用户名: 密码: 验证码:
高盐条件下耐盐真菌的次生代谢产物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高盐微生物是一类极端微生物,可生存在高盐环境中。由于其生存环境的特殊性,可能具有独特的次生代谢途径,产生特有的次生代谢产物,是一类重要的天然产物研究资源。特别是将生物学与化学相结合,在生物学菌种分离纯化,菌种鉴定以及发酵条件摸索的基础上,利用化学手段对高盐微生物次生代谢产物的化学多样性进行研究,从高盐微生物次生代谢产物中寻找抗肿瘤抗菌等活性的先导化合物。
     本论文从采自海南文昌清澜红树林保护区和广西山口红树林保护区的红树植物的叶和根部样品中获得3株耐盐天才真菌,从来源于海南临高附近海域的蕾二岐灯芯柳珊瑚的筛选到1株耐盐天才真菌;对这4株菌在盐胁迫条件下产生的次生代谢产物进行了系统研究,并就盐胁迫对耐盐天才真菌次生代谢产物化学多样性的影响做了探讨。
     研究内容主要包括以下3个方面:
     1.耐盐天才真菌的筛选。从来源于红树林高盐环境的样品中分离纯化获得133株耐盐真菌。以P388肿瘤细胞增殖抑制、抑菌试验作为生物活性筛选模型,TLC薄层色谱和HPLC指纹图谱作为化学筛选模型,采用生物活性和化学评价相结合的集成筛选模式,最终获得3株耐盐天才真菌。从来源于海南临高附近海域的蕾二岐灯芯柳珊瑚的筛选到1株耐盐天才真菌。
     2.盐胁迫诱导下的4株耐盐天才真菌次生代谢产物的研究。对耐盐天才真菌进行发酵条件摸索,如培养基、发酵天数、盐度等,选择最佳培养条件进行大发酵,获得发酵浸膏。通过薄层色谱、硅胶柱色谱、Sephadex LH-20柱色谱、反相高效液相色谱等分离方法,从盐胁迫诱导的4株耐盐天才真菌次生代谢产物中,共分离得到78个单体化合物;应用波谱解析(UV, IR, NMR, MS, X-Ray等)和化学方法鉴定了72个单体化合物的化学结构。其中新化合物23个:从耐盐真菌赭曲霉Aspergillus ochraceus P-Z高盐条件代谢产物中获得了7个新的毗嗪酰胺类生物碱和线性四肽(3-9);从枝孢样枝孢霉霉Cladosporium cladosporioides PXP-49高盐条件代谢产物中得到8个新的不饱和脂肪酸(酯)类化合物(12-19);从产黄青霉Penicillium chrysogenum PXP-55高盐条件代谢产物中得到5个新的神经鞘胺醇糖苷类化合物(30-34)和2个新的2-吡啶酮类生物碱(35,36);从耐盐真菌Wallemia sebi PXP-89高盐条件代谢产物中得到1个新的吡啶生物碱(44)。已知化合物的结构类型涉及苯的衍生物、脂肪酸类化合物、大环内酯类、甾体类化合物、呋哺衍生物和环二肽类化合物等。运用体外生物活性筛选模型,评价了新化合物的肿瘤细胞增殖抑制活性和抑菌活性。抑菌活性结果表明:吡嗪酰胺类和线性四肽类化合物4、8和9,神经鞘胺醇糖苷类化合物31,毗啶衍生物44对产气杆菌均具有抑制作用,MIC分别为40、20.1、18.9、1.72和76.7,μM;化合物8对金黄色葡萄球菌具有抑制作用(MIC,98μM),且这些化合物均为含氮化合物。
     3.初步评价了卤盐胁迫对耐盐真菌次生代谢产物化学多样性的影响。使用对代谢产量、TLC、HPLC指纹图谱及生物活性作比较等方法,对高盐胁迫条件下6株耐盐真菌次生代谢产物的特点做了分析,利用该方法得到了一株在高盐条件下产生亮氨酸途径合成的线性四肽(8,9)的耐盐真菌(P-Z),证实了微生物的次生代谢存在卤盐效应。
     综上所述,通过对耐盐天才真菌在高盐胁迫条件下次生代谢产物的系统研究,证实了盐胁迫能够增加耐盐微生物的化学多样性,产生新的活性含氮化合物,并为海洋药用微生物资源的开发提供了重要的参考。
Halotolerant microbe is one of extreme microorganism which can survive in high salt environment. Because of its specificity of living environment, halotolerant microbe may have unique secondary metabolic pathways and produce the unique secondary metabolites. Halotolerant microbe is an important class of resources for natural products. By integrated biological and chemical screening methods, talented strains with potential to produce chemically diverse secondary metabolites could be easily discovered. Further, the lead compounds with antitumor and antibiotic activity might be found from microbial secondary metabolites through optimization of the culture condition under high salt stress.
     This dissertation focuses on the new secondary metabolites of halotolerant fungi under high salt stress, and includes the following three parts:
     1. Screening for the halotolerant talented strains.
     From salt sediments and plants of mangrove forest in Hainan and Guangxi provinces,133 strains of halotolerant fungi have been isolated. The EtOAc ex tracts of these fungi cultured in 10% NaCl were evalassesed with the combinat ory method based on chemical and bioactive screening. Three of them were co nfirmed as halotolerant talented strains with cytotoxicity or antibiotic activities.
     2. Study on secondary metabolites of four halotolerant talented strains und er high salt stress
     Through the research of effect of different conditions, optimization of ferm entation conditions under high salt stress were determined. Four strains were fe rmented separately, then the whole broths were extracted with EtOAc in order to get active extracts. These extracts would be subjected to extensive silica gel column chromatography, Sephadex LH-20 and HPLC purifications. After proce ssing,78 compounds were isolated from these four halotolerant talented strains under salt stress. And 72 compound structures were identified by means of s pectroscopic analysis (such as UV, IR, NMR, MS, X-Ray, etc) and chemical methods. Among them,23 compounds were new types, including seven new p yrazinamide and linearity tetrapeptide (3-9) obtained from Aspergillus ochraceus P-Z cultured in a nutrient-limited medium containing 10% salts, eight new un saturated fatty acids and esters (12-19) from Cladosporium cladosporioides PXP -49 cultured in a nutrient-suffient medium containing 10% salts, five new cereb rosides with odd numbered carbon atom fatty acid (30-34) and two 2-pyridone alkaloids (35,36) from Penicillium chrysogenum PXP-55 cultured in a nutrien t-suffient medium containing 10% salts, and one pyridine alkaloids (44) from Wallemia sebi PXP-89 cultured in a actinomycete medium containing 10% salts. The known compounds are involved in phenolic compounds, sterols, macrocyc lic lactones, furan derivatives, and diketopiperazines. Compounds 4,8,9,31 an d 44 showed antibiotic activities against E. aerogenes with MIC values being 4 0,20.1,18.9,1.72 and 76.7μM, respectively. Compound 8 displayed antibiotic activity against S. aureus with MIC value 98μM.
     3. Preliminary evaluation of halide salt effects on chemical diversity of sec ondary metabolites from halotolerant strains
     To further research the halide salt effects on chemical diversity of seconda ry metabolites of halotolerant strains, the secondary metabolites of 6 halotolera nt strains under different culture conditions containing different halide salts at different concentration were studied by comparing their production, TLC, HPLC and bioactivities. The strain P-Z was found that it produced pyrazinamide dim ers (8,9) cultured in a hypersaline medium. In addition, it was established tha t different halide salts would affect the secondary metabolites of halotolerant st rains.
     In summary, new compounds with bioactivity can be obtained from secon dary metabolites of halotolerant strains. Above studies provided a good exampl e for obtaining structurally new and bioactive compounds from halotolerant stra ins.
引文
[1] Khmel, I. A. J. Genet. 2005, 41, 968-984.
    [2] Schlictman, D.; Kubo, M.; Shankar, S. J. Bacteriol. 1995,177,2469-2474.
    [3] Tamburini, E.; Mastromei, G. Res. Microbiol. 2000,151, 179-182.
    [4] Koch, A. L. J. Theor. Biol. 1993,160,1-21.
    [5] Mejanelle, L.; Lopez, J. F.; Gunde-Cimerman, N. and Grimalt, J. O. J. Lipid Res.2001, 42, 352-358.
    [6] Cordell, G.A.; Quinn-Beattie, M. L. and Farnsworth, N. R. Phytother. Res. 2001,75,183
    [7] Schuetz, A.; Junker, J.; Leonov, A. et al. Nat. Rev. Drug Discov. 2009, 8, 69-85
    [8] Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2004, 67,1216-1238
    [9] Frenz, J. L.; Kohl, A. C; Kerr, R. G Expert Opinion Therapeutic Patents, 2004,14, 17-33
    [10] Nat Prod Rep 2005-2010
    [11] Wang,W. L. et al, Zhu,W. M. J. Nat. Prod. 2007, 70, 1558
    [12] Wang, W. L. et al, Zhu, W. M. J. Antibiot. 2007, 60, 603
    [13] Zheng, J. K. et al, Zhu,W. M. J. Nat. Prod. 2010, 73,1133.
    [1]刘颖,刘峰.不同地点的三种红树共附生微生物分离及生物活性差异的研究.安徽农业科学,2008,36:6364-6366.
    [2]刘培培,王文良,顾谦群,等.耐盐真菌Aspergillus variecolor B217产生的烃基苯甲醛衍生物及其细胞毒活性.中国海洋大学学报,2008,38:58-589.
    [3]诸妲,胡宏友,卢昌义.盐度对药用红树植物老鼠簕种子萌发和幼苗生长的影响.厦门大学学报(自然科学版).2008,47:132-135.
    [4]朱天骄,崔承彬,顾谦群等.海洋微生物的分离培养及抗肿瘤活性初筛.青岛海洋大学学报,2002,32:123-126.
    [1]Abrell, L. M., et al, Chloro Polyketides from the Cultured Fungus (AspergiUus) Separated from a Marine Sponge, Tetrahedron Letters,1996,37,2331-2334.
    [2]Pilli, R. A., et al, First Total Synthesis of Aspinolide B, a New Pentaketide Produced by Aspergillus ochraceus,J. Org. Chem.2000,65,5910-5916
    [3]Guzma, F. S. D., et al, New Diketopiperazine Metabolites from the Sclerotla of, Aspergillus Ochraceus, J. Nat. Prod,1992,55,931-939.
    [4]Guzma, F. S. D., et al, Ochrindoles A-D:New Bis-Indolyl Benzenoids from the Sclerotia of Aspergillus Ochraceus NRRL 3519, J. Nat. Prod,1994,57,634-639.
    [5]Cui, C.-M., et al, Benzodiazepine Alkaloids from Marine-Derived Endophytic Fungus Aspergillus ochraceus, Helvetlca Chimica Acta,2009,92,1366-1370
    [6]Sugie, Y., et al, A New Antibiotic CJ-17,665 from Aspergillus ochraceus, J. Antibiotics, 2001, 54,911-916.
    [7]Cui, C.-M., et al,7-Nor-ergosterolide, a Pentalactone-Containing Norsteroid and Related Steroids from the Marine-Derived Endophytic Aspergillus ochraceus EN-31, J. Nat. Prod. 2010,73,1780-1784
    [8]Kusumi, T.; Fujita, Y.; Ohtani, I.; Kakisawa, H. Anomaly in the modified Mosher's method: absolute configurationsof some marine cembranolides. Tetrahedron Lett.1991,32, 2923-2926.
    [9]Adam, W.; Bhushan, V.; Fuchs, R. and Kirchgassners U. Functionalized 1,2-Dioxetanes as Potential Phototherapeutic Agents:The Synthesis of Carboxylate, Carbonate, Carbamate, and Ether Derivatives of 3-(Hy droxymeth yl)-3,4,4-trimeth y1-1,2-dioxetane. J. Org. Chem. 1987,52,3059-3062.
    [10]Rahman, M. M.; Sarker, S. D.; Byres, M. and Gray, A. I. New Salicylic Acid and Isoflavone Derivatives from Flemingia paniculata. J. Nat. Prod.2004,67,402-406.
    [11]Jin-Rui Dai, Brad K. Cart, Philip J. Sidebottom, et al. Circumdatin G, a New Alkaloid from the Fungus Aspergillus ochraceus. J. Nat. Prod.,2001,64,125-126.
    [1]Jacyno, J. M., et al, Isocladosporin, a Biologically Active Isomer of Cladosporin from Cladosporium Cladosporioides,J. Nat. Prod,1993,56,1397-1401.
    [2]Wrigley, S. K., et al, Novel Reduced Benzo[j]fluoranthen-3-ones from Cladosporium cf. cladosporioides with Cytokine Production and Tyrosine Kinase Inhibitory Properties, J. Antibiotics,2001,54,479-488.
    [3]Kobayashi, E., et al, Calphostins (UCN-1028), Novel and Specific Inhibitors of Protein Kinase C, J. Antibiotics,1989, XLⅡ,1470-1474
    [4]Hirota, A., et al, New Plant Growth Regulators, Cladospolide A and B, Macrolides Produced by Cladosporium cladosporioides, Agric. Biol Chem.,1985,49,731-735
    [5]Dang, H. T.; Lee, H. J.; Yoo, E. S.; Shinde, P. B.; Lee,Y. M.; Hong, J.; Kim, D. K. and Jung, J. H. Anti-inflammatory Constituents of the Red Alga Gracilaria Werrucosa and Their Synthetic Analogues. J. Nat. Prod.2008,71,232-240.
    [6]Cameron, J. S.; Darren, A.; Valerie, S. B.; et al. Novel polyketide metabolites from a species of marine fungi. J. Nat. Prod.2000,63,142-145
    [7]Kobayashi, Y.; Nakano, M.; Kumar, G. B. and Kishihara, K. Efficient Conditions for Conversion of 2-Substituted Furans into 4-Oxygenated 2-Enoic Acids and Its Application to Synthesis of (+)-Aspicilin, (+)-Patulolide A, and (-)-Pyrenophorin. J. Org. Chem.1998,63, 7505-7515.
    [8]Pawar, A. S.; Sankaranarayanan S. and Chattopadhyay, S. Chemoenzymatic Synthesis of Ferrulactone Ⅱ and (2E)-9-Hydroxydecenoic Acid. Tetrahedron:Asymmetry 1995,6, 2219-2226.
    [9]Morgan, B.; Oehlschlager, A. C.; Stokes, T. M. Enzyme reactions in apolar solvents. The resolution of branched and unbranched 2-alkanols by porcine pancreatic lipase. Tetrahedron, 1991,47,1611.
    [10]Hamburger, M.; Handa, S. S.; Cordell, G. A.; Kinghorn, A. D. And Farnsworth, N. R. Plant Anticancer Agents, XLIII. (E,E)-7,12-Dioxo-Octadeca-8,10-Dien-1- Oic Acid (Ostopanic Acid), A Cytotoxic Fatty Acid from Ostodes Paniculata. J. Nat. Prod.1987,50,281-283.
    [11]Cameron, J. S.; Darren, A.; Valerie, S. B.; et al. Novel polyketide metabolites from a species of marine fungi. J. Nat. Prod.2000,63,142-145
    [12]Lu, K.,J.; Chen, C., H.; Hou, D., R.; et al. Synthesis and stereochemical assignment of (t)-Cladospolide D. Tetrahedron 2009,65,225-231.
    [13]Xavier, F.; Maria, E. V. A.; Jullian, J. C.; Reynald, H.; et al. Synthesis and structure determination of iso-cladospolide B. Tetrahedron Letters 2001,42,2801-2803.
    [14]Kawagishi, H.; Katsumi, R.; Sazawa, T.; Mizuno, T.; Hagiwara, T.; Nakamura, T. Cytotoxic steroids from the mushroom A. blazi Phytochemistry 1988,27,2777-2779.
    [1]Stierle, D. B.; Stierle, A. A.; Hobbs, J. D.; Stokken, J.; Clardy, J. Berkeleydione and Berkeleytrione, New Bioactive Metabolites from an Acid Mine Organism. Org. Lett.2004,6, 1049-1052.
    [2]Lee, I.-S.; Elsohly, H. N.; Croom, E. M.; Hufford, C. D. Microbial Metabolism Studies of the Antimalarial Sesquiterpene Artemisinin. J. Nat. Prod.1989,52,337-341.
    [3]Gao, Q.; Leet, J. E.; Thomajsa, S. T.; Matson, J. A. Crystal Structure of Trichodimerol. J. Nat. Prod.1995,55,1817-1821.
    [4]Kim, H. J.; Lee, I.-S. Microbial Metabolism of the Prenylated Chalcone Xanthohumol. J. Nat. Prod.2006,69,1522-1524.
    [5]Bringmann, G.; Lang, G.; Gulder, T. A. M.; Tsuruta, H.;Muhlbacher, J.; Maksimenka, K.; Steffens, S.; Schaumann, K.; Stohr,R.; Wiese, J.; Imhoff, J. F.; Perovic-Ottstadt, S.; Boreiko, O.; Muller,W. E. G. The first sorbicillinoid alkaloids, the antileukemic sorbicillactones A and B, from a sponge-derived Penicillium chrysogenum strain Tetrahedron 2005,61,7252-7265.
    [6]Wang, W. L.; Wang, Y.; Tao, H. W.; Peng, X. P.; Liu, P. P.; Zhu, W. M. Cerebrosides of the Halotolerant Fungus Alternaria raphani Isolated from a Sea Salt Field J. Nat. Prod.2009, 72,1695-1698.
    [7]Shu, R. G.; Wang, F. W.; Yang, Y. M.; Liu, Y. X.; Tan, R. X. Antibacterial and Xanthine Oxidase Inhibitory Cerebrosides from Fusarium sp.IFB-21, an E ndophytic Fungus in Quercus variabilis. Lipids 2004,39,667-673.
    [8]Kusumi, T.; Fujita, Y.; Ohtani, I.; Kakisawa, H. Anomaly in the modified Mosher's method: absolute configurationsof some marine cembranolides. Tetrahedron Lett.1991,32, 2923-2926.
    [9]Takaya, Y.; Furukawa, T.; Miura, S.; Akutagawa, T.; Hotta, Y.; Ishikawa, N.; Niwa, M. J. Antioxidant Constituents in Distillation Residue of Awamori Spirits Agric. Food Chem.2007, 55,75-79.
    [10]Otsuka, H.; Takeda, Y.; Hirata, E.; Shinzato, T.; Bando, M. Glochidiolide, lsoglochidiolide, Acuminaminoside, and Glochidacuminosides A-D from the Leaves of Glochidion acuminatum Chem. Pharm. Bull.2004,52,591-596.
    [11]Bose, D. S.; Narsaiah, A. V. An efficient asymmetric synthesis of (S)-atenolol:using hydrolytic kinetic resolutionq Bioorg. Med. Chem.2005,13,627-630.
    [12]Agerbirk, N.; Warwick, S. I.; Hansen, P. R.; Olsen, C. E. Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes Phytochemistry 2008,69,
    [13]Pedras, M. S. C.; Yu, Y. Mapping the sirodesmin PL biosynthetic pathway:a remarkable intrinsic steric deuterium isotope effect on a 1H NMR chemical shift determines β-proton exchange in tyrosin Can. J. Chem.-Rev. Can. Chim.2009,87,556-562.
    [14]Shaltanova, E. N.; Gerus, I. I.; Kukhar, V. P. A new synthetic route to 3-polyfluoroalkyl-containing pyrroles Tetrahedron Lett.2008,49,1184-1187.
    [1]Frank, M., Kingston, E., Jeffery, J. C., Moss, M. O., Murray, M., Simpson, T. J., Sutherland, A., Walleminol and walleminone, novel caryophyllenes from the toxigenic Fungus Wallemia sebi. Tetrahedron Lett.,1999,40,133-136.
    [2]Kogej, T., Gostincar, C., Volkmann, M., Gorbushina, A. A., Gunde-Cimerman, N., Mycosporines in extremophilic fungi-novel complementary osmolytes? Environ. Chem., 2006,3,105-110.
    [3]Takahashi, I., Maruta, R., Ando, K., Yoshida, M., Iwasaki, T., Kanazawa, J., Okabe, M., Tamaoki, T., UCA1064-B, a new antitumor antibiotic isolated from Wallemia sebi: production, isolation and structural determination. J.Antibiot.,1993,46,1312-1314.
    [4]Westerwelle, U., Esser, A., Risch, N., (3-Aminoketone als schlusselverbindungen zur synthese von pyridinen:Einneuartiger, leistungsfahiger zugang zu kondensierten bi- und terpyridinen. Chem. Ber.,1991,124,571-576.
    [5]Thornton, D. A. and Jones, M. E. B., GB 948494 (1964).
    [6]Kusumi, T., Ohtani, I., Determination the absolute configuration of biologically active compounds by the modified Mosher's method. In The Biology-Chemistry Interface; Cooper, R., Snyder, J. K., Eds., Marcel Dekker:New York,1999; pp 103.
    [7]Awano, K. I., Yanai, T., Watanabe, I., Takagi, Y., Kitahara, T., Mori, K., Volatile components of Wisteria flowers. Part Ⅱ. Synthesis of all four possible stereoisomers of 1-phenyl-2,3-butanediol and both enantiomers of 3-hydroxy-4-phenyl-2-butanone to determine the absolute configuration of the natural constituents. Bios. Biotechnol. Biochem.,1995,59, 1251-1254.
    [8]Guo, Z. W., Goswami, A., Mirfakhrae, K. D., Patel, R. N., Asymmetric acyloin condensation catalyzed by phenylpyruvate decarboxylase. Tetrahedron:Asymm.1999,10,4667-4675.
    [9]Yang, S. W., Cordell, G. A., Metabolism studies of indole derivatives using a staurosporine producer, Streptomyces staurosporeus. J. Nat. Prod.1997,60,44-48.
    [10]Burton, G., Ghini, A. A., Gros, E. G.,13C NMR spectra of substituted indoles. Magn. Reson. Chem.1986,24,829-831.
    [11]Lee, C. Y., Chew, E. H., Go, M. L., Functionalized aurones as inducers of NAD(P)H: quinone oxidoreductase 1 that activate AhR/XRE and Nrf2/ARE signaling pathways: Synthesis, evaluation and SAR. Eur. J. Med. Chem.2010,45,2957-2971.
    [12]Sandham, D. A., Barker, L., Beattie, D., Beer, D., Bidlake, L., Bentley, D., Butler, K. D., Craig, S., Farr, D., Ffoulkes-Jones, C., Fozard, J. R., Haberthuer, S., Howes, C., Hynx, D., Jeffers, S., Keller, T. H., Kirkham, P. A., Maas, J. C., Mazzoni, L., Nicholls, A., Pilgrim, G. E., Schaebulin, E., Spooner, G. M., Stringer, R., Tranter, P., Turner, K. L., Tweed, M. F., Walker,C., Watsona, S. J. and Cuenoud B. M., Synthesis and biological properties of novel glucocorticoid androstene C-17 furoate esters. Bioorg. Med. Chem.2004,12,5213-5224.
    [13]Hiraoka, H., Photochemistry of methylfurans. Selectivities of ring contraction reactions. J. Phys. Chem.1970,74,574-81.
    [14]Katritzky, A. R., Law, K. W., A 13C study of hydroxymethy1 derivatives of five-membered ring heterocycles. Magn. Reson. Chem.1988,26,129-133.
    [15]Ellis, P. D., Dunlap, R. B., Pollard, A. L., Seidman, K. and Cardin, A. D., Carbon-13 Nuclear Magnetic Resonance of 5-Substituted Uracils. J. Amer. Chem. Soc.1973,95, 4398-4403.
    [16]Boux, L. J., Milligan, J. R., Archer, M. C., Base-catalyzed decomposition of N-nitrosobis(2-oxopropy1)amine. Chem. Res. Toxicol.1988,1,32-34.
    [17]Stark T., Hofmann T. J. Agric. Food Chem.2005,53,7222-7231
    [18]Lin, Z. J.; Lu, X. M.; Zhu, T. J.; Fang, Y. C.; Gu, Q. Q.; Zhu, W. M. Arch. Pharm. Res.2008, 31,1108-1114.
    [19]Wagger, J.; Grdadolnik, S. G.; Groselj, U.; et al. Tetrahedron:Asymmetry 2007,18, 464-475
    [20]Jayatilake, G. S.; Thornton, M. P.; Leonard, A. C.; Grimwade, J. E.;Baker, B. J. J. Nat. Prod. 1996,59,293-296.
    [21]Faouzi, F.; Victoriano, V.; Jose, L. S.; Ricardo, R. J. Nat. Prod.2003,66,1299-1301.
    [22]Kahela P., Halmekoski J., Reijonen M. Farmaseuttinen Aikakauslehti 1976,85,15-18。
    [1]Bergman J, Brynolf A. Synthesis of Chrysogine, a Metabolite of Penicillium chrysogenum and some related 2-substituted 4-(3H)-Quinazolinones.Tetrahedron,1990,46,1295-1310
    [2]Melanie K, Olov S, Timm A. Antibiotics in the chemical communication of fungi. Chem. Comm. Fungi,2004,59,816-823.
    [3]Nozawa, K.; Nakajima, S. Isolation of radicicol from Penicillium luteoaurantium and meleagrin, a new metabolite, from Penicillium meleagrinum.J. Nat. Prod.1979,42,374-377.
    [4]Butnick, N. Z.; Yager, L. N. Hermann, T.E. Mutants of Aspergillus nidulans blocked at an early stage of sporulation secrete an unusual metabolite. J. Bacteriol,1984,160,533-540
    [1]Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D. W., Bokesch H., Kenney S., Boyd M. R. New colorimetric cytotoxicity assay for anticancer drug screening. J. Natl. Cancer Inst.,1990,82,1107-1112.
    [2]Voigh W. Sulforhodamine B assay and chemosensitivity. Methods Mol. Med.2005,110, 39-48.
    [3]Mossman T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assay. J. Immunol. Meth.1983,65,55-63.
    [4]Zaika, L. L. Spices and herbs:their antimicrobial activity and its determination. J. Food Safety,1988,9,97-118
    [1]杨丽源,李治滢,李绍兰,周斌,陈有为 一平浪盐矿耐盐真菌的种群调查云南大学学报(自然科学版),2002,24(6):465-468
    [2]Oren, A. Halophilic Microorganisms and their Environments. In:COLE Series 5. Kluwer Academic Publishers, Dordrecht, Boston, London,2002,575 pp.
    [3]宋福强.微生物生态学.化学工业出版社,2008,9.
    [4]Toh, T. H.; Kayingo, G. V.; Merwer, M. J; Kilian, S. G.; Hallsworth, J. E.; Hohmann, S. Implications of FPSI deletion and membrane ergosterol content for glycerol efflux from Saccharomyces cerevisiae. FEMS Yeast Research 2001, 1,205-211.
    [5]Turk, M.; Mejanelle, L.; Sentjurc, M.; Grimalt, J. O., Gunde-Cimerman, N.; Plemenitas, A. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 2004,8,53-61.
    [6]Almagro, A.; Prista, C.; Castro, S.; Quintas, C.; Madeira-Lopes, A.; Ramos, J.; Loureiro-Dias, M. C. Effects of salts on Debaryomyces. hansenii and Saccharomyces cerevisiae under stress conditions. International Journal of Food Microbiology.2000,56,191-197.
    [7]Papouskova, K. and Sychrova, H. The coaction of osmotic and high temperature stresses results in a growth improvement of Debaryomyces hansenii cells. International Journal of Food Microbiology 2007.118:1-7.
    [8]Norkrans, B. Studies on marine occurring yeasts:growth related to pH, NaCl concentration and temperature. Archives of Microbiology 1966.54,374-392.
    [9]Norkrans, B. and Kylin, A. Regulation of the potassium to sodium ratio and of the osmotic potential in relation to salt tolerance in yeasts. Journal of Bacteriology 1969.100,836-845.
    [10]Brown, A.D. Compatible solute and extreme water stress ineukaryotic microor- ganisms. Adv. Microb. Phys.1978,17,181-242.
    [9]Hohmann, S. Shaping up:the response of yeast to osmotic stress. In:Yeast Stress Responses (Hohmann, S. et al., Eds.),1997 pp.101-146. Springer, New York.
    [10]Adler, L., Blomberg, A. and Nilsson, A. Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. Bacteriol.1985,162,300-306.
    [11]Luyten, K., Albertyn, J., Skibbe, W.F., Prior, B.A., Ramos, J., Thevelein,J.M. and Hohmann, S. FPS1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptakeand e(?)ux and is inactive under osmotic stress.1995,14,1360-1371.
    [12]Blomberg, A. and Adler, L. Physiology of osmotolerance in fungi. Adv. Microb. Phys.1992, 33,145-212.
    [13]Socha, A. M.; Long, R. A. and Rowley, D. C. Bacillamides from a Hypersaline Microbial Mat Bacterium J. Nat. Prod.2007,70,1793-1795
    [14]Abrell, L. M.; Borgeson, B. and Crews, P. A new polyketide, secocurvularin, from the salt water culture of a sponge derived fungus. Tetrahedron Lett.,1996,37,8983.
    [15]Wang, G.-Y.-S.; Abrell, L. M.; Avelar, A.; and Borgeson, B. M. New hirsutane-based sesquiterpenes from salt water cultures of a marine sponge-derived fungus and the terrestrial fungus Coriolus consorsTetrahedron,1998,54,7335.
    [16]Numata, A.; Amagata, T.; Minoura, K.; Ito, T. Gymnastatins, novel cytotoxic metabolites produced by a fungal strain from a sponge. Tetrahedron Lett.1997,38,5675.
    [17]Amagata, T.; Minoura, K. and Numata, A. Gymnasterones, novel cytotoxic metabolite produced by a fungal strain from sponge. Tetrahedron Lett.1998,39,3773.
    [18]Amagata, T. M.; Tohgo, M.; Minoura, K. and Numata, A. Dankasterone, a new class of cytotoxic steroid produced by a Gymnascella species from a marine sponge. Chem. Commun. 1999,14,1321.
    [19]Holler, U.; Konig, G. and Wright, A. D. A new tyrosine kinase inhibitor from a marine isolate of Ulocladium botrytis and new metabolites from the marine fungi Asteromyces cruciatus and Varicosporina ramulosa. Eur. J. Org. Chem.1999,11,2949.
    [20]Takahashi, C.; Takai, Y.; Kimura, Y.; Numata, A.; Shigematsu, N. and Tanaka, H. Cytotoxic metabolites from a fungal adherent of a marine alga. Phytochemistry,1995,38,155.
    [21]Takahashi, C.; Minoura, K.; Yamada, K.; Numata, A.; Kushida, K.; Shingu, T.; Hagishita, S.; Nakai, H.; Sato, T. and Harada, H. Potent cytotoxic metabolites from a Leptosphaeria species. Structure determination and conformational analysis. Tetrahedron,1995,51,3483.
    [22]Takahashi, C.; Numata, A.; Matsumura, E.; Minoura, K.; Eto, H.; Shingu, T.; Ito, T. and Hasegawa, T. Leptosins 1 and J, cytotoxic substances produced by a Leptosphaeria sp. Physico-chemical properties and structures. J. Antibiot.1994,47,1242.
    [23]Yamada, T.; Iwamoto, C.; Yamagaki, N.; Yamanouchi, T.; Minoura, K.; Yamori, T.; Uehara, Y.; Andoh, T.; Umemura, K. and Numata, A. Leptosins M-N1, cytotoxic metabolites from a Leptosphaeria species separated from a marine alga. Structure determination and biological activities. Tetrahedron,2002,58,479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700