用户名: 密码: 验证码:
减速伤中颅内应力分布于应力波传播特点的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
头颅因外力作用而使运动受阻碍,除引起头皮、颅骨局限性创伤外,更严重的是脑组织由于惯性滞后于头颅的运动,可导致脑着力部位、脑内及脑对冲部位出现挤压、疲劳、撕裂、牵张、摩擦及切割等力学效应,造成颅脑减速伤。颅脑减速伤在创伤性颅脑损伤(Traumatic Brain Injury, TBI)中较为常见,且损伤较重,常见于交通伤和坠落伤。
     颅脑减速伤在交通事故中较为常见。是指运动的头颅突然碰撞在外物上,迫使其瞬间减速而造成的脑损伤。例如,运动着的车辆发生碰撞致其减速时车内驾乘人员的头部与车内物体发生碰撞而致伤;又如,汽车行人交通伤事故中,行人与车辆发生碰撞之后与路面发生的二次碰撞中出现的损伤。
     颅脑撞击伤生物力学的研究结果表明颅脑的内部应力响应密切关联着颅脑的损伤,因此有必要对颅内应力分布及应力波传播特性进行深入研究。在这方面,国内所做的研究较为有限。主要是因为要通过实验手段来测量撞击过程中颅内脑组织的应力分布与应力波传播特点是一项颇为困难的课题。
     1999年第三军医大学姜燕平等人设计了颅脑的二维平面光弹性模型。利用光弹性材料的特点,可以在撞击过程中通过高速摄影机拍摄模型中的光弹性条纹,并得出各部位的应力分布及应力波传播特点。该模型在创伤性颅脑损伤的研究中曾起到了重要作用。由于受到当时技术条件及测试方法方面的限制,该实验未能定量得出颅脑撞击响应特性。
     2004年美国韦恩州立大学与俄亥俄州立大学共同完成了一项非常经典的人尸体头颅枕骨撞击实验。实验前,用金属球和薄壁管制成与脑组织密度接近的标志物。撞击过程中将标志物置于大脑中,采用高速X光机(250帧/秒)对颅脑的冲击历程进行拍摄。同时在颅骨内也安装微型标志物,研究人员在对拍摄的图像进行分析之后得出了大脑中标志物相对颅骨的“8”字形运动轨迹及其规律。这是一种新的测量手段,为损伤机理的研究提供了珍贵的原始资料。但是该实验的重点是对头颅撞击过程中脑组织的位移情况进行研究,对于脑组织所受应力的分布以及应力波的传播特点则无法从该实验中得以揭示。
     目前,全世界仅有的两台用于颅脑撞击损伤生物力学研究的高速X光机均存放于美国韦恩州立大学内。根据已有的科研成果、实验条件和实际工作需要,本研究拟通过构建可视化的颅脑物理模型及其减速撞击实验平台,建立完整的颅脑减速撞击致伤实验系统,在脑组织的感兴趣部位生成气泡,采用高速摄像系统、三维运动分析软件,记录和分析在减速撞击实验过程中脑组织内气泡的体积变化过程,最终通过分析软件获取脑组织的应力分布规律和应力波传播特点。
     该实验提供了一种直观无创的颅内应力及应力波检测与分析方法,是一种无损、非接触式的测试手段,是测试理念的一种创新。通过该实验研究可望揭示颅脑减速伤的发生机制,并为颅脑减速伤的防护和诊治提供生物力学依据。
     主要研究方法和结论:
     一、构建钢化玻璃质简化颅脑物理模型。该颅脑模型取材容易,便于操作;同时由于其透明度好,对于标志物的观测具有很好的效果,可以通过高速摄像获得撞击过程中清晰的气泡变形历程,可用于定性分析减速伤的致伤机制。
     研制基于翻模技术的透明颅脑物理模型。聚碳酸酯(Polycarbonate, PC)树脂材料保证了其耐冲击性能好,同时翻模技术可以保证该模型与真人颅骨具有高度的几何相似性,可用于定量分析减速伤的致伤机制。
     二、构建了基于钢化玻璃质简化颅脑模型、基于翻模技术的具有人体几何尺寸的PC树脂材质透明颅脑模型以及基于高分子颅脑模型的三种减速撞击致伤实验平台,该平台可用于轻、中、重度颅脑撞击损伤的研究。
     通过对颅脑损伤评估标准HIC的计算,可以对撞击实验平台中产生的各种程度的颅脑撞击损伤进行量化,结合模型脑组织内气泡体积的变化、传感器的信号输出值以及相应的脑组织所受应力变化情况,从而可以将撞击过程的宏观层面与微观层面关联起来对颅脑撞击致伤的生物力学机制进行研究。
     三、以钢化玻璃质简化颅脑模型、基于翻模技术的具有人体几何尺寸的PC树脂材质颅脑模型及高分子材料颅骨模型结合压强传感器为基础,分别在减速撞击致伤实验平台进行了减速撞击实验,对减速撞击过程中颅内脑组织的应力分布及应力波传播特点进行了研究,得到以下结果:
     ①颅脑减速撞击过程中,脑组织内的应力沿撞击点往对冲点方向呈由正到负的梯度分布特点;
     ②脑组织对冲点处的应力波出现了波谷,撞击点处的应力波出现了波峰,对冲点处应力波波谷的出现要早于撞击点处应力波波峰的出现,该特点表现出了应力波在单个点位上以及点位间的传播规律;
     ③在撞击过程中应力波会在颅骨内壁发生反射,并且反射回来的应力波又会与原发性的应力波在气泡所处位置发生叠加效应,加强或削弱该点所受应力波的幅值大小,脑组织可能会在某些应力波幅值得到增强的部位上受到损伤;
     ④对冲点处的脑组织所受到的作用力主要为拉应力;撞击点处的脑组织所受到的作用力主要为压应力;而中性点处的脑组织所受到拉应力与压应力大小相当。由于脑组织及其血管的抗拉性能劣于抗压性能,因此在对冲点相对较大的拉应力作用下,颅脑更容易在对冲部位出现较为严重的损伤。初步阐明了交通事故颅脑减速伤中较为常见的颅脑“对冲伤”的力学发生机制之一;
     ⑤在对冲侧越靠近撞击点的脑组织其应力波波谷出现得相对越早;在撞击侧越靠近撞击点的脑组织其应力波波峰出现得也相对越早;
     ⑥处于撞击侧的脑组织在撞击过程中受到了持续的正压的作用;而处于对冲侧的脑组织在撞击过程中则受到了正压与负压的交替作用,尽管越是靠近中性点脑组织所受到的应力波的幅值越小,但是其应力波的频率却是增加了,这样就使得该处脑组织受到疲劳损伤的可能性大幅增加,这可能是颅脑减速撞击致伤中临床上出现的对冲侧较深层脑组织损伤的力学机制之一。
When the movement of head was suffocated due to the outside force, it could result in trauma at the local sites such as the scalp and the skull. The more serious case is that the movement of the brain tissue was lagging after that of skull. This could result in the coup site, contrecoup site and inner site of the brain tissue seriously injuried due to the mechanical effect of squeeze, fatigue, stretch, scrub and incision. This sort of injury is also called the deceleration injury and it often occurs in the traumatic brain injury (TBI) including traffic and falling injury with serious injury.
     Head decelerating impact injuries often occur in traffic accidents. It refers to the moving head impacts on an external object and slows down making the brain injuried. For example, when the moving vehicle impacts on something external to slow down then the people in the vehicle will impact on the objects in the vehicle leading to the decelerating impact injury; and in pedestrian-vehicle accidents, after the people is impacted by the vehicle and disengage from it he will then again impact on the ground resulting in the decelerating impact injury.
     In the biomechanical research of brain impacting injury, the results show that the inner stress response of the brain is closely associated with the brain injury. Therefore, it is necessary to further research the characteristics of stress distribution and the stress wave propogation in the brain. In this field, there are only a few researches in our country. The main reason is that it is a very difficult project to measure the stress distribution and the stress wave propogation of brain tissue in the skull using the experimental methods.
     In 1999, Yanping Jiang and Baosong Liu designed a planar photoelastic head model. Using the characteristics of the photoelastic material, the photoelastic stripes during the impact can be captured by the high-speed camera and then the stress distribution and the stress wave propogation in the brain can be obtained. This photoelastic head model is of important contribution to the research of traumatic brain injury. However, due to the limitations of the techniques and measuring methods at that time, the experiment did not make out the quantitative head impacting response characteristics.
     In 2004, Wayne State University and Ohio State University performed a very classical experiment to study the displacement of neutrally buoyant radio-opaque markers in cadaver brains during head acceleration. The markers were embedded in the brain tissue, then, a high-speed (250fps) bi-planar X-ray video camera was used to record the impacting process. By analyzing the video pictures, the“8”shape movement of the markers to the skull could be obtained. The research of the movements of brain tissue to the skull was the focus of the experiment but there was no pressure distribution or pressure wave propogation being detected in this experiment.
     Now, the only two high-speed X-ray video cameras in the world were in the Wayne State University. According to the researching results, actual experimental condition and the researching demands, this study prepares to set up a transparent physical brain model as well as its decelerating impact experimental platform. Then, a complete brain decelerating impact injurying experimental system is established. After this, the air bubbles are created in the brain tissue at the interested sites. The impacting process and the volume changes of the air bubbles are recorded and analyzed using the high-speed camera system and the three-dimension movement analyzing softwave. Finally, the stress distribution and the stress wave propogation of brain tissue are obtained. This experimental model provides both visuable and non-invasion methods to detect and analyze the stress distribution and the stress wave propogation of brain tissue. It is a non-contact and non-invasion measuring technique and is a new measuring concept. It is expected to disclosure the biomechanism of the brain decelerating impact using the experimental study and to provide the biomechanical basis for the defendence and diagnosis of the brain decelerating impact injury.
     The main studying methods and results are as follows:
     Ⅰ. A physical brain model with a toughened glass material is set up. This glass brain model is easy to obtain and convenient to operate. At the same time, the model is transparent enough to detect the inner markers with excellent effect. The clear changing process of the air bubbles’volume during the impacting process can be obtained using the high-speed camera system. So, this model is suit for qualitative analyzing of the biomechanics of the decelerating impact injury.
     A physical brain model based on the frame-turnover technique has been developed. PC colophony materail can provide a good property to endure impact. And the frame-turnover technique can provide a good comparability of geometry between the model and the real skull. So, this model is suit for quantitive analyzing of the biomechanics of the decelerating impact injury.
     Ⅱ. A brain decelerating impact injurying experimental platform is set up based on the toughened glass material physical brain model. This platform is suit for researching the low-grade brain decelerating impacting injury.
     A brain decelerating impact injurying experimental platform is set up based on the frame-turnover technique physical brain model. This platform is suit for researching the medium and severe brain decelerating impacting injury.
     Through the calculation of HIC, the degree of all kind brain injuries can be estimated quantitivly. Combining with the volume change of the bubbles in the brain and the stress change of the brain, the macroscopical lay and the microcosmic lay of the impact can be associated to research the biomechanics of the brain impacting injury.
     Ⅲ. Respectively based on the toughened glass material brain model, frame-turnover technique brain model and the macromolecular material brain model, the brain deceleration impact experiments have been executed on the platform. After the experiments, the stress distribution and the wave propogation of the brain tissue have been analyzed, while the results are as follows:
     ①The negative pressure occurred at the contrecoup site, and the stress of the brain tissue during its deceleration impact showed itself a chart of grads.
     ②A trough occurred in the stress wave of the brain tissue at the contrecoup site and a crest occurred in the stress wave of the brain tissue at the coup site. The occurrence of the trough was earlier than the occurrence of the crest. This property showed the propogation rule of the stress wave at site and between sites.
     ③During the impact, the stress wave reflected on the inner wall of the skull. The reflected wave and the original wave met and overlaped to each other in the skull including the sites where the bubbles were created.
     ④The brain tissue at the contrecoup site was mainly suffered from the tensile stress and the brain tissue at the coup site was mainly suffered from the compressive stress and the brain tissue at the middle site was mainly suffered from the equivalent tensile or compressive stress. Because the tensile strength of the brain tissue was lower than the compressive strength of the brain tissue, under the state that the brain tissue at the contrecoup sites was mainly exposured to the tensile stress, and the brain tissue at this site was easier to destroy and injure than the brain tissue at the coup site. These loading properties of the brain tissue elementarily disclosured one of the biomechanical mechanisms of the contrecoup injuries which were often found in head deceleration injuries at traffic accidents.
     ⑤At the contrecoup side, the nearer of the tissue to the impacting point the earlier of the trough of wave occured. At the coup side, the nearer the tissue to the impacting point, the earlier the crest of wave occured.
     ⑥At the coup side, the brain tissue was exposured to the persistent positive pressure. At the contrecoup side, the brain tissue was exposured to the alternative positive and negative pressure during the impact. At the contrecoup side, the nearer the tissue to the middle site, the smaller the amplitude of the stress wave was, while the nearer the tissue to the middle site, the greater the frequency of the stress wave was. This increased frequency led to the increased opportunity of the brain tissue being injuried by the fatigue effect. This may be one of the biomechanical mechanisms of the contrecoup injuries which were often found clinically with the relative deep-seated tissue being injuried in head deceleration impact injuries.
引文
1. V. Sauerzapf., A.P. Jones., R. Haynes. The problems in determining international road mortality. Accident Analysis and Prevention, 2010; 42: 492-499.
    2. Editorial. A 10-year plan to reduce road-traffic accidents. The Lancet, 2010; 375(9718): 866.
    3.罗振军,俘瑞鹏.中国道路交通安全与机动车保险现状分析及对策研究.保险研究,2008; 5: 38-43.
    4.王正国.道路交通伤研究和思考.中国医学科学院学报, 2007; 29(4): 455-458.
    5. M. Peden., R. Scurfield., D. Sleet, et al. World Report on Road Traffic Injury Prevention [M]. Geneva: World Health Organisation, 2004: 29.
    6.谢润红,吴庆华,周丽敏等.汽车驾驶员和乘员损伤特点的法医学分析.中国法医学杂志, 2004; 19: 30-31.
    7. T.A. Gennarelli., H.R. Champion., W.S. Copes. Importance of Mortality from Head Injury in Immediate Survivors of Vehicular Injuries, Proceeding of the 1992 International IRCOBI Conference on the Biomechanics of Impacts, 167~178.
    8. R.L. Stalnaker., J.W. Melvin., G.S. Nusholtz, et al. Benson. Head impact response. Proceedings of the 1977 Stapp Car Crash Conference, SAE paper # 770921, 305-335.
    9. D. Kallieris., A. Rizzetti., R. Mattern. Some observations to the skull-brain trauma. AGARD Specialists’Meeting, Impact Head Injury, Paper #1, 1996.
    10. D. Stalhammar. Experimental brain damage from fluid pressures due to impact acceleration. Acta Neurologica Scandinavica. 1975; 52: 7-55.
    11. E. Gutierrez., Y. Huang., K. Haglid, et al. A new model for diffuse brain injury by rotational acceleration: I. Model, gross appearance and astrocytosis. Journal of Neurotrauma. 2001; 18(3): 247-257.
    12. V.H. Kenner., W. Goldsmith. Dynamic loading of a fluid-filled spherical shell. International Journal of Mechanical Sciences. 1972; 14: 557-568.
    13. G.S. Nusholtz., E.B. Wylie., L.G. Glascoe. Cavitation/boundary effects in a simple head impact model. Aviation Space and Environmental Medicine. 1995; 66(7): 661-667.
    14. D.R.S. Bradshaw., J. Ivarsson., C.L. Morfey, et al. Simulation of acute subdural hematoma and diffuse axonal injury in coronal head implant. Journal of Biomechanics. 2001; 34: 85-94.
    15. P.G. Young. A parametric study on the axisymmetric modes of vibration of multi-layered spherical shells with liquid cores of relevance to head impact modelling. Journal of Sound and Vibration. 2002; 256 (4), 665-680.
    16. P.G. Young. An analytical model to predict the response of fluid-filled shells to impact—a model for blunt head impacts. Journal of Sound and Vibration. 2003; 267 (2003), 1107-1126.
    17. E.A.C. Johnson., P.G. Young. On the use of a patient-specific rapid-prototyped model to simulate the response of the human head to impact and comparison with analytical and finite element models. Journal of Biomechanics. 2005; 38, 39-45.
    18.焦大宾,吴文周,杨桂通.人头颅受撞击作用的力学分析.中国生物医学工程学报. 1992; 11(3): 141-149.
    19.姜燕平,刘宝松,王正国等.模拟颅脑受撞击致伤时颅内应力的光弹性法测定.中国物理医学与康复杂志. 1999; 21(4): 233-236.
    20.刘宝松,姜燕平,杨志焕.颅脑创伤模型与生物力学机制研究新进展.创伤外科杂志. 2002; 2 (I): 57-59.
    21. A. I. King., K. H. Yang., L. Zhang, et al. 2003, Is head injury caused by linear or angular acceleration? Proceedings of IRCOBI Conference-Lisbon, Portugal.
    22. Y. C. Fung. 2002, The Application of biomechanics to the understanding of injury and healing. Accidental Injury- Biomechanics and prevention, 2nd Edition, Ed. A.M. Nahum and J. W. Melvin. Springer-Verlag New York Inc.
    23. Hong Zou., James P. Schmiedeler., Warren N. Hardy. Separating brain motion into rigid body displacement and deformation under low-severity impacts. Journal of Biomechanics. 2007; 40: 1183-1191.
    1.刘炳坤.冲击损伤生物力学研究进展.航天医学与医学工程, 1999; 12(1): 62-66.
    2. V H Kenner, W Goldsmith. Impact on a simple physical model of the head. Journal of Biomechanics 1973; 6: 1-11.
    3. V R Hodgson, M W Mason, L M Thomas. Head model for impact. Proceedings of the 16th Stapp Car Crash Conference, SAE report 720969, SAE, New York, pp: 1-13, 1972.
    4. Lih-Shiuh Lai, Ying-Ling Liu, Pei-Hsuan Lin. Rheological/textural properties of starch and crude hsian-tsao leaf gum mixed systems. Journal of the Science of Food and Agriculture 2003;83:1051-1058.
    5. Kirk L Thibault, Susan S Margulies. Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. Journal of Biomechanics 1998;31:1119-1126.
    6. J Ivarsson, D C Viano, P Lo &v& sund B Aldman. Strain relief from the cerebral ventricles during head impact: experimental studies on natural protection of the brain. Journal of Biomechanics 2000;33(2):181-189.
    7. D R S Bradshaw, J Ivarsson, C L Morfey, D C Viano. Simulation of acute subdural hematoma and diffuse axonal injury in coronal head implant. Journal of Biomechanics 2001;34:85-94.
    8. D W Brands, P H Bovendeerd, J S Wismans. On the potential importance of non-linear viscoelastic material modelling for numerical prediction of brain tissue response: test and application. Stapp Car Crash Journal 2002;46:103-121.
    9. JE Galford, JH McElhaney. A viscoelastic study of scalp, brain and dura. Journal ofBiomechanics l970; 3(2): 2l1-221.
    10. E A C Johnson, P G Young. On the use of a patient-specific rapid-prototyped model to simulate the response of the human head to impact and comparison with analytical and finite element models. Journal of Biomechanics 2005;38:39-45.
    11. E.S. Gurdjian., J.E. Webster. Deformation of the skull in head injury studied by stresscoat technique. Surg. Gyn. Obst 1946; 83: 219-233.
    12. E.S. Gurdjian., J.E. Webster. 1958. Mechanisms, Diagnosis and Management of Head Injury. Little Brown and Company, Boston.
    13. G.S. Nusholtz., E.B. Wylie., L.G. Glascoe. Cavitation/boundary effects in a simple head impact model. Aviation Space and Environmental Medicine 1995; 66(7): 661-667.
    14. P.G Young. A parametric study on the axisymmetric modes of vibration of multi-layered spherical shells with liquid cores of relevance to head impact modelling. Journal of Sound and Vibration 2002; 256 (4): 665-680.
    15. P.G. Young. An analytical model to predict the response of fluid-filled shells to impact—a model for blunt head impacts. Journal of Sound and Vibration 2003; 267: 1107-1126.
    16.焦大宾,吴文周,杨桂通.人头颅受撞击作用的力学分析.中国生物医学工程学报1992; 11(3): 141-149.
    17.姜燕平,刘宝松,王正国等.模拟颅脑受撞击致伤时颅内应力的光弹性法测定.中国物理医学与康复杂志1999; 21(4): 233-236.
    1.赵辉.颅脑减速伤的发生机制研究.第三军医大学博士学位论文, 2009.
    2. J. Versace. A Review of the Severity Index. Vol. 710881, Ford Motor Co., 1971, pp. 771-796.
    3. M. Collantes. Evaluation of the importance of using the head injury criterion (HIC) to estimate the likelihood of head impact injury as a result of a fall onto playground surface materials. US Consumer Product Safety Commission, 1990.
    4. H. Mellander. HIC—the head injury criterion. Practical significance for the automotive industry. Acta Neurochirurgica 1986; 36: 198-220.
    5. P. Prasad., H.J. Mertz. The position of the United States Delegation to the ISO working group 6 on the use of HIC in the automotive environment, 1985. SAE paper no. 851246.
    6. John Hutchinson., Mark J. Kaiser., Hamid M. Lankarani. The Head Injury Criterion (HIC) Functional. Applied Mathematics and Computation 1998; 96: 1-16.
    7. J.D. Bronzino. The Biomedical Engineering Handbook, CRC Press, Boca Raton, FL, IEEE Press, 1995, ISBN 0-8493-8346-3.
    8. D. Marjoux, et al. Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accident Analysis and Prevention, 2008; 40: 1135–1148.
    1. Editorial. A 10-year plan to reduce road-traffic accidents. The Lancet, 2010; 375(9718): 866.
    2.罗振军,俘瑞鹏.中国道路交通安全与机动车保险现状分析及对策研究.保险研究,2008; 5: 38-43.
    3.王正国.道路交通伤研究和思考.中国医学科学院学报, 2007; 29(4): 455-458.
    4.王正国.交通事故伤研究近况.中华创伤杂志, 1996, 12(3): 141-142.
    5.谢润红,吴庆华,周丽敏等.汽车驾驶员和乘员损伤特点的法医学分析.中国法医学杂志, 2004; 19: 30-31.
    6. T.A. Gennarelli., H.R. Champion., W.S. Copes. Importance of Mortality from Head Injury in Immediate Survivors of Vehicular Injuries, Proceeding of the 1992 International IRCOBI Conference on the Biomechanics of Impacts, 167~178.
    7.刘艳辉,毛铂镛,陈槐卿.颅脑撞击伤的生物力学机制研究进展.生物医学工程学杂志, 1997, 14(1): 73-76.
    8. Lubock. P., Goldsmith. W. Experimental cavitation studies in a model headneck system. Journal of Biomechanics, 1980, 13: 1041-1052.
    9. Nusholtz, G.S., Wylie, E.B., Glascoe, L.G. Cavitation/boundary effects in a simple head impact model. Aviation Space and Environmental Medicine, 1995, 66 (7): 661-667.
    10. Nusholtz. G.S., Glascoe. L.G., Wylie. E.B. Modeling cavitation during head impact[C]// Proceedings of NATO/AGARD Head Impact Conference. USA: [s. n.]: 1996: 6.
    11. Brennen. C.E., 2003. Cavitation in biological and bioengineering contexts[C]// The Fifth International Symposium on Cavitation (cav2003). Osaka: [s. n.]: 2003: 1-9.
    12. Lih-Shiuh Lai., Ying-Ling Liu., Pei-Hsuan Lin. Rheological/textural properties of starch and crude hsian-tsao leaf gum mixed systems. Journal of the Science of Food andAgriculture 2003; 83: 1051-1058.
    13. Kirk L. Thibault., Susan S. Margulies. Age-dependent material properties of the porcine cerebrum: e/ect on pediatric inertial head injury criteria. Journal of Biomechanics 1998; 31: 1119-1126.
    14. P. Lubock., W. Goldsmith. Experimental cavitation studies in a model headneck system. Journal of Biomechanics 1980; 13: 1041-1052.
    15. W.N. Hardy., T.B. Khalil., A.I. King. Literature review of head injury biomechanics, Int. Journal of Impact Engineering 1994; 15: 561-586.
    16. G.S. Nusholtz., L.G.. Glascoe., E.B. Wylie. 1996. Modeling cavitation during head impact, in: Proceedings of NATO/AGARD Head Impact Conference, Paper 6.
    17. C.E. Brennen. 2003. Cavitation in biological and bioengineering contexts, in: Fifth International Symposium on Cavitation, Osaka, Japan.
    18. E.A.C. Johnson., P.G. Young. 2006. The analysis of pressure response in head injury, in: C2006 Digital Human Modeling for Design and Engineering Conference, July 2006, Lyon, France, 2006. SAE paper no. 2006-01-2368.
    19. Tamer El Sayed., Alejandro Mota., Fernando Fraternali., Michael Ortiz. Biomechanics of traumatic brain injury. Computer Methods in Applied Mechanics and Engineering 2008; 197: 4692-4701.
    20. Alan M Nahum, Randall Smith, Carley Ward. Intracranial pressure dynamics during head impact. In: Proceedings of the 21st Stapp Car Crash Conference, SAE Paper No. 770922. Society of Automotive Engineers. 1977.
    21.刘宏伟.颅脑减速性损伤临床特点及治疗体会.中国现代神经疾病杂志, 2004, 4(1): 9.
    1 V. Sauerzapf., A.P. Jones., R. Haynes. The problems in determining international road mortality. Accident Analysis and Prevention, 2010; 42: 492-499.
    2 Editorial. A 10-year plan to reduce road-traffic accidents. The Lancet, 2010; 375(9718): 866.
    3罗振军,俘瑞鹏.中国道路交通安全与机动车保险现状分析及对策研究.保险研究,2008; 5: 38-43.
    4王正国.道路交通伤研究和思考.中国医学科学院学报, 2007; 29(4): 455-458.
    5 M. Peden., R. Scurfield., D. Sleet, et al. World Report on Road Traffic Injury Prevention [M]. Geneva: World Health Organisation, 2004: 29.
    6谢润红,吴庆华,周丽敏等.汽车驾驶员和乘员损伤特点的法医学分析.中国法医学杂志, 2004; 19: 30-31.
    7 T.A. Gennarelli., H.R. Champion., W.S. Copes. Importance of Mortality from Head Injury in Immediate Survivors of Vehicular Injuries, Proceeding of the 1992 International IRCOBI Conference on the Biomechanics of Impacts, 167-178.
    8 Galford JE., McElhaney JH. A viscoelastic study of scalp, brain and dura. J Biomech, l970; 3(2): 2l1-221.
    9蒋俊,邓世雄.颅脑的力学性能及在交通伤中的生物力学机制.创伤外科杂志, 2006; 8(3): 278-280.
    10 Bullock MR., Ross MD., Lyeth. et al. Current status of neuroprotection trials for traumatic brain injury: lessons from animals models and clinical studies. Neurosurgery, 1999; 45(2): 207-217.
    11钟世镇.颅缝的微观生物力学及其临床意义.生物医学工程杂志, 1994; 11(1): l-4.
    12 McElhaney JH., Stalnaker KL., Roberts VJ. Dynamic characteristics of the tissues of the head. J Neurotrauma, 1995; l2(2): 669-678.
    13 Sacks MC., Hamann MC., Otano-Lata SE. et a1. Local mechanical anisotropy in human cranial dura mater allografts. J Biomech Eng, 1998; 12O(4): 541-54.
    14 Bandak FA., Vander Vomt MJ., Stuhmiller LM. An imaging-based computational and experimental study of skull fracture: finite element model development. J Neruotrauma, l995; l2(4): 679-688.
    15 Goldsmith W. The state of head injury biomechanics. Crit Rev Biomed Eng, 2001; 29(5-6): 44l-600.
    16 Sarron JC., Blondeau C., Guillaume A. et a1. Identification of linear viscoelastic constitutive models. J Biomech, 2000; 33(6): 685-693.
    17 Chalupnik JD., Daly CH., Merchant HC. Material properties of cerebral blood vessels: final report on Nlh Contract No. 69-2232 No. ME 71-11[R]. Seattle: Washington University, 1971.
    18 Lee MC., Haut RC. Insensitivity of tensile failure properties of human bridging veins to strain rate: implications in biomechanics of subdural hematoma. J Biomeeh, l989; 22(6-7): 537-542.
    19 Cooper GJ. Biophysics of impact injury to the chest and abdomen. J R Army Med Corps, 1989; 135: 58.
    20 Adams JH., Doyle D., Ford I. et al. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathlogy, 1989; 15: 49.
    21刘宝松,姜燕平,杨志焕.颅脑创伤模型与生物力学机制研究新进展.创伤外科杂志, 2000; 2(1): 57-59.
    22刘炳坤.冲击损伤生物力学研究进展.航天医学与医学工程, 1999; 12(1): 62-66.
    23 Lissner,H.R., Lebow,M., Evans F.G. Experimental studies on the relation between acceleration and intracranial pressure changes in man. Surg.Gynecol. Obstet, 1960; 111: 329-339.
    24 Nahum A., Smith R., Ward C. Intracranial Pressure dynamics during head impact. Proc. of the 21st STAPP Car Crash Conf, 1977; 339-366.
    25 Got,C., Patel,A., Tarriere,C., Walfisch,G. Results of experimental head impacts on cadavers: the various data obtained and their relations to some measured physical parameters. 1978. SAE 780887.
    26 G.S. Nusholtz., P. Lux., P. Kaiker., M.A. Janicki. Head impact response-skull deformation and angular accelerations. Proc.of the 28th STAPP Car Crash Conf, 1984; 275-288.
    27 N Yoganandan, et al. Lightweight low-profile nine-accelerometer package to obtain head angular accelerations in short-duration impacts. Journal of Biomechanics, 2006; 39(7): 1347-1354.
    28 Hong Zou., James P. Schmiedeler., Warren N. Hardy. Separating brain motion into rigid body displacement and deformation under low-severity impacts. Journal of Biomechanics, 2007; 40: 1183-1191.
    29 D. Denny-Brown., W.R. Russsell. Experimental cerebral concussion. Brain, 1943; 64: 93.
    30 E.S. Gurdjian. Impact Head Injury. Thomas Publishing Company, Spring Field, lllinois, 1975.
    31 A.K. Omma., A.E. Hirsch. Tolerance for cerebral concussion from head impact and whiplash in primates. J. Biomechanics, 1971; 4: 13-21.
    32 J.M. Abel., T.A. Gennarelli., H. Segawa. Incidence and severity of cerebral concussion in the rhesus monkey following sagittal plane angular acceleration. Proceeding of 22nd Stapp Car Crash Conference, 1978; SAE 780886.
    33 V.R. Hodgson., L.M. Thomas. Acceleration induced shear strains in a monkey brain hemisection. 1979; SAE 791023.
    34 K. Ono., A. Kikuchi., M. Nakamura., H. Kobayashi., H. Nakamura. Human head tolerance to sagittal impact reliable estimation deduced from experimental head injury using sub-human primates and human cadaver skulls. Proceeding of 24th Stapp Car Crash Conference, 1980; 101-160.
    35尹志勇,王正国,蒋建新,杨志焕,周萍,王克万,麻晓林.培养细胞牵张损伤装置及测试系统的研制.第三军医大学学报, 2006; 28(13): 1363-1366.
    36 E.S. Gurdjian., J.E. Webster. Deformation of the skull in head injury studied by stresscoat technique. Surg. Gyn. Obst, 1946; 83: 219-233.
    37 E.S. Gurdjian., J.E. Webster., H.R. Lissner. Studies on skull fracture with particular reference to engineering factors. American Journal of Surgery, 1949; 78: 736-742.
    38 E.S. Gurdjian., J.E. Webster. Mechanisms, Diagnosis and Management of Head Injury. Little Brown and Company, Boston, 1958.
    39 V.H. Kenner., W. Goldsmith. Dynamic loading of a fluid-filled spherical shell. International Journal of Mechanical Sciences, 1972; 14: 557-568.
    40 V.H. Kenner., W. Goldsmith. Impact on a simple physical model of the head. Journal of Biomechanics, 1973; 6: 1-11.
    41 G.S. Nusholtz., E.B. Wylie., L.G. Glascoe. Cavitation/boundary effects in a simple head impact model. Aviation Space and Environmental Medicine, 1995; 66 (7): 661-667.
    42 D.R.S. Bradshaw., J. Ivarsson., C.L. Morfey., D.C. Viano. Simulation of acute subdural hematoma and diffuse axonal injury in coronal head implant. Journal of Biomechanics, 2001; 34: 85-94.
    43 P.G. Young. A parametric study on the axisymmetric modes of vibration of multi-layered spherical shells with liquid cores of relevance to head impact modelling. Journal of Sound and Vibration, 2002; 256(4): 665-680.
    44 P.G. Young. An analytical model to predict the response of fluid-filled shells to impact—a model for blunt head impacts. Journal of Sound and Vibration, 2003; 267: 1107-1126.
    45 E.A.C. Johnson., P.G. Young. On the use of a patient-specific rapid-prototyped model to simulate the response of the human head to impact and comparison with analytical and finite element models. Journal of Biomechanics, 2005; 38: 39-45.
    46焦大宾,吴文周,杨桂通.人头颅受撞击作用的力学分析.中国生物医学工程学报, 1992; 11(3): 141-149.
    47姜燕平,刘宝松,王正国,宋锦良.模拟颅脑受撞击致伤时颅内应力的光弹性法测定.中国物理医学与康复杂志, 1999; 21(4): 233-236.
    48刘盛雄,尹志勇等.颅脑减速碰撞中脑组织空化效应的模拟研究.中国医学物理学杂志, 2009; 26(6): 1536-1539.
    49杨宜谦,马中和,薛菲.人头颅受直接撞击作用的力学分析研究进展.力学进展, 1996; 26(4): 532-539.
    50 T.A. Shugar., M.G. Katona. Development of Finite Element of Head Injury Model, J.ASCE, 1975; 101: 223-229.
    51 T.B. Khailil., R.P. Hubbard. Parametric Study of Head Response by Finite Element Modeling. J.Biomechanics, 1977; 10: 119-132.
    52 L.Y. Cheng., S. Rifai., T. Khatua., R.l. Piziali. Finite Element Analysis of Diffuse Axonal Injury. 1990; SAE 900547.
    53 J.S. Ruan., T.B. Khalil., A.I. King. Human Head Dynamic Response to Side Impact by Finite Element Modeling. ASME Journal of Biomechanics Engineering, 1991; 113(3): 276-283.
    54 R. Willinger., C.M. Kopp., D. Cesari. New Concept of Contrecoup Lesion Mechanism, Modal analysis of a finite element model of the head. Proceedings of the 1992 International IRCOBI Conference on the Biomechanics of Impacts.
    55 Tetsuya Nishimoto., Shigeyuki Murakami. Direct impact simulations of diffuse axonal injury by axial head model. JSAE review, 2000; 21(1): 117-123.
    56 C.C. Ward., R.B. Thompson. The Development of a Detailed Finite Element Brain Model. 1975. SAE 751163.
    57 J.S. Ruan., P. Prasad. Head Injury Potential Assessment in Frontal Impact by Mathematical Modeling. Proc. 38th Stapp Car Crash Conf, SAE 943114.
    58 R. Willinger., D. Baumgartner., B. Chinn., M. Neale. Head tolerance limits derived from numerical replication of real world accidents. Proc of the IROBI Conf, 2000; pp. 209-221.
    59 A.A. Bsharat., W.N. Hardy., K. Yang. et al. Brain/skull relative displacement magnitude due to blunt head impact :new experimental data and mode. Proceedings of 43rd Stapp Car Crash Conf. 1999; SAE No99SC22.
    60 Ho. Johnson., Svein. Kleiven. 2007. Dynamic response of the brain with vasculature: A three-dimensional computational study. Journal of Biomechanics, 40(13): 3006-3012.
    61何黎民等. 2005.额、枕部直接冲击导致脑挫裂伤的力学机制研究.中华神经医学杂志, 4(9): 874-877.
    62 E.s. Gurdjian. Impact Head Injury. Thomas Publishing Company, Spring Field, lllinois
    13 Omma, A.K. and Hirsch, A.E.(1971). Tolerance for cerebral concussion from head impact and whiplash in primates. J. Biomechanics, 1975; 4: 13-21.
    63 J.M. Abel., T.A. Gennarelli., H. Segawa. Incidence and severity of cerebral concussion in the rhesus monkey following sagittal plane angular acceleration. Proceeding of 22nd Stapp Car Crash Conference, 1978; SAE 780886.
    64 V.R. Hodgson., L.M. Thomas. Acceleration induced shear strains in a monkey brain hemisection. 1979; SAE 791023.
    65 A. H. S. Holbourn. MECHANICS OF HEAD INJURIES. The Lancet, 1943; 242: 438-441.
    66 Susan Sheps Margulies., Lawrence E. Thibault, Thomas A. Gennarelli. Physical model simulations of brain injury in the primate. J.Biomechanics, 1990; 23: 823-836.
    67王守森,朱青安,钟世镇等.颅骨构筑对骨折类型的影响-冲击实验.中国临床解剖学杂志, 1995; 13(1): 58-59.
    68王守森,王如密.颅脑撞击性损伤的生物力学机制.东南国防医药, 2003; 5(2): 155-157.
    69 C. C. WARD., M. CHAN., A M. NAHUM. Intracranial pressure-A brain injury criterion. 1980; SAE 801304.
    70 S. Kleiven., H. von. Holst. Consequences of head size following trauma to the human head. Journal of Biomechanics, 2002; 35(2): 153-160.
    71 J. S. Ruan., P. Prasad. 2001b. The Effects of Skull Thickness Variations on Human Head Dynamic Impact Responses. Stapp Car Crash Journal, 2001; 45: 395-414.
    72丁祖荣.,马靖东. 1991.对头-颈模拟系统的撞击研究.上海交通大学学报, 25(3):10-16.
    73 A. I. King., K. H. Yang., L. Zhang., W. Hardy. Is head injury caused by linear or angular acceleration? Proceedings of IRCOBI Conference-Lisbon, Portugal, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700