用户名: 密码: 验证码:
盾叶薯蓣内生菌的分离鉴定及2株分离菌代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物内生菌(endophyte),是指部分或全部生活史中寄居在健康植物组织内部,对宿主植物不造成明显损伤,合成大量活性产物的微生物。1993年Stierle等首次从红豆杉(Taxus brevifolia)植物内分离得到一株能合成抗癌物质紫杉醇的内生真菌(Taxomyces andreanae),这也提示内生菌能够合成宿主植物的次生代谢产物。近年来,研究者先后从数十种药用植物内生菌的培养物中得到了与宿主植物或其它植物相同或相似的活性成分,包括生物碱类(alkaloids)、甾类(steroids)、萜类(terpenoids)、醌类(quinones)、黄酮类(flavonoid)和肽类(peptides)等。这预示着内生菌将成为药用植物的潜在替代资源,为解决某些药用植物过度消耗、制药工业所致环境污染和化学合成药的副作用等问题提供了新途径。
     盾叶薯蓣(Dioscorea zingiberensis C. H. Wright)为薯蓣科(Dioscoreaceae)薯蓣属(Dioscorea)单子叶植物,多年生缠绕性藤本,是提取激素类药物的原材料薯蓣皂苷元的主要药源植物。前人研究显示,盾叶薯蓣植物内生真菌Fusarium菌株代谢产物具有较强的抗菌和刺激宿主细胞合成薯蓣皂苷元的能力,这预示相关内生菌在盾叶薯蓣植物的种植、加工和薯蓣皂苷元的生物转化等方面有一定的应用价值。
     本研究选取砂质和粘质土壤栽培盾叶薯蓣植物的地下茎核心区组织,贴片培养,共分离出48株内生菌,进行了形态结构、生理生化及相关分子生物学鉴定;Bacillus为两种土壤栽培植株的内生优势菌群,Bacillus subtilis所占比例最高。研究发现,内生Fusarium sp. SWM3菌株的发酵液蛋白提取物具有广谱的抗G+和G-细菌的活性并对癌细胞具有显著的毒性。同时,本研究首次获得一株产薯蓣皂苷元类似物的内生B. subtilis SWB8菌株,从其代谢产物中分离并鉴定出薯蓣皂苷元类似物和p-1,3-1,4-葡聚糖酶,二者对癌细胞具有显著的选择性细胞毒性,其中,p-1,3-1,4-葡聚糖酶还具有广谱的抗细菌和真菌的活性。
     1.盾叶薯蓣内生菌的分离和鉴定
     选取砂质和粘质土壤栽培植株的地下茎核心区组织,用纯培养的方法分离并鉴定出48株菌,包括46株细菌和2株真菌,分别属于Bacillus、Staphylococcus、Mesorihizobium、Tsukamurella、Citrobacter、Fusarium6个属。沙质土壤栽培植株的内生细菌数量明显高于粘质土壤植株(33:13),其中B. subtilis为两种土壤栽培植株的内生优势菌种(18:48)。内生B.subtilis菌株可生长于蛋白胨、高氏(Gause)和查氏(Czapek)等培养基,且对Staphylococcus等非B. subtilis分离株具有强的抑制作用。有趣的是,内生Staphylococcus细菌同样占有很高比例(9:48),并且多与B. subtilis分布于同一个植株组织的水平断面上。上述内生菌株的成功分离,填补了盾叶薯蓣植物内生细菌研究的空白,为研究有益菌株及盾叶薯蓣植物与内生菌之间的关系打下了良好的基础。
     2. Fusarium sp. SWM3菌株代谢产物及生物活性的研究
     Fusarium sp. SWM3菌株发酵液蛋白提取物显示了广谱的抗G+和G-细菌的活性,尤其对金黄色葡萄球菌(17.64±0.6mm)和粪肠球菌(19±1.0mm)抑制效果最为明显,但对白色假丝酵母菌和新型隐球菌无抑制作用。
     甲基噻唑基四唑(MTT)和流式细胞(FCM)分析显示,蛋白提取物具有明显的诱导人肺腺癌细胞(A549)凋亡的能力,其IC5o值为10.9μg/mL。A549细胞的凋亡与蛋白提取物的浓度成正相关,随着提取物诱导浓度(1.2、2.4、3.6、4.8、6.0μg/mL)的增加,A549细胞凋亡率由0.76%增加至4.29%,而晚期凋亡和坏死率由对照的8.42%增加至20.9%,增幅显著。蛋白提取物处理的A549细胞表现出明显的形态变化,如细胞间隙变宽,细胞变圆、皱缩、脱落等,但未见细胞碎裂和胞质起泡现象。Fusarium sp. SWM3菌株有可能成为一种潜在的抗生素或抗肿瘤药物的来源。
     3. Bacillus subtilis SWB8菌株代谢产物及生物活性的研究
     Bacillus subtilis SWB8分离株为革兰氏阳性芽孢杆菌,形成充满内生孢子的单股长链状菌丝或孢子囊结构,需氧或兼性需氧生长,能够利用硝酸盐或亚硝酸盐,生长温度10~50℃(适温32℃),pH6.0-9.0,耐受9.0%NaCl,液体发酵时产生丰富的泡沫。
     1)β-1,3-1,4-葡聚糖酶的鉴定和生物活性
     基于有机物萃取、硫酸铵盐析、凝胶色谱、SDS-PAGE和质谱分析,B. subtilis SWB8发酵液蛋白提取物被分离出5个保留时间分别为31.46、32.36、41.26、43.48和52.6 min的蛋白条带(70、56、40、30和25 kDa);3个蛋白组分(40、30和25 kDa)的部分氨基酸序列与B. cereus (GB:AAK16547)β-1,3-1,4-葡聚糖酶的氨基酸序列相同,被鉴定为β-1,3-1,4-葡聚糖酶。3个蛋白组分拥有相同的氨基酸序列(SAQTYGYGLYEVR),其它氨基酸序列位于B. cereus菌株p-1,3-1,4-葡聚糖酶Ala71到Arg118之间,这提示它们来自于相同β-1,3-1,4-葡聚糖酶前体蛋白的裂解碎片,分别拥有41.26、43.48和52.6 min的保留时间。
     β-1,3-1,4-葡聚糖酶具有广谱的抗细菌和真菌的活性,尤其对粪肠球菌(21.8±0.3mm)、大肠杆菌(19.0±1.0mm)、白色假丝酵母菌(22.5±0.6mm)和新型隐球菌(24±1 mm)等临床致病菌具有较强的抑制作用。
     MTT和FCM分析显示,p-1,3-1,4-葡聚糖酶有显著的抑制A549细胞增殖的能力,其IC5o值是11.5μg/mL。A549细胞的早期凋亡率与p-1,3-1,4-葡聚糖酶浓度成正相关,细胞的早期凋亡率由正常对照的4.43%增加至19.2μg/mL的43.1%,而晚期凋亡和坏死率由2.57%增加至14.7%,增幅显著。在β-1,3-1,4-葡聚糖酶的诱导下,A549细胞表现出明显的形态变化,如细胞间隙变宽、变圆、起泡、皱缩和核凝结等。相反,β-1,3-1,4-葡聚糖酶对人骨髓间质干细胞(MSCs)并无明显作用。
     结果显示,B. subtilis SWB8菌株及代谢产物β-1,3-1,4-葡聚糖酶有可能成为一个潜在的抗菌和抗癌药物的来源。
     2)薯蓣皂苷元类似物的鉴定和生物活性
     B. subtilis SWB8发酵液有机相萃取物在200-280 nm和304 nm处具有与标准薯蓣皂苷元相同的紫外吸收峰,并显示出相似的波形。薄层层析显示,萃取物与薯蓣皂苷元Rf值相近(Rf=0.49、0.46)。红外光谱数据显示,萃取物和薯蓣皂苷元在4500~500 cm-1的范围内存在大量相同的官能团。质谱数据显示,萃取物和薯蓣皂苷元有相同的先驱离子(m/z437[M+Na]+、453[M+H2O+Na]+、475、495和569)和碎片离子(m/z 158.6和302.6),提示萃取物具有薯蓣皂苷元相同的骨架结构。然而,与薯蓣皂苷元的碎片离子(m/z 182.5、214.4、225.5、252.7、270.8、347.7、396.5和425.2)相比较,萃取物也产生了不同的碎片离子(m/z 305.3、321.2、337.1、358.2、371.9、377.8和379.8),这提示二者结构存在部分差异。氢谱数据显示,萃取物和薯蓣皂苷元在1.5-5.5 ppm范围内有相对应的氢的信号。综合上述数据,B. subtilis SWB8发酵液有机萃取物被鉴定为薯蓣皂苷元类似物(简称类似物),糖苷配基(骨架结构)的分子式为C27H42O3。
     抗菌检测显示,类似物具有一定的抑制细菌生长的能力。
     MTT试验显示,薯蓣皂苷元类似物对A549细胞有显著的选择性抑制作用。A549细胞的抑制率与类似物的浓度成正相关。类似物超过一定的浓度(17.78μg/mL)对MSCs细胞具有一定的细胞毒性,它对MSCs细胞的IC50值(28.8μg/mL)远大于对A549细胞的IC50值(13.09μg/mL).FCM分析显示,用不同浓度类似物(0、2.54、7.62和12.7μg/mL)诱导细胞,A549细胞的早期凋亡率由对照组的3.59%增加至24.4%,而晚期凋亡和坏死率仅由5.44%增加至10.2%。相反,MSCs细胞变化不明显。共聚焦显微镜观察,类似物诱导的A549细胞发生细胞凋亡的形态变化,如细胞间隙变宽、变圆、起泡、皱缩和核凝结等。薯蓣皂苷元类似物主要以诱导凋亡的方式抑制A549细胞,也暗示薯蓣皂苷元类似物可能是一种理想的抗癌药物和植物甾体类物质的替代资源。
     B. subtilis SWB8菌株在发酵盾叶薯蓣植物生产薯蓣皂苷元方面有重要的应用价值,另一方面,对内生细菌(原核生物)合成宿主植物代谢产物及类似物的机制的研究也具有重要的价值。
Endophytes, the microorganisms colonized in the internal tissues of living plants without causing apparent symptoms of disease, synthesize numerous bioactive compounds. In 1993, Stierle and colleagues firstly isolated paclitaxel-producing endophytic fungi from Pacific yew lead to a concept that there is possibility endophytes may produce secondary metabolites of plant. Resent years, more and more bioactive natural products with the same or similar construct of host metabolites, including alkaloids, steroids, terpenoids, quinones, flavonoids, peptides, etc. were obtained from endophytes which isolated from dozens of medicinal plants. These researches indicate that endophytes have gradually become potential alternative sources of medicinal plants. It also provides a new way against over-harvesting of medicinal plants, environmental pollution of drug industry and adverse effects of chemosynthesis drugs.
     Dioscorea zingiberensis C. H. Wright that belongs to the family Dioscoreaceae, is the medicinal twining monocotyledonae served as the main source of diosgenin that is an important precursor of steroidal drugs. Previously studies demonstrated that endophytic Fusarium strains from D zingiberensis produce active metabolites and stimulate the diosgenin synthesis of host cells which shows the potential value that the endophytes applied in planting, pre-processing and biological transformation of diosgenin.
     Endophytes were isolated from inner tissues of D. zingiberensis tuber which were planted in the sandy and clay soil, respectively. Bacillus subtilis isolates were the predominant strains in the inner tissues of the plants from either types of soil. All of the 48 endophytic strains were identified by using morphological, physiological, biochemical and molecular biological methods. We have isolated a Fusarium sp. strain SWM3, and the protein extracts showed broad spectrum antibacterial activity. More interestingly, we have isolated a B. subtilis strain SWB8 that producing diosgenin analogue which is the host secondary metabolite. Both of the (3-1,3-1,4-glucanase and the diosgenin analogue secreted by strain SWB8 showed selective cytotoxicity to cancer cell lines. Besides, the bacterial P-1,3-1,4-glucanase also showed spectrum antimicrobial activities against both bacteria and fungi.
     1. Isolation and identification of endophytes
     The inner tissues of D. zingiberensis tuber which planted in sandy and clay soil were collected. Based on pure culture method,48 strains were isolated, including 46 bacteria and 2 fungi, belonged to genus Bacillus, Staphylococcus, Mesorihizobium, Tsukamurella, Citrobacter and Fusarium, respectively. The results showed that the number of endophytes isolated in sandy soil plants was much more than that in clay soil plants (33:13). B. subtilis isolates were the predominant strains in the inner tissues of the plant (18:48). These isolates could grow on peptone, Gause and Czapek medium, and significantly inhibited the growth of other isolates, for instance, the Staphylococcus. But interestingly, the number of Staphylococcus isolates was more than prediction (9:48), and these strains usually co-distributed with B. subtilis isolates in the same cross-section of the plant tissues. These findings made a breakthrough of endophytic bacteria in Dioscorea and also laid a foundation for the further studying of the interaction between endophytes and their plant host.
     2. The biologic activity of protein extracts of endophytic Fusarium sp. SWM3
     The protein extracts of Fusarium sp. SWM3 strain shows broad spectrum antibacterial activity. Especially, Staphylococcus aureus (17.6±0.6 mm) and Enterococcus faecalis (19±1.0 mm) were very sensitive to the extracts. In contrast, the inhibition effect could not be observed in Candida albicans and Cryptococcus neoformans.
     Methyl thiazolyl tetrazolium (MTT) and flow cytometry (FCM) assay showed that the protein extracts induced apoptosis of A549 cells with IC50 value of 10.9μg/mL. The percentage of apoptotic A549 cells treated with the extracts was significantly increased from 0.76% of the control to 4.29% in a dose dependent manner. Meanwhile, the late apoptotic or necrotic ratio was also significantly increased from 8.42% to 20.9%. Morphological changes, such as intercellular space widening, cell rounding, cytoplasm condensation, crimple and abscission were observed but without cytoplasmic blebbing. Fusarium sp. SWM3 strain could be a potential source of desirable antibiotics or anticancer compounds.
     3. Biologic activity of the metabolites of endophytic Bacillus subtilis SWB8
     B. subtilis SWB8 was a gram positive, endospore-forming aerobe or facultative aerobe with growth temperature range from 10℃to 50℃(optimum temperature,32℃), pH range from 6 to 9, salinity range 0.5-9.0%(NaCl) and formed rich foam in liquid medium.
     1) Identification and bioactivity of (3-1.3-1,4-glucanase
     Based on gel permeation chromatography (GPC) and SDS-PAGE methods, protein extracts of B. subtilis strain SWB8 showing five peaks with the retention time of 31.46, 32.36,41.26,43.48 and 52.6 min in GPC were separated to five different gel bands of approximately 70,56,40,30,25 kDa. By mass spectrometry, the partial amino acid sequences of 40,30 and 25 kDa proteins showed the same composition with P-1,3-1,4-glucanase of B. cereus (GB:AAK16547). All the three separated proteins were identified as P-1,3-1,4-glucanase, suggesting that the (3-1,3-1,4-glucanase precursor would be cleaved into three fragments of 40,30 or 25 kDa with the retention time of 41.26,43.48 or 52.6 min in GPC, respectively.
     β-1,3-1,4-glucanase showed broad antimicrobial spectrum activity. E. faecalis (21.8±0.3 mm), E. coli (19.0±1.0 mm), C. albicans (22.5±0.6 mm) and C. neoformans (24±1 mm) were more sensitive toβ-1,3-1,4-glucanase.
     MTT and FCM assay showed significantly anticancer activity against A549 cells ofβ-1,3-1,4-glucanase with IC50 value of 11.5μg/mL. The percentage of apoptotic A549 cells treated with different concentrations ofβ-1,3-1,4-glucanase was significantly increased from 4.43% of the control to 43.1% of 19.2μg/mL in a dose dependent manner. Meanwhile, the late apoptotic or necrotic ratio was also increased from 2.57% to 14.7%. Morphological changes, such as intercellular space widening, shrinking, cytoplasmic blebbing, cytoplasm condensation and abscission were observed. In contrast, these changes could not be observed in the treated human bone marrow mesenchymal stem cells (MSCs).
     Perhaps, the B. subtilis strain SWB8 or itsβ-1,3-1,4-glucanase product could be a potential source of desirable antimicrobial and anticancer compounds.
     2) Identification and bioactivity of diosgenin analogue
     The organic extract of B. subtilis SWB8 showed the same UV absorption peak in the range of 200-280 nm and 304 nm and similar waveform as the standard diosgenin. Thin-laver chromatography showed the similar Rf values of the extract (0.49) and standard diosgenin (0.46). Infrared (IR) spectra showed that the extract and standard diosgenin exhibited almost the same stretching and bending vibration and thus revealed the same functional groups in the region from 4500 to 500 cm-1. Electrospray ionization mass spectrum (ESI-MS) of the extract produced an major ion peak of m/z 437.1 [M+Na]+, which is consistent with 437.3 [M+Na]+of diosgenin, both of the samples formed precursor ion groups of m/z 453[M+H2O+Na]+,475,495,569 and fragment ions of m/z 158.6 and 302.6, suggesting the same molecular structural moiety. However, extract formed other different fragment ions of m/z 305.3,321.2,337.1, 358.2,371.9,377.8 and 379.8 in comparing with diosgenin fragment ions of m/z 182.5, 214.4,225.5,252.7,270.8,347.7,396.5 and 425.2. These differences are probably due to the same molecular skeleton but different latent chains. Nuclear magnetic resonance ('H-NMR) spectroscopy analysis showed that the extract and standard diosgenin produced the same hydrogen signals in the range of 1-5.5 ppm, suggesting the similar molecular structure between the analogue and the standard diosgenin.
     These results validated that B. subtilis SWB8 extract possesses the similar molecular structure of diosgenin and could be designated as diosgenin analogue (C27H42O3).
     Diosgenin analogue showed certainly antibacterial activity.
     The results of MTT assay showed selective cytotoxicity of diosgenin analogue that significantly acted on A549 cells. The inhibition ratio of A549 cells indicated positive correlation with the increasing concentrations of diosgenin analogue. A549 cells were intensely inhibited by the extract with an IC50 value of 13.09μg/mL, compared with the higher tolerance of MSCs cells that the IC50 value of 28.81μg/mL
     FCM analysis showed that the percentage of apoptotic A549 cells which treated with different concentrations of the extract (0,2.54,7.62 and 12.7μg/mL) was significantly increased from 3.59% to 24.4% in a dose dependent manner, but the late apoptotic or necrotic ratio was only increased from 5.44% to 10.2%. In contrast, these changes could not be observed in MSCs cells.
     Laser scanning confocal microscopy (LSCM) analysis indicated that the apoptosis-like morphologic changes, such as cell shrink, cytoplasmic blebbing and condensation were occurred on induced A549 cells. These results reconfirmed that diosgenin analogue inhibited A549 cells mainly by inducing apoptosis. Perhaps, diosgenin analogue from B. subtilis SWB8 could be a potential source of desirable anticancer compounds and alternative plant steroids.
     B. subtilis SWB8 has an application value in pre-processing of diosgenin production. On the other hand, it also could be a valuable model to study the mechanism that endophytic bacteria synthesizing the host secondary metabolite.
引文
[1]沈康荣.黄姜开发与种植技术.第一版.武汉:湖北科学技术出版社.2005,2-3.
    [2]湖南省中华医药研究所编.湖南药物志(第三辑).长沙:湖南人民出版社,1979,458-459.
    [3]《浙江药用植物志》编写组.浙江药用植物志(下册).第一版.杭州:浙江科学技术出版社,1980.1559-1572.
    [4]吴征镒,路安民,汤彦承,陈之端,李德铢著.中国被子植物科属综论.第一版.北京:科学出版社,2003,210-216.
    [5]刘承来,陈延镛,唐易芳.盾叶薯蓣中甾体皂苷的分离与鉴定.植物学报,1984,26(3):283-289.
    [6]刘承来,陈延镛.鲜盾叶薯蓣中原始皂苷的分离与鉴定.植物学报,1985,27(1):68-74.
    [7]钱士辉,袁丽红,杨念去,等.盾叶薯蓣中甾体类化合物的分离与结构鉴定.中药材,2006,29(11):1174-1176.
    [8]杨如同,唐世蓉,潘福生,赵爱明,等.药源植物盾叶薯蓣甾体皂苷及皂苷元的研究进展.中国野生植物资源,2007.26(4):1-5.
    [9]方启程.天然药物化学研究.第一版.北京:中国协和医科大学出版社,2006,9:570-606.
    [10]Kuroda M, Mimaki Y, Yokosuka A, Sashida Y, et al. Cytotoxic cholestane glycosides from the bulbs of Ornithogalum saundersiae. J. Nat. Prod,2001,64(1): 88-91.
    [11]Mimakl Y, Kuroda M, Fukasawa T, Sashiha Y. Steroidal saponins from the bulbs of Allium karataviense. Chem pharm Bull,1999,47(6):738-743.
    [12]四川医学院编写组.中草药学.第一版.北京:人民卫生出版社,1979,409-411.
    [13]高锦明.植物化学.第一版.北京:科学出版社,2003,284-289.
    [14]Cayen MN, Dvornik D. Effect of diosgenin on lipid metabolism in rats. J Lipid Res,1979,20:162-174.
    [15]Ulloa N. Nervi F. Mechanism and kinetic characterization of the uncoupling by plant steroids of the biliary cholesterol from bile salt output. Biochim Biophys Acta, 1985,837:181-189.
    [16]Thewes A, Parslow RA, Coleman R. Effect of diosgenin on biliary cholesterol transport in the rat. Biochem J,1993,291:793-798.
    [17]Accatino L, Pizarro M, Solis N, Koenig CS. Effects of diosgenin, a plant-derived steroid, on bile secretion and hepatocellular cholestasis induced by estrogens in the rat. Hepatology,1998,1:129-140.
    [18]Liagre B, Vergne-Salle P, Corbiere C, Charissoux JL, et al. Diosgenin, a plant steroid, induces apoptosis in human rheumatoid arthritis synoviocytes with cyclooxygenase-2 overexpression. Arthritis Research Therapy,2004,4:373-383.
    [19]Schulman JH, Rideal EK. Proc. Roy. Soc. B,1937,122:29.
    [20]Dourmashkin RR, Dougherty RM, Harris RJC. Electron microscopic observations on rous sarcoma virus and cell membranes. Nature,1962,194:1116-1119.
    [21]Bangham AD, Horne RW, Glauert AM, Dingle JT, et al. Action of saponin on biological cell membranes. Nature,1962,196:952-955.
    [22]Moalic S, Liagre B, Corbieare C, Bianchi A, et al. A plant steroid, diosgenin, induces apoptosis, cell cycle arrest and COX activity in osteosarcoma cells. FEBS Letters,2001,506:225-230.
    [23]Corbiere C, Liagre B, Terro F, Beneytout JL. Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells. Cell Research,2004,14(3):188-196.
    [24]Kuhajda FP. Fatty acid synthase and human cancer:new perspectives on its role in tumor biology. Nutrition,2000,16:202-208.
    [25]Kuhajda FP. Fatty acid synthase and cancer:new application of an old pathway. Cancer Res,2006,66:5977-5980.
    [26]Bandyopadhyay S, Zhan R, Wang Y, Pai SK, et al. Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res, 2006,66:5934-5940.
    [27]De SE, Brusselmans K, Heyns W, Verhoeven G, et al. RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res, 2003,63:3799-3804.
    [28]Pizer ES, Jackisch C, Wood FD, Pasternack GR, et al. Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res, 1996,56:2745-2747.
    [29]Chiang CT, Way TD, Tsai SJ, Lin JK. Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS Letters, 2007,581:5735-5742.
    [30]Shishodia S, Aggarwal BB. Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, I kappa B kinase activation and NF-kB-regulated gene expression. Oncogene,2006,25:1463-1473.
    [31]Liu MJ, Wang Z, Ju Y, Wong RN, et al. Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis. Cancer Chemother Pharmacol,2005,55:79-90.
    [32]Raju J, Patlolla JMR, Swamy MV, Rao CV. Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. Cancer Epidemiol, Biomarkers Prev,2004,13:1392-1398.
    [33]Dyer J, Wood IS, Palejawa A, Ellis A. et al. Expression of monosaccharide transporters in intestine of human diabetes. Am J Physiol Gastrointest Liver Physiol,2002,282(2):G241-G248.
    [34]McAnuff MA, Omoruyi FO, Gardner M. Asemota HN, et al. Alterations in intestinal morphology of streptozotocin induced diabetic rats fed Jamaican bitter yam (Dioscorea polygonoides) sapogenin extract. Nutr Res,2003,23(11): 1569-1577.
    [35]McAnuff MA. Harding WW, Omoruyi FO, Jacobs H. et al. Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam (Dioscorea polygonoides). Food Chem Toxicol, 2005,43(11):1667-1672.
    [36]Ruales J, Nair BM. Properties of starch and dietary fiber in raw and processed quinoa (Chenopodium quinoa Wild) seeds. Plant Foods Hum Nutr,1994,45(3): 223-246.
    [37]Li H, Huang W, Wen Y, Gong G, et al. Anti-thrombotic activity and chemical characterization of steroidal saponins from Dioscorea zingiberensis C.H. Wright. Fitoterapia,2010,81(8):1147-1156.
    [38]季宇彬.中药有效成分药理与应用.第一版.哈尔滨:黑龙江科学技术出版社,1994,176-177.
    [39]Jeon JR, Lee JS, Lee CH. Kim JY, et al. Effect of ethanol extract of dried Chinese yam (Dioscorea batatas) flour containing dioscin on gastrointestinal function in rat model. Arch Pharm Res,2006,29(5):348-353.
    [40]Cayen M, Dvornik D. Effect of diosgenin on lipid metabolism in rats. J Lipid Res, 1979,20(2):162-174.
    [41]Omoruyi FO, McAnuff-Harding MA, Asemota HN. Faecal lipids and minerals in s treptozotocin-induced diabetic rats fed Bitter yam (Dioscorea polygonoides) steroidal sapogenin extract. Pak J Pharm Sci,2006,19(4):269-275.
    [42]McAnuff MA, Omoruyi FO, Asemota HN, Morrison EY. Plasma and liver lipid distributions in streptozotocin-induced diabetic rats fed sapogenin extract from wild yam. Nutr Res,2002,22(12):1427-1434.
    [43]Bell RC, Carlson JC, Storr KC, Herbert K, et al. High fructose feeding of streptozotocin-diabetic rats is associated with increased cataract formation and increased oxidative stress in the kidney. Br J Nutr,2000,84(4):575-582.
    [44]Cho WC. Chung WS, Lee SKW, Leung AW, et al. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur J Pharmacol,2006,550(1-3):173-179.
    [45]McAnuff MA, Omoruyi FO. Morrison EY, Asemota HN. Hepatic function enzymes and lipid peroxidation in streptozotocin-induced diabetic rats fed Bitter yam (D. polygonoides) steroidal sapogenin extract. Diabetol Croat,2003,32(1): 17-23.
    [46]Kang M, Naito M, Tsujihara N. Osawa T. Sesamolin inhibits lipid peroxidation in rat liver and kidney. J Nutr,1998,128:1018-1022.
    [47]郭春秋,方元久.BR-120(云苔素内酯)对几种主要作物的增产效果.常德师范学院学报(自然科学版),2000,12(2):81-83.
    [48]李维举,温世明.30%乙烯利·云苔素内酯在人参生产中的应用试验.农业与技术,2004,24(4):86-87.
    [49]丁志遵,唐世蓉,秦慧贞,等.甾体激素药源植物.第一版.北京:科学出版社,1983.
    [50]林吉文.甾体化学基础.第一版.北京:化学工业出版社,1989,99-156.
    [51]Wang A, Hao X, Zhao L. New technology study of saponin extract from Dioscorea zingiberensis C. H. Wright. Chemical Industry and Engineering,2006,23: 559-561.
    [52]Saunders R, Cheetham PSJ, Hardman R. Microbial transformation of crude fenugreek steroids. Enzyme Microb Technol,1986,8:549-555.
    [53]Aradhana, Rao AR, Kale RK. Diosgenin-a growth stimulator of mammary gland of ovariectomized mouse. Indian J Exp Biol,1992,30:367-370.
    [54]鲁鑫焱,赵怀清.薯蓣皂甙元的提取与分离分析方法.沈阳药科大学学报,2003,20(6):458-465.
    [55]Zhao X, Xie XJ, Chen ST, Yang ZH. Technique and countermeasure of dealing with wastewater of D. Zingiberensis wright industry in the source water of South-water-to-North Project. Safety Environ. Eng,2004,11:14-17.
    [56]毕亚凡,汪建华,严向东.黄姜皂素废水厌氧处理间歇试验研究.工业水处理.2005,25(9):45-48.
    [57]黄进,张肇煜,李林.黄姜提取薯蓣皂甙元及葡萄糖的工艺研究.农业工程学报,2001,17(6):119-122.
    [58]赵书申,柳卫莉.盾叶薯蓣的黑曲霉发酵和薯蓣皂甙配基的结构.武汉大学学 报,1988(2):93-98.
    [59]黄进,张肇煜,李林.黄姜提取薯蓣皂甙元及葡萄糖的工艺研究.农业工程学报,2001,17(6):119-122.
    [60]Liu B, Wang YH, Hu XC, Yu HS, et al. Purification of dioscinase from microorganism. J. Microbiol,2005,6:15-19.
    [61]Huang W, Zhao H, Ni J, Zuo H, et al. The best utilization of D. zingiberensis C.H. Wright by an eco-friendly process. Bioresource Technology,2008,99:7407-7411.
    [62]Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology,1997,43 (10):895-914.
    [63]Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev,2003,67:491-502.
    [64]Simon L, Bousquet J, Levesque RC, Lalonde M. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature,1993, 363:67-69.
    [65]Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, et al. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol,2004,6:1244-1251.
    [66]Dalton DA, Kramer S, Azios N, Fusaro S, et al. Endophytic nitrogen fixation in dune grasses(Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiology Ecology,2004,49:469-479.
    [67]Vose PB. Developments in non-legume N2-fixing systems. Can. J. Microbiol, 1983,29:837-850.
    [68]Cavaicante VA, D€obereiner J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil,1988,108:23-31.
    [69]Dobereiner J, Reis VM, Paula MA, Olivares F. Endophytic diazotrophs in sugarcane, cereals, and tuber plants//Palacios R, Mora J, Newton WE, Eds. New Horizons in Nitrogen Fixation. Boston:Kluwer Academic,1993, pp.671-676.
    [70]Sevilla M, Burris RH, Gunapala N, Kennedy C. Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif_mutant strains. Mol. Plant Microbe Interactions,2001,14:358-366.
    [71]Lima E, Boddey RM, D€obereiner J. Quantification of biological nitrogen fixation associated with sugarcane using a 15N aided nitrogen balance. Soil Biol. Biochem, 1987,19:165-170.
    [72]Zou WX, Tan RX. Advances in Plant Science pp 183-190, Vol.2 China Higher Education Press, Beijing. Microbiology,1999,72:4970-4977.
    [73]Ogas J. Gibberellins. Current Biology,2000,10:R48.
    [74]Hamayun M, Khan SA, Iqbal I, Ahmad B, et al. Isolation of a gibberellin-producing fungus(penicillium Sp. MH7) and growth promotion of crown daisy (Chrysanthemum coronarium). J microbiol Biotechnol,2010,20: 202-207.
    [75]Tan RX, Zou WX. Endophytes:a rich source of functional metabolites. Nat Prod Rep,2001,18:448-459.
    [76]Forchetti G, Masciarelli O, Alemano S, Alvarez D, et al. Endophytic bacteria in sunflower (Helianthus annuus L.):isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol,2007, 76:1145-1152.
    [77]Ryu CM, Farag MA, Hu CH, Reddy MS, et al. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci,2003,100:4927-4932.
    [78]Pirttila AM, Joensuu P, Pospiech H, Jalonen J, et al. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol. Plantarum,2004,121:305-312.
    [79]Fuentes-Ramirez LE, Caballero-Mellado J, Sepulveda J, Martinez-Romero E. Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol,1999,29:117-128.
    [80]Stierle A, Strobel G, Stierle D. Taxo 1 and taxane p roduction by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science,1993,5105:214-216.
    [81]Li JY, Strobel GA, Sidhu R, Hess WM, et al. Endophytic taxol-producing fungi from bald cypress Taxodium distichum. Microbiology,1996,142:2223-2226.
    [82]Pandi M. Manikandan R. Muthumary J. Anticancer activity of fungal taxol derived from Botryodiplodia theobromae Pat., an endophytic fungus, against 7,12 dimethyl benz(a)anthracene (DMBA)-induced mammary gland carcinogenesis carcinogenesis in Sprague dawley rats. Biomedicine & Pharmacotherapy,2010,64: 48-53.
    [83]Rangarajulu Senthil Kumaran, Johnpaul Muthumary, Byung-Ki Hur. Taxol from phyllosticta citricarpa, a leaf spot fungus of the angiosperm citrus medica. Journal of bioscience and bioengineering,2008,1:103-106.
    [84]Sonaimuthu V, Krishnamoorthy S, Johnpaul M. Taxol producing endophytic fungus Fusarium culmorum SVJM072 from medicinal plant of Tinospora cordifolia-a first report. Journal of Biotechnology,2010,150S:S1-S576.
    [85]Zhao J, Shan T, Mou Y, Zhou L. Plant-derived bioactive compounds produced by endophytic fungi. Mini-Reviews in Medicinal Chemistry,2011,11(2):159-168.
    [86]Shweta S, Zuehlke S, Ramesha BT, Priti V, et al. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. Ex Arn (Icacinaceae) produce camptothecin,10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry,2010,71:117-122.
    [87]Kusari S, Ziihlke S, Spiteller M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod,2009,1:2-7.
    [88]Kusari S, Lamshoft M, Zuhlke S, Spiteller M. An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod,2008,2:159-162.
    [89]曹晓冬,李家儒,周立刚,徐利剑,等.ELISA方法测定滇重楼内生真菌中薯蓣皂苷元的含量.天然产物研究与开发,2007,19:1020-1023.
    [90]Xu L, Zhou L, Zhao J, Li J, et al. Fungal endophytes from Dioscorea zingiberensis rhizomes and their antibacterial activity. Lett Appl Microbiol,2008,46:68-72.
    [91]Xu LJ, Zhao JL, Huang YF, Peng YL, et al. Beauvericin produced by an endophytic fungus Fusarium redolens isolated from Dioscorea zingiberensis and its antibacterial activity. Journal of Biotechnology,2008,136S:143.
    [92]Zhang R, Li P, Xu L, Chen Y, et al. Enhancement of diosgenin production in Dioscorea zingiberensis cell culture by oligosaccharide elicitor from its endophytic fungus Fusarium oxysporum Dzfl7. Nat Prod Commun,2009,4(11): 1459-1462.
    [93]Moore FP, Barac T, Borremans B, Oeyen L, et al. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site:the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol,2006, 29:539-556.
    [94]Sturz A, Kimpinski J. Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of rootlesion nematodes in the potato root zone. Plant Soil,2004,262:241-249.
    [95]Siciliano SD, Fortin N, Mihoc A, Wisse G, et al. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol,2001,67:2469-2475.
    [96]Ricard G. Horizontal gene transfer from bacteria to rumen ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics, 2006,7:22.
    [97]Wang Y, Xiao M, Geng X, Liu J, et al. Horizontal transfer of genetic determinants for degradation of phenol between the bacteria living in plant and its rhizosphere. Applied Microbiology and Biotechnology,2007,77:733-739.
    [98]Wenzl P, Wong L, Kwang-won K, Jefferson RA. A Functional Screen Identifies Lateral Transfer of b-Glucuronidase (gus) from Bacteria to Fungi. Molecular Biology and Evolution,2005,22(2):308-316.
    [99]Rogers MB, Patron NJ, Keeling PJ. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria. BMC Biology,2007,5:26.
    [100]Schlieper D, Oliva MA, Andreu JM, Lowe J. Structure of bacterial tubulin BtubA/B:evidence for horizontal gene transfer. Proc. Natl. Acad. Sci,2005,102: 9170-9175.
    [101]Guljamow A, Jenke-Kodama H, Saumweber H, Quillardet P, et al. Horizontal gene transfer of two cytoskeletal elements from a eukaryote to a cyanobacterium. Curr Biol,2007,17:R757-759.
    [102]Sambrook J, Russell DW. Molecular Cloning:A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press,2000,161-170.
    [103]Yu H, Zhang L, Li L, Zheng C, et al. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiological Research, 2010,165:437-449.
    [104]Branda SS, Gonzalez-Pastor JE, Yehuda SB, Losick R, et al. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci,2001,98:11621-11626.
    [105]Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods,1983, 65:55-63.
    [106]Zhou W, Jin ZX, Wan YJ. Apoptosis of human lung adenocarcinoma A549 cells induced by prodigiosin analogue obtained from an entomopathogenic bacterium Serratia marcescens. Appl Microbiol Biotechnol,2010,88:1269-1275.
    [107]夏其昌,张祥民,周仲驹,阮宏强等.蛋白质电泳技术指南.第一版.北京:化学工业出版社.2007,23-33.
    [108]Lu H, Zou WX, Meng JC, Hu J, et al. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungusin Artemisia annua, Plant Science. 2000,151:67-73.
    [109]Izumi H, Anderson IC, Killham K, Moore ER. Diversity of predominant endophytic bacteria in European deciduous and coniferous trees. Can J Microbiol,2008,54:173-179.
    [110]Asraful Islam SM, Math RK, Kim JM, Yun MG, et al. Effect of plant age on endophytic bacterial diversity of Balloon flower(Platycodon grandiflorum) root and their antimicrobial activities. Curr Microbiol,2010,61(4):346-356.
    [111]Moore FP, Barac T, Borremans B, Oeyen L, et al. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site:the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol,2006, 29:539-556.
    [112]Tiwari R, Kalra A, Darokar MP, Chandra M, et al. Endophytic bacteria from ocimum sanctum and their yield enhancing capabilities. Curr Microbiol,2010,60: 167-171.
    [113]Wilhelm E, Arthofer W, Schafleitner R, Krebs B. Bacillus subtilis an endophyte of chestnut (Castanea sativa) as antagonist against chestnut blight(Cryphonectria parasitica). Plant Cell Tissue Organ Cult,1998,52:105-108.
    [114]Fatope MO, Zeng L, Ohayaga JE, Shi G, et al. Selectively cytotoxic diterpenes from Euphorbia poisonii. J. Med. Chem,1996,39:1005-1008.
    [115]Gilvan PF, Lucas FR, Camila RS, Celisa CT, et al. Biochemical and structural characterization of a (3-1,3-1,4-glucanase from Bacillus subtilis 168. Process Biochemistry,2011,46(5):1202-1206.
    [116]Planas A. Bacterial 1,3-1,4-beta-glucanases:structure, function and protein engineering. Biochimica et Biophysica Acta,2000,1543(2):361-382.
    [117]Prapagdee B, Kuekulvong C, Mongkolsuk S. Antifungal potential of extracellular metabolites produced by streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences,2008,4(5):330-337.
    [118]H(?)j PB, Fincher GB. Molecular evolution of plant beta-glucan endohydrolases. The Plant Journal,1995,7(3):367-379.
    [119]Kagan BL. Mode of action of yeast killer toxins:channel formation in lipid bilayers. Nature,1983,302:709-711.
    [120]White JH, Butler AR, Stark JR. Kluyveromyces lactis toxin does not inhibit yeast adenyl cyclase. Nature,1989,341:666-668.
    [121]Peypoux F, Bonmatin JM, Wallach J. Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology,1999,51(5):553-563.
    [122]Heerklotz H, Seelig J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. European Biophysics Journal,2007,36(4-5):305-314.
    [123]Kim SY. Kim JY, Kim SH, Bae HJ, et al. Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Letters 2007,581(5):865-871.
    [124]Vollenbroich D, Pauli G, Ozel M, Vater J. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Applied and Environmental Microbiology,1997,63(1):44-49.
    [125]Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals,1997,25(3):289-297.
    [126]Kakinuma A, Hori M, Isono M, Tamura G, et al. Determination of amino acid sequence in surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis. Agricultural & Biological Chemistry,1969,33:971-972.
    [127]Majumdar MK, Thiede MA, Hayneseorth SE, Haynesworth SE, et al. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. Journal of Hematotherapy Stem Cell Research, 2000,9(6):841-848.
    [128]Malerba I, Casati S, Diodovich C, Parent-Massin D, et al. Inhibition of CFU-E/BFU-E and CFU-GM colony growth by cyclophosphamide, 5-fluorouracil and taxol:development of a high-throughput in vitro method. Toxicology in vitro,2004,18(3):293-300.
    [129]Rabah SO. Acute taxol nephrotoxicity:histological and ultrastructural studies of mice kidney parenchyma. Saudi journal of Biological Sciences,2010,17(2): 105-114.
    [130]Bangham AD, Home RW, Glauert AM, Dingle JT, et al. Action of saponin on biological cell membranes. Nature,1962,196:952-955.
    [131]Li XX, Davis B, Haridas V, Jordan UG, et al. Proapoptotic triterpene electrophiles (avicins) form channels in membranes:cholesterol dependence. Biophysical Journal,2005,4:2577-2584.
    [132]Smith D. Regulation and change in symbiosis. Ann.Bot,1987,60:115.
    [133]Young DH, Michelotti EL, Swindell CS, Krauss NE. Antifungal properties of taxol and various analogues. Experientia,1992,48:882-885.
    [134]Chang CT, Fan MH, Kuo FC. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. JAgric Food Chem,2000,48:3210-3216.
    [135]Maget-Dana R, Peypoux F. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology,1994,87:151-174.
    [136]Phae CG, Shoda M, Kubota H. Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganisms. J. Ferment. Bioeng,1990,69:1-7.
    [137]de Matos Nogueira E, Vinagre F, Masuda HP, Vargas C, et al. Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genet. Mol Biol,2001,24:199-206.
    [138]Bird CW, Lynch JM, Pirt FJ, Reid WW, et al. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature,1971,230:473-474.
    [139]Tippelt A, Jahnke L, Poralla K. Squalene-hopene cyclase from Methylococcus capsulatus (Bath):a bacterium producing hopanoids and steroids. Biochim Biophys Acta,1998,2:223-132.
    [140]Mayberry WR, Smith PF. Structures and properties of acyl diglucosylcholesterol and galactofuranosyl diacylglycerol from Acholeplasma axanthum. Biochim Biophys Acta,1983,752:434-443.
    [141]Haque M, Hirai Y, Yokota K, Mori N, et al. Lipid profile of Helicobacter spp.: presence of cholesteryl glucoside as a characteristic feature. JBacteriol,1996,178: 2065-2070.
    [142]Haque M, Hirai Y, Yokota K, Oguma K. Steryl glycosides:a characteristic feature of the Helicobacter spp.?. J Bacteriol,1995,177:5334-5337.
    [143]Hirai Y, Haque M, Yoshida T, Yokota K, et al. Unique cholesteryl glucosides in Helicobacter pylori:composition and structural analysis. J Bacteriol,1995,177: 5327-5333.
    [144]Ben-Menachem G, Kubler-Kielb J, Coxon B, Yergey A, et al. A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci,2003,100: 7913-7918.
    [145]Schroder NW, Schombel U, Heine H, Gobel UB, et al. Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J Biol Chem,2003,278:33645-33653.
    [146]Stubs G, Fingerle V, Wilske B, Gobel UB, et al. Acylated cholesteryl galactosides are specific antigens of borrelia causing lyme disease and frequently induce antibodies in late stages of disease. J Biol Chem,2009,284:13326-13334.
    [147]Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic evolution in light of gene transfer. Mol Biol Evol,2002,19:2226-2238.
    [148]Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet,2008,9:605-618.
    [149]Frickey T, Kannenberg E. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer. Environ Microbiol,2009,11:1224-1241.
    [150]Lane N, Martin W. The energetics of genome complexity. Nature,2010,467: 929-934.
    [151]Kunst F, Ogasawara N, Moszer I, Albertini AM, et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature,1997,390: 249-256.
    [152]Kaul S, Koo HL, Jenkins J, Rizzo M, et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408:796-815.
    [153]Pontiroli A, Rizzi A, Simonet P, Daffonchio D, et al. Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco. Appl Environ Microbiol 2009,75:3314-3322.
    [154]Lopez D, Kolter R. Functional microdomains in bacterial membranes. Genes Dev, 2010,24:1893-1902.
    [155]Adham NZ, Zaki RA, Naim N. Microbial transformation of diosgenin and its precursor furostanol glycosides. World Journal of Microbiology and Biotechnology,2009,25:481-487.
    [156]Zhang CX, Wang YX, Yang ZH, Xu MH. Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of Discorea zingiberensis. Fuel,2006,85:2034-2040.
    [157]Fernandes P, Cruz A, Angelova B, Pinheiro HM, et al. Microbial conversion of steroid compounds:recent developments. Enzyme Microbiology and Technology, 2003,32:688-705.
    [158]Song J, Tao WY, Chen WY. Ultrasound-accelerated enzymatic hydrolysis of solid leather waste. Journal of Cleaner Production,2008,16:591-597.
    [159]Harding KG, Dennis JS, Blottnitz HV, Harrison STL. A life-cycle comparison between inorganic and biological catalysis for the production of biodiesel. Journal of Cleaner Production,2007,16:1368-1378.
    [160]Wang YN, Deng HF, Fu YY, Yu HS, et al. Comparison of biotransformation of dioscin to diosgenin. Journal of Dalian Polytechnic University,2009,28:94-97.
    [161]Zhu YL, Huang W, Ni JR, Liu W, et al. Production of diosgenin from Dioscorea zingiberensis tubers through enzymatic saccharification and microbial transformation. Applied Microbiology and Biotechnology,2009,88(5): 1409-1016.
    [162]Dong Y, Teng H, Qi S, Liu L, et al. Pathways and kinetics analysis of biotransformation of Dioscorea zingiberensis by Aspergillus oryzae. Biochemical Engineering Journal,2010,52:123-130.
    [163]Zhang C, Chen Y, Zheng Y, Wu S, et al. Preparation of diosgenin in by microbial transformation of Dioscorea panthaica by YM32139 strain. Journal of Microbiology,2007,27:31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700