明显高于降水量少年,差值最大为2千克/米2,位于塔里木河流域腹地;塔里木河流域山区、平原以及整个流域大气可降水量年变化均呈现明显的季节性特征,全年可降水量的最大贡献为夏季,且最大值在7月,最小值在1月;在年代际变化上,山区与平原变化比较一致,在20世纪60年代中期到20世纪70年代中后期,大气可降水量出现了明显的下降趋势,其后的变化幅度相对减小。
     (4)塔里木河流域降水的时空演化特征。结果表明,塔里木河流域的降水主要呈现由东南向西北逐渐增大的空间分布形态;不同地区的降水量存在差异,山区总体大于平原,整个流域以天山南坡山区降水量为最多,昆仑山北坡平原地区最少;降水量随海拔高度的升高而增加,但在不同地区,降水量随高度的变率也不相同,与坡度和风向有关;整个塔里木河流域的山区和平原的降水量年际变化比较一致,但年代际变化差异较大,尤其是1987年到2003年全球气温显著增暖的期间,山区呈现明显的上升趋势,而平原则呈现基本不变甚至略有减小的趋势。
     (5)塔里木河流域降水转化率时空演化特征。结果表明,塔里木河流域山区降水转化率约为平原的7.7倍;山区和平原的降水转化率年际变化比较一致,相关系数为0.437,但两者年代际变化差异较大,尤其是在20世纪70年代后期到21世纪初,全球变暖较为明显的阶段,塔里木河流域山区的降水变化率呈现非常明显的增加趋势,而平原增加非常缓慢,几乎没有变化。
     (6)塔里木河流域多尺度大气环流的相互作用及其对水汽输送的影响。结果表明,影响塔里木河流域水汽输送水的主要大气环流因子包括:西风环流、NAO、ENSO及与之相关的东亚季风,主要的局地环境因子包括:U型大地形,内陆地理位置、植被分布等。由于西风环流和U型大地形的相互作用,使得塔里木河流域的水汽输送在对流层的上层和下层之间出现了转向,并影响了四边界的水汽输入量及其变化。另外,在ENSO、NAO以及东亚季风等的扰动下,西风环流的强弱发生非线性改变,并进一步影响塔里木河流域的水汽输送。
     在这些因子的综合作用下,塔里木河流域的水汽输送呈现以下特征:整个流域水汽净输入量的最大贡献为东边界,依次为北边界和西边界,南边界输入为负,这与传统的塔里木河流域的水汽输送以西方路径和西北路径为主的结论有所不同;在对流层上层,纬向和经向水汽净输入量之间存在负相关关系,西风环流主要影响纬向水汽净输入量;但在对流层下层,经纬向水汽净输入量之间存在非常显著的正相关关系。以上正是由于U型地形对水汽输送的转向作用导致的。
     (7)气候变化对塔里木河流域水循环的影响机理。结果表明,气候变化和人类活动导致了全球变暖,并使得全球大气环流发生改变;全球变暖加速了水循环,但不同尺度的水循环对气候变化的响应有所不同;由于海陆间水循环通过大气环流的变化来调整,局地水循环则受局地因子,如地表水资源、植被等的影响;从而使得塔里木河流域的水循环在山区和平原出现了不同的响应。可能由于中纬度大陆地区人类活动的加剧,使得中纬度地区增温幅度大于低纬地区,减小了中低纬度之间的热力差异,导致全球海陆间水汽运输减缓。这一变化直接导致塔里木河流域水汽净输入量以及空中水汽含量的减少。这对于地表水资源和植被都比较稀少的塔里木河流域的平原地区影响很大,并直接导致该地区降水量的减小,水资源匮乏。但对于山区影响不大,由于塔里木河流域山区具有丰富的地表水资源和茂密的植被分布,全球变暖直接导致该地区局地水循环的加速,并引起降水的增加。
China is a country with heavy water shortage. Not only the per capita amount of water is low, but also the spatial and temporal distribution of water resource is uneven. The uneven distribution can not meet the needs well, and leads a conflict between needs and supplies. On the one hand, monsoonal climatology makes water resources chang periodically, which leads to severe droughts and floods; on the other hand, China's rapid economic development has also caused serious pollution of water resources, it aggravates the situation of water shortage. The imbalance of hydroecology becomes a key factor that restricts the sustainable development of China. At present, some unsafe clues in Chinese water supply have appeared. It will be more serious for the water resource under global warming.
     Tarim River is the longest inland river in China and the second largest inland river in the world (second only to the Volga River). Situated in the north of the dry Tarim Basin, it is a lifeline safeguarding the economy, nature and the life of all ethnic groups in Tarim Basin. Therefore, it is crowned as "The River of Life", or "The Mother River".
     The Tarim River Basin (TRB) includes 9 main braches, which are the Akesu River, the Kashi River, YeerQiang River, Hetian River, Kaidu-Kongque River, Dina River, Weigan River, Kuche River, Keliya River and Cheercheng River, and 144 minor rivers. It has a watershed area of about 1.02 million sq. km., which is 9.41% of the area of China. The water mainly comes from the source rivers. Been surrounded by mountains, the water vapor transportation to this region is complicated and the the transportation mechanism also has been a pending issue. The climate change and overuse of water resource by human lead to the rivers cutout, the lakes dry up and the land desertification. The environment in this region has been changed a lot; the economy and society development are severely restricted, which causes the whole western ecosystem unsafe. All these results depend largely on the changes and the trends of the air water resource and atmospheric water cycle. Therefore, in order to understand better the situation of water transportation over this region and its future trend, it is important to study the local water recycle and the related land-sea water cycle.
     TRB locates in the middle of the Taklimakan Desert, with complicated terrain, controlled by westerly circulation and affected by the monsoon some times. It is surrounded by mountains, which is like a letter "U". The geological character over this region is unique and complicated. The effects of westerly circulation and monsoon in the formation of the climate over this region are unclear. Thus, two problems are to be investigated:one is the relation between large scale terrain and the multi-circulation of water vapor transportation over the TRB; the other is affecting mechanism of climate change on the water recycling over different land surface conditions.
     In this thesis, water vapor, humidity, wind, temperature and DEM (digital elevation model) data over the TRB are caculated and employed; their spatiotemporal evolutions under the climate change are analyzed; comparing analysis is also carried out among different slope direction, elevation and land surface condition. The possible physical mechanism of climate change on the watershed scale water vapor transportation (i.e. the multi-scale circulation interaction over the TRB) is investigated. Than, the relationship between the regional water recycling and mountain precipitation over typical regions is examined to find out the affecting regime of climate change on water cycles. The contents and conclusions are as follows:
     (1) The spatial-temporal evolution character of the TRB water vapor transportation. The results show that it is a water vapor sink in horizontal direction over the TRB, and zonal contribution is larger than meridional contribution. Horizontal and vertical water vapor net input shows a seasonal variation, it prevails convergence in summer while divergence in winter. Horizontal and vertical water transportations show consistent interannual variations and both have a notable interdecadal saltation. From 1978-2003, when the global warming is significant, horizontal water transportation in the region has a decreasing trend.
     (2) The spatial-temporal evolution character of the water vapor flux divergence over the TRB. The results show that the whole basin is a water vapor convergence zone. The convergence center locates on the south part of the TRB, near the northern slope of Kunlun Mountains and western of Hetian River Basin on the Pamirs Plateau. The convergence distribution shows an increases trend from northwest to southeast. The water vapor convergence occurs mainly under 600hPa. The amount of the convergence in 1960s are large, but decreases in the 1970s and increases in the 1980s. In 1990s, it decreases again and increases slightly in the first decade of the 21st century.
     (3) The spatial and temporal evolution of precipiatble water (PW) over the TRB. The results show that the high values of the PW are in the middle of the TRB. The low values are over the surrounding mountains. The PW in wet-years is large than that in dry-years. The largest difference between the wet-year and dry-year occurs in the middle of the TRB, with 2kg per sq.m. The PW over the whole Tarim regions have notable seasonal variations. The most PW contributes throughout the year is in summer; and the annual maximum occurs in July, the minimum occurs in January. The PW over mountains and plain have similar interdecadal variations, which is decreases significantly between the middle of 1960s and the late 1970s, than increases smoothly until 2009.
     (4) The spatial-temporal evolution of precipitation. The results show that the precipitation distribution shows an increasing trend from northwest to southeast over the TRB; precipitation is difference in various regions, the precipitation in mountains is larger than that in plains; over the whole basin, the maximum of precipitation is on the south slope of the Tianshan Mountains, while the minimum is on the north slope of the Kunlun Mountains; the precipitation increases with the altitude, but the increasing rates depend on the region. Mountain area precipitation changes in lines with the plain area precipitation interannually, but they have large difference in interdecadal variation. Especially, from 1987-2003, when it warms a lot, precipitation over mountains and plains changes inversely.
     (5) The spatial and temporal evolution of precipitation conversion efficiency (PCE). The results show that PCE in mountains is 6.7 times than that in plains. The interannual variation of PCE in both areas is consistant and the correlation coefficiency is 0.437. But there is a large difference in interdecadal variation, especially from the late 1970s to the early 21st century, when the globe warming is most significant, the precipitation changing rate increases significantly in mountains, while increases slightly in plains.
     (6) The interaction of multi-scale atmospheric circulation and its impact on water vapor transportation. The results show that the mainly circulation factors affecting the transportation includs the westerly circulation, ENSO, NAO and the related South Asia Monsoon. The main regional environment factors include the U-shaped terrain, the local distance from ocean. The interaction between the U-shaped terrain and the westerly circulation induces that the water vapor transportation turns between upper and lower troposphere and affecting the water vapor transport. In addition, under the impact of ENSO, NAO and South Asia Monsoon, the strength of westerly changes nonlinearly, which will further affects the water vapor transportation over the TRB.
     Influenced by these factors, water vapor transportation exhibits following characters:the Water Vapor Net Input (WVNI) of the eastern boundary contributed the most. Then the northern and western boundaries follow. The southern boundary export water vapor. This conflicts to the common knowledge that water vapor transportation over the TRB mainly along the west and northwest routines. Over the upper troposphere, zonal and meidional water vapor transportation correlated negatively. But they correlated positively over the lower troposphere.
     (7) The possible mechanism of the impacts of climate change on the water cycle and precipitation over the TRB. The results show that climate change and human activity causes the global warming and changes the general circulation; global warming accelerates the water cycle, but the response of different scale water cycle to climate change is different. At this point, the regional water cycle is affected by enviremantal factors such as land surface water resource and vegetation, which lead to different responds between mountains and plains over TRB. So, it is porssible that, due to the growing human activities, the amplitude of temperature in mid-high latitudes is larger than that in lower latitudes, which narrows the temperature difference between the middle and low latitudes. Thus, the water vapor transportation from ocean to land will decrease, which will directly leads to a decrease of water vapor transportation from outside to the TRB. Owing to the rare water resource and land surface vegetation over the plain areas, the decrease of water vapor import will affect considerably on the precipitation in plains. While over the mountains, there is dense vegetation and rich land surface water resource, the global warming will accelerate the water cycle and increase the precipitation.
引文
[1]史玉光.新疆区域面雨量及空中水汽时空分布规律研究[D].南京信息工程大学,2008.
    [2]刘国纬,水循环的大气过程,科学出版社,1997
    [3]帕高西杨,X.Π,大气中水分循环的方式,江爱良、潘怡航译,地理学报,1954,20(1):27-43;
    [4]布德科M.N.等,论大气中水分循环的规律,杨鉴初泽,气象学报,1954(1):7-10.
    [5]刘春蓁,气候变化对陆地水循环影响研究的问题,地球科学进展,2004,19:115-119.
    [6]2000-WNO-服务的50年http://streaml.cma.gov.cn/info unit/ReadNews.asp? NewsID=364 [2009.06.20]
    [7]《气候变化国家评估报告》编写委员会.气候变化国家评估报告[M].北京:科学出版社,2007.2,12
    [8]WCRP. http://www. gewex.com/gewex.php [2009.06.20]
    [9]江涛,陈永勤,陈俊和等.未来气候变化对我国水文水资源影响的研究[J].中山大学学报,2002,39(2).
    [10]http://www.gewex.com.[2009.06.22].
    [11]Strategic Implementation Plan-December 1,2008.http://www.ceop. net/[2009.06.21].
    [12]国际全球变化研究计划框架http://www.cn65.com/Article/ShowInfo.asp?InfoID=2693.
    [13]WCRP.The Global Energy and Water Cycle Experiment http://www.gewex.com/gewex. php [2009.0620].
    [14]Context of GEWEX_(3):Global Energy and Water Cycle Experiment. http://www-cger. nies.go.jp/cger-e/db/info-e/InfoDBWeb/prog/gewex.htm.
    [15]Information gathered from http://www.gewex.com/(GEWEX home page) Global Energy and Water Cycle Experiment http://www.ogp.noaa. gov/gcip/gcipovr.html.
    [16]Moustafa T. Chahine, GEWEX:全球能量和水分循环实验(季国良译),大气情报,1994,14:17-22.
    [17]The International Drafting Committee of the Post GAME Planning Working Group. Monsoon Asian Hydro-Atmosphere Scientific Research and Prediction Initiative (MAHASRI) Ver.4.1 Science Plan Proposal,27. http://mahasri.cr. chiba-u.ac.jp/index_e. html [2009.06.25].
    [18]刘春蓁.气候自然变异与气候强迫变化对径流影响研究进展[J].中国水利.2008.2:41-46
    [19]Frank J. Wentz,Lucrezia Ricciardulli, Kyle Hilburn,et al.. How Much More Rain Will Global Warming Bring?[J]. Science 317,233 (2007);
    [20]Taikan Oki and Shinjiro Kanae. Global Hydrological Cycles and World Water Resources[J].Science 313,1068(2006)
    [21]秦大河总主编.王绍武,董光荣主编.中国西部环境演变评估(第一卷)[A]中国西部环境特征及其演变[M].北京:科学出版社,2002.71-145.
    [22]丁一汇,王守荣主编.中国西北地区气候与生态环境概论[A].北京:气象出版社,2001.4
    [23]王守荣,郑水红,程磊.气候变化对西北水循环和水资源影响的研究[J].气候与环境研究,2003.3,8(1)
    [24]施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号影响和前景初步探讨[J].冰川冻土,2002,24(3):219-226.
    [25]陈亚宁,徐宗学.全球气候变化对新疆塔里木河流域水资源的可能性影响[J].中国科学D辑地球科学,2004,34(11):1047-1053.
    [26]唐国平,李秀彬,刘燕华.全球气候变化卜水资源脆弱性及其评估方法[J]地球科学进展,2000,15(3):313-317.
    [27]曹丽青,余锦华,葛朝霞.华北地区大气水分气候变化及其对水资源的影响[J].河海大学学报(自然科学版),2004,32(5):504-507.
    [28]陈桂亚,Derek Clarke.气候变化对嘉陵江流域水资源量的影响分析[J].水资源研究,2006,27(1):25-30.
    [29]姚玉璧,张秀云,王润云等.洮河流域气候变化及其对水资源的影响[J].水土保持学报,2008,22(1):168-173.
    [30]张光辉.全球气候变化对黄河流域天然径流量影响的情景分析[J].地理研究,2006,25(2):268-275.
    [31]范广洲,吕世华,程国栋.气候变化对滦河流域水资源影响的水文模式模拟(Ⅱ)模拟结果分析[J].高原气象,2001,20(3):302-310.
    [32]张凯,王润元,韩海涛等.黑河流域气候变化的水文水资源效应[J].资源科学,2007,29(1):77-83.
    [33]李家洋,陈泮勤,葛全胜.全球变化与人类活动的相互作用—我国下阶段全球变化研究工作的重点[DB/OL]. http://www.geodata.cn/Portal/infowin/info_detail.jsp?newsid=259 & sortid=1&isCookieChecked=true
    [34]Wang Hao, Chen Minjian. Qin Dayong. Reasonable configuration and carrying capacity research of water resource in Northwest China [M]. Zhengzhou:Yellow River Water Press,2003:6277 (in Chinese).
    [35]李栋梁,谢金南,王文.中国西北夏季降水特征及其异常研究[J].大气科学,1997,21(3):331-340.
    [36]刘桂芳,卢鹤立.全球变暖背景下的中国西部地区气候变化研究进展[J].气象与环境科学,2009.11,32(4):69-73
    [37]张英娟,董文杰,俞永强,等.中国西部地区未来气候变化趋势预测[J].气候与环境研究,2004,9(2):342-349.
    [38]叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979:1-278.
    [39]于淑秋,林学椿,徐祥德.我国西北地区近50年降水和温度的变化[J].气候与环境研究,2003,8(1):9-18.
    [40]蒋艳,夏军.塔里木河流域径流变化特征及其对气候变化的响应[J].资源科学2007.5,29(3):45-52.
    [41]陈亚宁,郝兴明,徐长春.新疆塔里木河流域径流变化趋势分析[J].自然科学进展,2007.2,17(12):205-210.
    [42]杨青,何清.塔里木河流域的气候变化、径流量及人类活动间的相互影响[J].应用气象学报.2003,14(3):309-321.
    [43]史玉光,孙照渤,杨青.新疆区域面雨量分布特征及其变化规律.应用气象学报,2008.6,19(3):326-332.
    [44]沈永平,王顺德.塔里木盆地冰川及水资源变化研究进展.冰川冻土,2002,246):819.
    [45]沈永平.新疆水资源的特点及问题.冰川冻土,2002,24(3):310.
    [46]艾尔肯·吐拉克,王晓风,艾斯卡尔·买买提,沈永平等.塔里木河流域水文特性分析[J].冰川冻土,2007,29(4):543-552.
    [47]施雅风,沈永平,李栋梁等.中国西北气候由暖干向暖湿转型的特征和趋势探讨.第四纪研究,2003,23(2):152-164.
    [48]叶柏生,李翀,杨大庆等.我国过去50a来降水变化趋势及其对水资源的影响(Ⅱ):月系列[J].冰川冻土,2005,27(1):100-105.
    [49]胡汝骥,马虹,樊自立等.新疆水资源对气候变化的响应[J].自然资源学报,2002,17(1):22-27.
    [50]何清,袁玉江,魏文寿等.新疆地表水资源对气候变化的响应初探[J].中国沙漠,2003,23(5):493-496.
    [51]陈亚宁,徐长春,陈亚鹏等.新疆塔里木河流域近50年气候变化及其对径流的影响[J]冰川冻土,2008,30(6):921-929
    [52]郝爱敏.塔里木河综合治理调研报告[D].http://tjj.xjbz.gov.cn/html/xstj/652801/20041026105716.htm [2010.8.23]
    [53]张强,张存杰,白虎志等.西北地区气候变化新动态及对干旱环境的影响[J].干旱气象,2010.03,28:卜7.
    [54]《气候变化国家评估报告》编写委员会.气候变化国家评估报告[M].科学出版社,2007年2月:177.
    [55]《气候变化国家评估报告》编写委员会.气候变化国家评估报告[M].科学出版社,2007年2月:189.
    [56]王澄海,王式功,杨德保等.西北春季降水的基本和异常特征[J].兰州大学学报(自然科学版),2001,37(3):104-111.
    [57]王劲松.近100年来中东亚干旱区对全球变暖的区域气候响应研究[D].博十学位论文,兰州大学.2006.21-23.
    [1]Wang C H, Dong W J, Wei Z G. Anomaly feature of seasonal frozen soil variations on the Qinghai-Tibet Plateau[J]. Journal of Geographical Sciences,2002,12,(1):99-106.
    [2]Zhang J, Zhang Q,Yang L H, Li D L. Seasonal characters of regional vegeta activity in response to climate change in West China in recent 20 years, Geographical Sciences,2006,16 (1):78-86.
    [3]Zhang Q, Xu C Y, Zhang Z, Chen Y D, Liu C L. Spatial and temporal variability of precipitate over China,1951-2005[J]. Theor. Appl. Climatol.,2009,95:53-68.
    [4]Qian W H, Chen D, Zhu Y, and Shen H Y. Temporal and spatial variability of dryness/ wetness in China during the last 530 years[J] Theor. Appl. Climatol,2003,76:13-29
    [5]Cressie N and Kang E L. High-Resolution Digital Soil Mapping:Kriging for Very Large Datasets[M] Progress in Soil Science Volume 1, Proximal Soil Sensing, Part 1:49-63
    [6]Mohammad Chowdhury, Ali Alouani and Faisal Hossain. Comparison of ordinary kriging and artificial neural network for spatial mapping of arsenic contamination of groundwater Stochastic Environmental Research and Risk Assessment,2010,24(1):1-7
    [7]Kemal S G and Ibrahim G. Spatial analyses of groundwater levels using universal kriging Journal of Earth System Science,2007,116(1):49-55
    [8]张继国,刘新仁.降水时空分布不均匀性的信息熵分析:(Ⅰ)基本概念与数据分析水科学进展,2000,11(2):133-137
    [9]张继国,刘新仁.水文水资源中不确定性的信息熵分析方法综述河海大学学报:自然科学版,2000,28(6):32-37
    [10]蔡英,钱正安,吴统文,梁潇云,宋敏红.青藏高原及周围地区大气可降水量的分布、变化与各地多变的降水气候[J].高原气象,2004,23(1):卜10
    [11]赵玲,安沙舟,杨莲梅,马玉芬,张广兴.1976-2007年鸟鲁木齐可降水量及其降水转化率[J].干旱区研究,2010,27(3):433-437
    [12]李帅,谢国辉,何清,李祥余.阿勒泰地区降水量、可降水量及降水转化率分析[J]冰川冻土,2008,4:675-680.
    [13]Brubaker Kaye L., Entekhabi Dara, and Eagleson P. S. Estimation of continental precipitation recycling [J]. Journal of Climate,1993,6:1077-1089.
    [14]Yatagai A and Yasunari T. Variation of Summer Water Vapor Transport Related to Precipit-ation over and around the Arid Region in the Interior of the Eurasian Continent [J]. J.Meteor. Soc. Japan,1998,76:799-815.
    [15]Boe Julien, Terray Laurent, Cassou Christophe et al.. Uncertainties in European summer precipitation changes:role of large scale circulation [J]. Clim. Dyn,2009,33:265-276.
    [16]张利平,华北地区陆气水循环时空演化规律研究[D],武汉大学博士学位论文,2005
    [17]Ashraf M, Loftis J C, Hubbard K G. Apllication of geostatistics to evaluate partial station networks [J]. Agric.For.Meteorol.,1997,84:225-271.
    [18]Gottschalk L, Batchvarova E, Gryning S E et al. Scale aggregation-comparison of flux estimates from NOPEX [J]. Agric.For. Meteorol.,1999,98:103-119.
    [19]Price D T, Mckenney D W, N alder I A et al. A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data [J]. Agric. For. Meteorol., 2000,101:81-94.
    [20]封志明,杨艳昭,丁晓强,林忠辉.气象要素空间插值方法优化[J].地理研究,2004,23:357-364.
    [21]Nalder I A, Wein R W. Spatial interpolation of climate normals:test of a new method in the Canadian boreal forest. Agric.For. Meteorol.,1998,92:211-225.
    [22]封志明,杨艳昭,丁晓强,林忠辉,气象要素空间插值方法优化[J].地理研究,2004,23:357-364.
    [23]Nalder I A, Wein R W. Spatial interpolation of climate normals:test of a new method in the Canadian boreal forest[J]. Agric.For. Meteorol.,1998,92:211-225.
    [24]曹鸿兴.气象历史序列的最大熵谱分析[J],科学通报,1979:351-355.
    [25]黄忠恕.波谱分析方法在水文上的应用[J],水文,1983,14(3):13-19.
    [26]黄嘉佑.气象统计分析与预报方法(第三版),北京:气象出版社,2004.3:217-237
    [27]封国林,董文杰,龚志强等.观测数据非线性时空分布理论和方法,(北京:气象出版社),2006.12.
    [28]Grossmann A and Morlet J. Decomposition of hardy function into square integral wavelets of constant shape, Siam. J. Math. Anal,1984,15(4):723-736.
    [29]Grossmann A and Morlet J. Transforms associated to square integral group representations, Ⅰ: general results, J.Math.Phys,1985,26(10):2473-2479.
    [30]谢庄、曹鸿兴等,近百余年北京气候变化的小波特征[J],气象学报,2000,58(3):362-369
    [31]彭玉华.小波变换与工程应用,北京:科技出版社,1999,1-10.
    [32]Grossmann A and Morlet J. Transforms associated to square integral group representations I general results J.Math.Phys,1985,26(10):753-768.
    [33]Mallat S G. Multifrequency channel decomposition of images and wavelet models.IEEE Trans On Acoustics Speech and Signal Processing,1989,37(12):67-86.
    [34]刘贵忠,邸双亮.小波分析及其应用,西安:西安电子科技大学出版社,1992,10-105.
    [35]He Wenping, Feng Guolin, Dong Wenjie and Li Jianping. Influence of stochastic disturbances on the quasi-wavelet solution of the convection-diffusion equation [J]. Chinese Physics,2005,14(1):21-27
    [36]Huang N E. A new view of nonlinear water waves-the Hilbert spectrum Ann [J]. Rev. Fluid. Mech,1999,31(1):417-457
    [37]黄石红,付行军,王育.小波变换及其应用[J].汽轮机技术,2001,45(5):268-269.
    [38]李建平,丑纪范.非线性大气动力学的进展[J].大气科学,2003,27(4):653-673.
    [1]Ding Yihui, Hu Guoquan.A Study on Water Vapor Budget Over China During The 1998 Severe Flood Periods [J]. Acta Meteorologica Sinica,2003,61(2):129-145[丁一汇,胡国权.1998年中国大洪水时期的水汽收支研究[J].气象学报,2003,61(2):129-145]
    [2]Tian Hong, Guo Pinwen, Lu Weisong. Characteristics of Vapor Inflow Corridors Related to Summer Rainfall in China and Impact Factors [J]. Journal of Tropical Meteorology,2004,20(4):401-408[田红,郭品文,陆维松.中国夏季降水的水汽通道特征及其影响因子分析[J].热带气象学报,2004,20(4):401-408]
    [3]Xu Shuying. Water vapor transfer and water balance over the eastern China [J]. Acta Meteorologica Sinica,1958,29(Ⅰ):33-43[徐淑英.我国的水汽输送和水分平衡[J].气 象学报,1958,29(1):33-43]
    [4]Chen Longxun, Zhu Qiangeng, Luo Huibang. et al. Eastern Asian Monsoon [M]. Beijing: China Meteorlogical Press,1991:49-61.[陈隆勋,朱乾根,罗会邦,等.东亚季风[M].北京:气象出版社,1991:49-61.]
    [5]Qi Qinghua.The spatial-temporal characters of the northwest Pacific watervapor flux and its coupled modes with the summ er rainfall in China[J].Marine Sciences,2009,33(9):35-41[齐庆华.西北太平洋水汽输送异常及其与中国夏季降水的耦合模态[J].海洋科学,2009,33(9):35-41]
    [6]Jiang Xingwen, LI Yueqing, Wang Xin.Water vapor transport over China and its relationship with drought and flood in Yangtze River Basin [J].Geogr. Sci,2009,19:153-163[蒋兴文,李跃清,王鑫.中国地区水汽输送异常特征及其与长江流域旱涝的关系[J].地理学报,2008.5,63(5):482-490]
    [7]Miao Qiuju Xu Xiangde Zhang Shengjun.WHoLE LAYER WATER VAPoR BUDGET oF YANGTZE RIVER VALLEY AND MOISTURE FLUX COMPONENTS TRANSFORM IN THE KEY AREAS oF THE PLATEAU[J].ACTA METEOROLOGICA SINICA,2005,63(1):93-99.[苗秋菊,徐祥德,张胜军.长江流域水汽收支与高原水汽输送分量“转换”特征[J].气象学报,2005,63(1):93-99]
    [8]Miao Qiuju, Xu Xiangde, Shi Xiaoying. Water vapor transport structure of anom alous rainy centres in the am bient area of Tibetan Plateau[J]. Meteorological Monthly,2004,30(12):44-46.[苗秋菊,徐祥德,施小英.青藏高原周边异常多雨中心及其水汽输送通道[J].气象.2004,30(12):44-46.]
    [9]Ma Jingjin,GAO Xiaoqing.The Transportation Paths of Water Vapor and Its Relation to Climate Chang over North China[J].PLATEAU METEOROLOGY,2006,25(5):893-899[马京津,高晓清.华北地区夏季平均水汽输送通量和轨迹的分析[J].高原气象,2006,25(5):893-899]
    [10]Liang Ping, HE Jinhai,CHEN Longxun,et al..Anomalous Mositure Sources for the Severe Precipitation over North China during Summer[J]. Plateau Meteorology,2007,26(3):460-465[梁萍,何金海,陈隆勋.华北夏季强降水的水汽来源[J].高原气象,2007,26(3):460-465]
    [11]Xie Yibing, Dai Wujie. Certain computational results of water vapor transport over eastern China for a selected synoptic case[J]. Acta Meteorologica Sinica,1959,30; 173-185.[谢义炳,戴武杰.中国东部地区夏季水汽输送个例计算[J].气象学报,1959,30:173-185.]
    [12]Ren Hongli. Zhang Peiqun, Li Weijing, et al. Characteristics of precipitation and water vapor transport during springtime in the eastern Northwest China[J]. Acta Meteorologica Sinica,2004,62(3):365-374.[任宏利.张培群,李维京,等.中国西北东部地区存季降水及其水汽输送特征[J].气象学报,2004,62(3):365-374]
    [13]Wang Xiurong, Xu Xiangde, Wang Weiguo.Charateristic of Spatial Transportation of Water Vapor for Northwest China's Rainfall in Spring and Summer. [王秀荣,徐祥德,王维国.西北地区春、夏季降水的水汽输送特征[J].高原气象,2007,26(4):97-106]
    [14]Zhang Qiang, Zhang Jie, Song Guowu.RESEARCH ON ATMOSPHERIC WATER VAPOR DISTRIBUTION OVER QILIANSHAN MOUNTAINS[J].ACTA METEOROLOGICA SINICA,2007,65(4):633-643.[张强,张杰,孙国武,等.祁连山山区空中水汽分布特征研究[J].气象学报,2007,65(4):633-643]
    [15]He Jinhai. Liu Yunyun. Chang Yue. Analysis of summerprecipitation anomaly and the feature of water vapor transportand circulation in Northwest China[J]. Arid Meteorology,2005.23(1):10-16.[何金海,刘芸芸.常越.西北地区夏季降水异常及其水汽输送和环流特征分析[J].干旱气象,2005,23(1):10-16]
    [16]Wang Baojian. Huang Yuxia. He Jinhai, et al..An analysis between vapor transportation and drought of NW C in the period of the eastern Asia Monsoon[J]. Plateau Meteorology,2004,23(6):912-918.[王宝鉴,黄玉霞,何金海等.东亚夏季风期间水汽输送与西北干旱的关系[J].高原气象,2004,23(6):912-918]
    [17]Ye Mao, XU Halliang, SONG Yudong, et al..Some Problems and Challenges about Water Resources Utilization in the Tarim River Basin[J].RID ZONE RESEARCH,2006.9,2 (3):388-392.[叶茂,徐海量,宋郁东等.塔里木河流域水资源利用面临的主要问题[J].干旱区研究,2006.9,2(3):88-392]
    [18]Shi Yafeng, Shen Yongping.Signal, Impact and Outlook of Climatic Shift from Warm-Dry to Warm-Humid in Northwest China[J].Science and Technology Review,2003,2:54-57.[施雅风,沈永平.西北气候由暖干向暖湿转型的信号、影响和前景初探[J].科技导报,2003,2:54-57]
    [19]Shen Yongping, Wang Shunde.New Progress in Glacier and Water Resources Changes in Tarim Basin, Xinjiang[J]. Journal of Glaciology and Geocryology,2002,24(6).[沈永平,王顺德.塔里木河流域冰川及水资源变化研究新进展[J].冰川冻土,2002,24(6)]
    [20]Liu Shiyin, Ding Yongjian,Zhang Yong et al.. Impact of the Glacial Change on Water Resources in the Tarim River Basin[J]. Acta Eographica Sinica,2006,61(5):482-490.[刘时银,丁永建,张勇.塔里木河流域冰川变化及其对水资源影响[J].地理学报,2006,61(5): 482-490]
    [21]Su Zhi xia,Lu Shihua Luo Siwei.The Examinations and Analysis of NCEP/NCAR 40 Years Global Reanalysis Data in China [J].PLATEAU METEOROLOGY,1999,18(2):209-218.[苏志伙,吕世华,罗四维.美国NCEP/NCAR全球再分析资料及其初步分析[J].高原气象,1999,18(2):209-218]
    [22]Zhu Qiangen, Lin Jingrui, Shou Shaowen. Meteorological Principles and Methods (third edition) [M], Beijing:Meteorological Press,2005.8,637-638[朱乾根,林锦瑞,寿邵文.气象学原理和方法(第三版)[M],北京:气象出版社,2005.8,637-638]
    [23]Zeng Hongling, Gao Xinquan, Dai Xingang. Analyses on Interdecadal Change Characteristics of Global Winter and Summer Sea Surface Pressure Field and 500 hPa Height Field in Recent Twenty Years[J].Plateau Meteorology,2002,21(1):66-73.[曾红玲,高新全,戴新刚.近20年全球冬、夏季海平面气压场和500hP高度场年代际变化特征分析[J].高原气象,2002,21(1):66-73]
    [1]Ren LL, Wang MR, Li CH, Zhang W (2002) Impacts of human activity on river runoff in the northern area of China. J Hydrol 261:204-217.
    [2]Fan ZL, Xia XC, Shen YL, Kurban A, Wang RH, Li SY, Ma YJ (2002) Utilization of water resources, ecological balance and land desertification in the Tarim Basin, Xinjiang. Sci China Ser D 45:102-108.
    [3]Yatagai Akiyo and Yasunari Tetsuzo 1998 Variation of Summer Water Vapor Transport Related to Precipitation over and around the Arid Region in the Interior of the Eurasian Continent, Journal of meteorological Society of Japan 76 799-815.
    [4]Chan R. Y, Vuille M., Hardy D. R.2008. Intraseasonal precipitation variability on Kilimanjaro and the East African region and its relationship to the large-scale circulation, Theor. Appl. Climatol.93:149-165
    [5]Boe Julien, Terray Laurent, Cassou Christophe, Najac Julien 2009 Clim Dyn 33:265-276 Uncertainties in European summer precipitation changes:role of large scale circulation
    [6]Syed F S, Giorgi F, Pal J S et al.2006 Theor. Appl. Climatol.86,147-160 Effect of remote forcings on the winter precipitation of central southwest Asia part 1:observations
    [7]Jiang Xingwen, Li Yueqing and Wang Xin. Water vapor transport over China and its relationship with drought and flood in Yangtze River Basin[J].Journal of Geographical Sciences 2009,19:153-163
    [8]Chow, K.C., Tong H., Chan, J.C.L.2008:Water vapor sources associated with the early summer precipitation over China, Clim Dyn 30,497-517
    [9]Huang Ronghui and Chen Jilong. Characteristics of the Summer time Water Vapor Transports over the Eastern Part of China and Those over the Western Part of China and Their Difference[J]. Chinese Journal of Atmospheric Sciences,2010.11,34(6):1035-1045 (in Chinese)[黄荣辉,陈际龙.我国东、西部夏季水汽输送特征及其差异[J].大气科学,2010.11,34(6):1035-1045]
    [10]Wu Yongping, Wang Chenghai, Shen Yongping. Spatial-Temporal Distribution of Water Vapor Transportation over Tarim Basin during 1948-2009[J]. Journal of Glaciology and Geocryology 2010.32:1074-1083 (in Chinese)[吴永萍,王澄海,沈永平.1948-2009年塔里木盆地空中水汽输送时空分布特征[J].冰川冻土,2010.32:1074-1083]
    [11]Shi Yafeng, Shen Yongping. Signal, Impact and Outlook of Climatic Shift from Warm-Dry to Warm-Humid in Northwest China[J]. Science and Technology Review 2003.2:54-57 (in Chinese)[施雅风,沈永平.西北气候由暖干向暖湿转型的信号、影响和前景初探[J].资源环境,2003,2:54-57]
    [12]Shi Yafeng. An Assessment of the Issues of Climatic Shift from Warm-dry to Warm-wet in Northwest China (Beijing:China Meteorological Press) 2003 (in Chinese)[施雅风.中国西北气候由暖干向暖湿转型问题评估.北京:气象出版社,2003]
    [13]Zhang Qiang, Zhang Cunjie, Bai Huzhi et al.. New Development of Climate Change in Northwest China and Its Impact on Arid Environment [J]. Journal of Arid Meteorolog, 2010.28:1-7 (in Chinese)[张强,张存杰,白虎志等.西北地区气候变化新动态及对干旱环境的影响[J].干旱气象,2010,28:1-7]
    [14]Zhou J and Yu R C 2005 Atmospheric water vapor transport associated with typical anomalous sulrlmer rainfall patterns in China J.Geophys.Res.10,110
    [15]Gong D Y, Wang S W. Variability of the Winter Zonal Index and Its Association with the Northern Hemispheric Temperature Changes. Journal of Tropical Meterology,2002,18 104-110 (in Chinese)[龚道溢,王绍武.冬季西风环流指数的变率及其与北半球温度变化的关系研究[J].热带气象学报,2002,18:104-110]
    [16]Wang Biquan, Huang Hanming, Fan Hongshun, et al. Research on nonlinear R/S method and its application in earthquake prediction[M]. Acta Seismologica Sinica.1995.11,8(4): 653-658
    [17]Mann H. B.'Nonparametric tests against trend', Econometrica,1945,13,245-259
    [18]Kendall M. G. Rank Correlation Methods, Griffin, London,1975
    [19]Su Hongchao, Shen Yongping, Han Ping. Precipitation and Its Impact on Water Resources and Ecological Environment in Xinjiang Region [J]. Journal of Glaciology and Geocryology, 2007,29:343-350 (in Chinese) [苏宏超,沈永平,韩萍等.新疆降水特征及其对水资源和生态环境的影响[J].冰川冻土,2007,29:343-350]
    [20]Makarieva, A. M., Gorshkov, V. G., Sheil D., Nobre, A. D., and Li, B.-L.,2010. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmospheric Chemistry and Physics Discussions 10,24015-24052.
    [23]Lioubimtseva E, Cole R, Adams JM, Kapustin G (2005) Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ 62:285-308
    [24]Gregory KJ (2006) The human role in changing river channels. Geomorphology 79:172-191.
    [25]Zhang H, Wu JW, Zheng QH, Yu YJ (2003) A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China. J Arid Environ 55:545-553
    [26]Xingming Hao, Yaning Chen, Changchun Xu, Weihong Li 2008 Water Resour Manage 22:1159-1171
    [27]Kaye L. Brubaker, Dara Entekhabi, and P. S. Eagleson 1993 Estimation of Continental Precipitation Recycling Journal of Climate 6 1077-1089
    [28]Xu X. D., Shi X.Y., Wang Y. Q.2008. Data analysis and numerical simulation of moisture source, and transport associated with summer precipitation in the Yangtze River Valley over China, Meteorol Atmos Phys 100,217-231
    [29]Yali Zhu, Huijun Wang, Wen Zhou 2011:Recent changes in the summer precipitation pattern in East China and the background circulation, Clim Dyn 36:1463-1473
    [30]Huang Ronghui and Chen Jilong,2010, Chinese Journal of Atmospheric Sciences 34 1035-1045(in Chinese)
    [31]龚道溢,王绍武.近百年ENSO对全球陆地及中国降水的影响[J].科学通报,1999.2,44(3):315-320
    [32]Yang Yali,Du Yan,Chen Haisheng,Zhang Yongsheng.Influence of ENSO on Rainfall Anomaly over Yunnan Procince and Its Neighboring Regions during Last Spring-Early Summer[J].Chinese Journal of Atmospheric Sciences,2011.7,35(4):729-738[杨亚力,杜岩,陈海山,张永生ENSO事件对云南及临近地区春末初夏降水的影响[J].大气科学,2011.7,35(4):729-738]
    [33]Li Wei,Zhai Pammao,Cai Jinhui. Researeh on the Relationship of ENSO and the Frequeney of Extreme Precipitation Events in China[J]. Advances in Climate Change Research, 2011,2(2):101-107
    [34]Wang Dajun, Xu Zhixin, Hu Chunli. Indicative Significance of ENSO for Summer Precipitation in Liaoning Province[J]. Meteorological and Environmental Research 2010. 1(8):102-104
    [35]Zong Haifeng, Chen Lieting, and Zhang Qingyun. The Instabil ity of the Interannual Relationship between ENSO and the Summer Rainfall in China[J]. Chinese Jo urnal of Atmospheric Sciences,2010.1,34(1):184-192[宗海锋,陈烈庭,张庆云.ENSO与中国夏季降水年际变化关系的不稳定性特征[J].大气科学,2010.1,34(1):184-192]
    [36]Wolter and Timlin,1993,1998. Outline for MEI webpage http://www.esrl.noaa.gov/psd/enso/mei/#ref_wtl#ref_wtl (updated on November 5th,2011)
    [37]Xiang Yuchun, Chen Zhenghong, Xu Guirong, Chen Bo, Cheng Yaping. A Compar ison and Analysis of the Results of T hree Methods for the Calculat ion of Water Vapor Resources[J]. Meteorological Monthly,2009.11,35(11):48-54[向玉春,陈正洪,徐桂荣.三种大气可降水量推算方法结果的比较分析[J].气象2009.11,35(11):48-54]
    [38]Yang Hongmei,Ge Runsheng,Xu Baoxian. Analysing Troposphere Air Moisture Content with Single Radiosonde Station Data[J].Meteorological Monthl,1998,24 (9):8-11[杨红梅,葛润生,徐宝祥.用单站探空资料分析对流层汽柱水汽总量[J].气象,1998,24(9):8-11]
    [39]Zou Jinshang,Liu Huilan.The Basic Features of Distribution of Water Vapor Content and Their Controlling Factors in China[J].Acta Geographica Sinica,1981.12,36(4):377-390[邹进上,刘惠兰.我国平均水汽含分布的基本特点及其控制因子[J].地理学报,1981.12,36(4):377-390]
    [1]政府间气候变化专门委员会.气候变化2007自然科学基础[M],2007:106
    [2]施能,陈绿文,封国林.1920-2000年全球陆地降水气候特征与变化[J].高原气象,2004.8,23(4):435
    [3]Sun Ying, Ding Yi Hui. A projection of future changes in summer precipitation and monsoon in East Asia [J]. Science China Earth Sciences,2010,53 (2):284-300.
    [4]Jason P. Evans. Global warming impact on the dominant precipitation processes in the Middle East [J]. Theor Appl Climatol (2010) 99:389-402
    [5]Seung-Ki Min, Xuebin Zhang, Francis W. Zwiers, Petra Friederichs, Andreas Hense. Signal detectability in extreme precipitation changes assessed from twentieth century climate simulations[J]. Clim Dyn (2009) 32:95-111;
    [6]Salil Mahajan, Gerald R.North, R.Saravanan,Marc GGenton. Statistical significance of trends in monthly heavy precipitation over the US[J]. Clim Dyn 28 April 2011
    [7]W. H. Qian, A. Qin. Precipitation division and climate shift in China from 1960 to 2000[J]. Theor. Appl. Climatol. (2008) 93:1-17
    [8]Tromel S, Schonwiese C D. Robust trend estimation of observed German precipitation[J]. Theor. Appl. Climatol. (2008) 93:107-115
    [9]Jason Allard, Barry D. Keim, Jessica E. Chassereau, David Sathiaraj. Spuriously induced precipitation trends in the southeast United States[J]. Theor Appl Climatol (2009) 96:173-177
    [10]Martin Hirschi, Sonia I. Seneviratne. Intra-annual link of spring and autumn precipitation over France[J]. Clim Dyn (2010) 35:1207-1218
    [11]Qiang Zhang, Chong-yu Xu, Marco Gemmer, Yongqin David Chen, Chunling Liu. Changing properties of precipitation concentration in the Pearl River basin, China[J]. Stoch Environ Res Risk Assess (2009) 23:377-385
    [12]Jan Kysely, Romana Beranova. Climate-change effects on extreme precipitation in central Europe:uncertainties of scenarios based on regional climate models[J]. Theor Appl Climatol (2009) 95:361-374
    [13]J. I. L6pez-Moreno,M. Beniston. Daily precipitation intensity projected for the 21st century:seasonal changes over the Pyrenees[J]. Theor Appl Climatol (2009) 95:375-384
    [14]HE DaMing,LI ShaoJuan,ZHANG YiPing. The variation and regional differences of precipitation in the Longitudinal Range-Gorge the Region[J]. Chinese Science Bulletin,Dec. 2007,vol.52:59-73
    [15]Elizabeth Jane Kendon, David P. Rowell,Richard G. Jones. Mechanisms and reliability of future projected changes in daily precipitation [J]. Clim Dyn (2010) 35:489-509]
    [16]王澄海,崔洋.西北地区近50年降水周期的稳定性分析[J].地球科学进展,2006.6,21(6):576-584
    [17]王英,曹明奎,陶波.全球气候变化背景下中国降水量空间格局的变化特征[J].地理研究,2006.11,25(6):1031-1040
    [18]王颖,施能,顾骏强,封国林,张立波.中国雨日的气候变化[J].大气科学,2006.1,30(1):162-170
    [19]王绍武,董光荣主编1中国西部环境评估1秦大河总主编1中国西部环境特征及其演变(第一卷).北京:科学出版社,2002:71-145
    [20]丁一汇,王守荣.中国西北地区气候与生态环境概论.北京:气象出版社,2001:77-154
    [21]Zhang Qiang,Zhang Cunjie,Bai Huzhi. New Development of Climate Change in Northwest China and Its Impact on Arid Environment[J]. Journal of Arid Meteorolog,2010.3,28 (1):1-7[张强,张存杰,白虎志.西北地区气候变化新动态及对干旱环境的影响[J].干旱气象,2010.3,28(1):1-7]
    [22]Shi Yafeng,Shen Yongping.Signal, Impact and Outlook of Climatic Shift from Warm-Dry to Warm-Humid in Northwest China[J].SCIENCE AND TECHNOLOGY REWIEW,2003,2:54-57[施雅风,沈永平.西北气候由暖干向暖湿转型的信号、影响和前景初探[J].科技导报,2003,2:54-57]
    [23]Shen Yongping, Wang Shunde. New Progress in Glacier and Water Resources Changes in Tarim Basin, Xinjiang[J]. Journal of Glaciology and Geocryology,2002,24(6)[沈永平,王顺德.塔里木河流域冰川及水资源变化研究新进展[J].冰川冻土,2002,24(6)]
    [24]闫桂霞,陆桂华,吴志勇.塔里木河流域降水特性时空分析[J].水电能源科学,2009.4,27(2):1-3.
    [25]周宰根,韩建康,李永能.塔竞拉玛干沙漠周边地区暖季气温、降水的变化特征及其响应分析[J].石河子大学学报(自然科学版),2008.2,26(1):56-59.
    [26]史玉光.新疆区域面雨量及空中水汽时空分布规律研究[D].南京信息工程大学,2008
    [27]吴永萍,王澄海,沈永平.1948-2009年塔里木河流域空中水汽输送时空分布特征[J].冰川冻十,2010.12,32(6):1074-1083.
    [28]卢毅敏,岳天祥,陈传法.中国区域年降水空间分布高精度曲面建模[J].自然资源学报,2010.7,25(7):1194-1205.
    [29]杨莲梅,张庆云.北大西洋涛动对新疆夏季降水异常的影响[J].大气科学,2008.9,32(5):1187-1196.
    [30]W. H. Qian, A. Qin. Precipitation division and climate shift in China from 1960 to 2000[J]. Theor. Appl. Climatol,2008,93:1-17
    [1]Yang L M, Zhang Q Y 2008, Effects of the North Atlantic Oscillation on the summer rainfall anomalies in Xinjiang. Chinese Journal of Atmospheric Science 32 1187 (in Chinese)[杨莲梅,张庆云2008北大西洋涛动对新疆夏季降水异常的影响.大气科学321187]
    [2]Zhang Q, Zhang C J, Bai H Z,2010, New Development of Climate Change in Northwest China and Its Impact on Arid Environment. Journal of Arid Meteorolog 28 (1):1-7 (in Chinese)[张强,张存杰,白虎志,2010,西北地区气候变化新动态及对干旱环境的影响——总体暖干化,局部出现暖湿迹象.干旱气象,28(1):1-7]
    [3]Shi Y f 2003 An Assessment of the Issues of Climatic Shift from Warm-dry to Warm-wet in Northwest China (Beijing:China Meteorological Press)(in Chinese)[施雅风,2003,中国西北地区由暖干向暖湿转变的评价.(北京:中国气象局)]
    [4]Shi Y F, Shen Y P,2003, Recent and future climate change in northwest China, Climatic Change. Science and Technology Review 2003(2):54-57(in Chinese)[施雅风,沈永平,2003,西北气候由暖干向暖湿转型的信号、影响和前景初探.科技导报,2003(2):54-57]
    [5]Shen Y P, Wang S D,2002, New Progress in Glacier andWater Resources Changes in Tarim Basin, Xinjiang. Journal of Glaciology and Geocryology 24(6) (in Chinese)[沈永平,王顺德,2002塔里木盆地冰川及水资源变化研究新进展.冰川冻十,24(6)]
    [6]Wu Y P, Wang C H, Shen Y P,2010, Spatial-Temporal Distribution of Water Vapor Transportation over Tarim Basin during 1948-2009. Journal of Glaciology and Geocryology 32:1074-1083 (in Chinese)[吴永萍,王澄海,沈永平,2010,1948-2009年塔里木盆地空中水汽输送时空分布特征.冰川冻十,32:1074-1083]
    [7]Zhang Qiang. Zhang Jie, Song Guowu.Research on Atmospheric Water Vapor Distribution over Qilianshan Mountains. Acta Meteorologica Sinica,2007,65(4):633-643.
    [8]Xingwen Jiang, Yueqing Li, Xin Wang 2009:Water vapor transport over China and its relationship with drought and flood in Yangtze River Basin, Journal of Geographical Sciences 19,153-163.
    [9]K. C. Chow, Hang-Wai Tong, Johnny C. L. Chan 2008:Water vapor sources associated with the early summer precipitation over China, Clim Dyn 30,497-5176.
    [10]P. Baguis, E. Roulin, P. Willems et al.2010:Climate change scenarios for precipitation and potential evapotranspiration over central Belgium, TheorAppl Climatol,99:273-28.
    [11]Jan Kysely and Romana Beranova 2009:Climate-change effects on extreme precipitation in central Europe:uncertainties of scenarios based on regional climate models, Theor Appl Climatol,95:361-374.
    [12]Chan R. Y., Vuille M., Hardy D. R.2008:Intraseasonal precipitation variability on Kilimanjaro and the East African region and its relationship to the large-scale circulation, Theor. Appl. Climatol.93:149-165.
    [13]Shen Baizhuo, Lin Z D, Lu R Y, et al. Circulation anomalies associated with interannual variation of early- and late-summer precipitation in Northeast China. Sci China Earth Sci, 2011, doi:10.1007/s11430-011-4173-6.
    [14]Zhu Y L, Wang H J, Wen Zhou 2011:Recent changes in the summer precipitation pattern in East China and the background circulation, Clim Dyn 36:1463-1473.
    [15]He Jinhai, Liu Yunyun, Chang Yue. Analysis of Summer Precipitation Anomaly and The Feature of Water Vapor Transportand Circulation in Northwest China[J]. Arid Meteorology, 2005,23(1):10-16.
    [16]Julien Boe, Laurent Terray, Christophe Cassou, Julien Najac. Uncertainties in European summer precipitation changes:role of large scale circulation[J]. Clim Dyn,2009,33:265-276
    [17]Syed F S, Giorgi F, Pal J S et al. Effect of remote forcings on the winter precipitation of central southwest Asia part 1:observations[J]. Theor. Appl. Climatol,2006,86:147-160.
    [18]Ren Hongli. Zhang Peiqun. Li Weijing. et al. Characteristics of precipitation and water vapor t ransport during springtime in the eastern Northwest China. Acta Meteorologica Sinica,2004,62(3):365-374.[任宏利.张培群,李维京,等.中国西北东部地区春季降水及其水汽输送特征.气象学报,2004,62(3):365-374]
    [19]Wang X R, Xu X D, Wang W G. Charateristic of Spatial Transportation of Water Vapor for Northwest China's Rainfall in Spring and Summer [J]. Plateau Meteorology,2007,26(4):97-106[王秀荣,徐祥德,王维国.西北地区春、夏季降水的水汽输送特征[J].高原气象,2007,26(4):97-106]
    [20]Zhang Qiang, Zhang Jie, Song Guowu.Research on Atmospheric Water Vapor Distribution Over Qilianshan Mountains. Acta Meteorologica Sinica,2007,65(4):633-643.[张强,张杰,孙国武,等.祁连山山区空中水汽分布特征研究.气象学报,2007,65(4):633-643]
    [20]He Jinhai, Liu Yunyun, Chang Yue. Analysis of summerprecipitation anomaly and the feature of water vapor transportand circulation in Northwest China[J]. Arid Meteorology,2005.23(1):10-16.[何金海,刘芸芸.常越.西北地区夏季降水异常及其水汽输送和环流特征分析[J].干旱气象,2005,23(1):10-16]
    [22]Wang Baojian. Huang Yuxia. He Jinhai, et al..An analysis between vapor transportation and drought of NW C in the period of the eastern Asia Monsoon. Plateau Meteorology,2004,23(6):912-918.[下宝鉴,黄玉霞,何金海等.东亚夏季风期间水汽输送与西北干旱的关系.高原气象,2004,23(6):912-918]
    [23]Anastassia M. Makarieva, Victor G. Gorshkov, and Bai-Lian Li. Conservation of water cycle on land via restoration of natural closed-canopy forests:implications for regional landscape planning [J]. Ecological Research,2006,21:897-906 DOI 10.1007/s11284-006-0036-6.
    [24]Anastassia M. Makarieva, Victor G. Gorshkov and Bai-Lian Li. Precipitation on land versus distance from the ocean:Evidence for a forest pump of atmospheric moisture [J]. Ecological Complicity,2009,6:302-307.
    [25]Wang Biquan, Huang Hanming, Fan Hongshun, et al.. Research on nonlinear R/S method and its application in earthquake prediction. Acta Seismologica Sinica.1995.11,8(4):653-658
    [26]Kendall M G. Rank Correlation Methods, Griffin, London. Mann, H. B.:1945, 'Nonparametric tests against trend'[J]. Econometrica,1975,13:245-259.
    [27]Ailikun. The Weakening of the Walker Circulation.After the Late 1970s [J]. Climatic and Environmental Research,2004,9(2):303-315.[艾丽坤.对20世纪70年代中后期Walker环流异常减弱的分析.气候与环境研究,2004,9(2):303-315]
    [28]Hu KaiMing and Huang Gang. The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO [J]. Atmospheric and Oceanic Science Letters, 2010,3(1):25-30.
    [29]Showman A. P. and L. M. Polvani. The Matsuno-Gill model and equatorial superrotation [J]. Geophys. Res. Lett.,2010,37:L18811, doi:10.1029/2010GL044343.
    [30]杨建玲,刘秦玉.热带印度洋SST海盆模态的“充电/放电”作用-对夏季南亚高压的影响[J].海洋学报,2008,2.
    [31]杨建玲.热带印度洋海表面温度年际变化主模态对亚洲季风区大气环流的影响[M].中国海洋大学,2007.
    [32]白庆梅,旧文寿,冯兆东,王澄海,靳立亚.亚洲干旱/半干旱区降水与大洋暖池气候的相关特征研究[J].冰川冻土,2010,2:295-308.
    [33]丁一汇,高等天气学(第二版),2005.2(北京:气象出版社):212
    [34]曾庆存,李建平.南北两半球大气的相互作用和季风的本质,大气科学,2002,26:433-448.
    [35]Zhou Y. P., Xu K.-M., Sud Y. C. and Betts A. K. Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data [J]. Journal of Geophsical Research,2011,116:D09101, doi:10.1029/2010JD015197.
    [36]Su H C, Shen Y P, Han P 2007 Journal of Glaciology and Geocryology 29 343 (in Chinese)[苏洪超,沈永平,韩萍.2007新疆降水特征及其对水资源和生态环境的影响冰川冻土29 343]
    [37]Fu Bao-pu 1992 The Effects of Topography and Elevation on Precipitation Acta Geographica Sinica 47 302[傅抱璞,1992,地形和海拔高度对降水的影响,地理学报,47(4):302-314]
    [38]Nadja Insel, Christopher J. Poulsen, Todd A. Ehlers 2010:Influence of the Andes Mountains on South American moisture transport, convection, and precipitation, Clim Dyn, 35:1477-1492
    [39]Eric A. Rosenberg, Patrick W. Keys, Derek B. Booth. Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State [J]. Climatic Change, 2010,102:319-349.
    [40]Bohloul Alijani. Effect of the Zagros Mountains on the spatial istribution of precipitation [J]. Journal of Mountain Science,2008,5:218-231.
    [41]van der Ent, R.J., Savenije, H.H.G., Schaefli, B., Steele-Dunne, S.C. Origin and fate of atmospheric moisture over continents [J]. Water Resource Research,2010,46:1-12.
    [42]Fu, Congbin. Potential impacts of human-induced land cover change on East Asia monsoon [J]. Global and Planetary Change,2003,37:219-229.
    [43]Chikoore, H. and Jury, M. R. Intra seasonal variability of satellite derived rainfall and vegetation over Southern Africa [J]. Earth Interact,2010,14:1-26.
    [44]Rong-Hui Huang, Ji-Long Chen. Characteristics of the Summertime Water Vapor Transports over the Eastern Part of China and Those over the Western Part of China and Their Difference [J]. Chinese Journal of Atmospheric Sciences,2010,34(6):,1035-1045.
    [45]Zhou T J, Yu R C. Atmospheric water vapor transport associated with typical anomalous sulrlmer rainfall patterns in China [J]. J. Geophys. Res.,2005,110:D08104, doi:10. 1029/2004 JD005413
    [46]Yang Yali,Du Yan,Chen Haisheng,Zhang Yongsheng.Influence of ENSO on Rainfall Anomaly over Yunnan Procince and Its Neighboring Regions during Last Spring-Early Summer[J].Chinese Journal of Atmospheric Sciences,2011.7,35(4):729-738[杨亚力,杜岩,陈海山,张永生ENSO事件对云南及临近地区春末初夏降水的影响[J].大气科学,2011.7,35(4):729-738]
    [47]Li Wei,Zhai Pammao,Cai Jinhui. Researeh on the Relationship of ENSO and the Frequency of Extreme Precipitation Events in China[J]. Advances in Climate Change Research, 2011,2(2):101-107
    [48]Wang Dajun, Xu Zhixin, Hu Chunli. Indicative Significance of ENSO for Summer Precipitation in Liaoning Province[J]. Meteorological and Environmental Research 2010. 1(8):102-104
    49] Zong Haifeng, Chen Lieting, and Zhang Qingyun. The Instabil ity of the Interannual Relationship between ENSO and the Summer Rainfall in China[J]. Chinese Jo urnal of Atmospheric Sciences,2010.1,34(1):184-192[宗海锋,陈烈庭,张庆云.ENSO与中国夏季降水年际变化关系的不稳定性特征[J].大气科学,2010.1,34(1):184-192]
    [50]Wolter and Timlin,1993,1998. Outline for MEI webpage http://www.esrl.noaa. gov/psd/enso/mei/#ref_wtl#ref_wtl (updated on November 5th,2011)
    [51]龚道溢,王绍武.近百年ENSO对全球陆地及中国降水的影响[J].科学通报,1999.2,44 (3):315-320]
    [52]Shi Yuguang. A Study on the Spatial-Temporal Distributions of A real Precipitation and Water Vapor over Xinjiang[D]. Nanjing University of Information Science & Technology,2008[史玉光.新疆区域面雨量及空中水汽时空分布规律研究[D].南京信息工程大学,2008]
    [53]Zhao Ling, An Shazhou, Yang Lianmei, Ma Yufen, Zhang Guangxing. Study on PrecipitableWater and Precipitation Conversion Efficiency in Urumqi during the Period of 1976-2007[J]. Arid Zone Research,2010.5,27(3):433-437[赵玲,安沙舟,杨莲梅,马玉芬,张广兴.1976-2007年鸟鲁木齐可降水量及其降水转化率[J].干旱区研究,2010.5,27(3):433-437]
    [54]Li Shuai, Xie Guohui,He Qing,Li Xiangyu. Research on Precipitation, Precipitable Water and the Precipitation Conversion Efficiency of Altay Prefecture[J].2008.8,30(4):675-680[李帅,谢国辉,何清,李祥余.阿勒泰地区降水量、可降水量及降水转化率分析[J].冰川冻十,2008.8,30(4):675-680
    [55]汪晓滨,李淑日,游来光等.北京冬夏降水系统中云水量及其统计特征分析[J].应用气象学报,2001,12(增刊):107-112
    [56]李霞,张广兴.天山可降水量和降水转化率的研究[J].中国沙漠,2003,23(5):509-513
    [1]Karl, T. R., Trenberth, K. E.,2003:Modern Global Climate Change. Science 302,1719-1723
    [2]Smith and Reynolds,2005, National Climatic Data Center http://www.ncdc.noaa.gov/oa/ncdc.html
    [3]政府间气候变化专门委员会.气候变化2007自然科学基础[M],2007:P5
    [4]政府间气候变化专门委员会.气候变化2007自然科学基础[M],2007:P103
    [5]政府间气候变化专门委员会.气候变化2007自然科学基础[M],2007:P106]
    [6]2000—WMO-服务的50年2006年5月23日[搜集于2009.06.20]http://streaml.cma.gov.cn/info_unit/ReadNews.asp?NewsID=364
    [7]政府间气候变化专门委员会.气候变化2007自然科学基础[M],2007:P105
    [8]政府间气候变化专门委员会.气候变化2007自然科学基础[M],2007:P107
    [9]IPCC.Climate Change,2001, Third assessment report [R]. WG. I., The scientific basis. Houghton, J. T. et al. CabridgeUniversity Press,2001:881]
    [10][详见IPCC第四次报告11.3.1章节]
    [11]政府间气候变化专门委员会.气候变化2007自然科学基础[M],2007:P41]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700