用户名: 密码: 验证码:
草酸降解菌的分离鉴定及其对犬草酸钙尿结石的预防作用与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据美国明尼苏达州结石分析中心报道,草酸钙结石在犬上的发病率已经从1981年的5%上升到了2007年的41%,而曾是犬发病率最高的磷酸铵镁结石的发病率则从1981年的78%下降到了2007年的40%。同时,草酸钙结石也是人发病率最高的结石类型。不同于其他类型的结石,草酸钙结石一旦形成,只能通过手术的方法来移除,给病犬和患者带来极大的痛苦。
     犬和人草酸钙尿石症发病的原因之一是饮食中摄入过量的草酸而引发高草酸尿,进而导致病的发生。因而通过减少肠道中可被机体吸收的草酸的量,进而降低尿液草酸浓度,可预防草酸钙结石。近年研究发现,肠道中的一些乳酸菌具有降解草酸的能力,但研究还不够深入,相关分离鉴定和试验研究以应用于动物为目的的则更少见到。同时,由于肠道是一个复杂的环境,而乳酸菌并不以草酸为唯一碳源,因此,其他碳源对细菌利用草酸能力的影响值得研究。在之前的报道中,乳酸菌的草酸降解力都是单株研究,但是由于动物肠道菌群包括大约400多种已被鉴定的菌种,因此,混合菌株降解草酸的能力也值得被研究。
     本研究对南京地区临床上犬尿石症的自然病例的发病情况进行了调查,对收集到的尿结石样品的成分进行了分析研究;建立了食源性草酸过多导致的犬高草酸尿、草酸钙结石模型;从不同品种的健康犬粪便中分离筛选了具有降解草酸能力的细菌,并对其进行鉴定;在体外研究了筛选出的降解草酸能力较强的乳酸菌草酸降解率和细菌量、糖浓度以及单株或混合株之间的关系;研究了草酸降解乳酸菌对酸和胆盐的耐受能力,对抗生素的敏感性,对小白鼠的急性毒性,在犬肠道的定殖以及对高草酸尿症模型犬的生物预防作用。这些研究可为研制预防犬和人草酸钙尿石症的微生物添加剂提供科学依据。各试验的研究内容如下:
     试验1南京地区犬尿石症的发病情况调查
     通过对收集的146例犬尿结石进行分析,了解南京地区犬尿石症的详细资料及尿石晶体化学成分构成。收集南京地区3家大型动物医院的犬结石标本146份,采用化学方法对尿石中的主要成分进行分析,同时对尿石症患犬进行流行病学调查。结果表明,146例尿石标本中,鸟粪石(磷酸铵镁)成分占52.55%(76/146),尿酸及尿酸盐占17.81%(26/146),磷酸钙占2.74%(4/146),草酸钙占23.29%(34/146),复合型结石占4.11%(6/146)。患尿石症犬的性别倾向、发病部位、品种趋势、平均年龄和饮食习惯对结石的成分及发生部位都有一定的关系。
     试验2草酸降解菌的分离鉴定
     本试验分别使用乳杆菌选择性培养基(MRS-万古霉素固体培养基)和肠球菌选择性培养基(Pfizer肠球菌选择性固体培养基),从3个品种共36条健康犬粪便中筛选细菌。经形态学观察、革兰氏染色、过氧化氢反应和草酸耐受试验,筛选出47株细菌革兰氏阳性、过氧化氢酶阴性、能够在含有20 mmol-L-1草酸的MRS固体培养基上生长的细菌,经分离纯化后,使用离子色谱法测定其在含有20 mmo1·L-1草酸的MRS液体培养基中降解草酸的能力,并使用法国梅里埃VITEK2全自动细菌分析仪进行鉴定。47株犬源草酸耐受乳酸菌包括22株乳杆菌、6株乳球菌、4株肠膜明串珠菌和15株肠球菌。24/47(51.63%)株乳酸菌具有降解草酸的能力。其中16株细菌的草酸降解力低于5%,而另外8株[肠膜样明串珠菌(RL75),格氏乳球菌(CD2),乳酸乳球菌乳酸亚种(CS21),屎肠球菌(CL71、CL72),粪肠球菌(CD14、CS62、CD12)]能够降解5%以上的草酸,和空白对照组相比差异显著(P<0.05)。这8株细菌将用于下一步试验。
     试验3不同糖浓度下细菌的草酸降解能力
     观察了8株细菌在不同糖浓度MRS液体培养基中利用葡萄糖的情况,确定葡萄糖足够、不足、缺失的浓度分别为20 g·L-,2.5 g·L-’和0 g·L-1。调整8株细菌的新鲜菌液至1×106CFU-mL-1,按5%的接种量分别接种与三种不同糖浓度含量(足够、不足、缺失)的MRS-草酸液体培养基中,以测定他们草酸降解能力的变化。每个糖浓度都包括12个样品,分别是8株细菌的单个菌株、乳球菌混合菌株、肠球菌混合菌株以及所有细菌的混合株以及空白对照。和空白对照组相比,在三种糖浓度的情况下,所有菌株的草酸均显著降低(P<0.05)。不同菌株在三个糖浓度下草酸降解率的变化各不相同。CL72的草酸降解率随葡萄糖浓度升高而显著升高(P<0.05),RL75的草酸降解率在葡萄糖浓度为2.5 g·L-1时最高(P<0.05),CS62、CD14、和CS21的草酸降解率在三种糖浓度下无差异(P>0.05)。对于其他菌株,在20 g·L-1葡萄糖浓度的培养基中的草酸降解能率均高于葡萄糖浓度为2.5 g·L-1和0 g-L-1的培养基。所有细菌的混合株的草酸降解率强于单个菌株和其他两种混合菌株。各菌株的细菌量与葡萄糖浓度呈正相关(P<0.05); CL72、CD12、CD14、CD2、乳球菌混合菌,所有菌混合菌的草酸降解率和细菌量呈正相关(P<0.05), CL71、CS62、CS21、RL75、肠球菌混合菌的草酸降解率和细菌量无相关性。结果表明,葡萄糖对不同细菌的草酸代谢因菌株不同各异:一些细菌可以同时代谢葡萄糖和草酸,故当细菌量随葡萄糖浓度增大时,草酸降解率也增高;高浓度的葡萄糖可以抑制一些细菌草酸代谢。部分细菌的草酸降解率和细菌量正相关。不同种菌株混合后,有协同作用,草酸降解力强于单独菌株。RL75草酸降解力受其他碳源影响较大,另外7株细菌用于下一步试验。
     试验4草酸降解菌体外及体内安全、定殖试验
     本试验对筛选出来的7株犬源草酸降解菌的潜在益生作用做了进一步的评价,分别进行了耐酸试验、耐胆盐试验、抗生素敏感性试验、小白鼠急性毒性试验、犬体内定殖试验,并对进一步筛选出的两株细菌进行分子鉴定。将细菌以107CFU·mL-1分别接种于pH2.0、pH 3.0的MRS培养基后观察细菌的生长情况。结果表明,各菌株均能在pH 2.0的MRS培养基中耐受30 min,在pH3.0的MRS培养基中耐受4 h。其中,CL72在肠球菌中的耐酸能力较强,CS21在乳球菌中的耐酸能力较强。将细菌以107CFU·mL-1分别接种于0.3%、1%胆盐的MRS培养基后观察细菌的生长情况。各菌株均能耐受0.3%胆盐24 h,能耐受1%胆盐12 h。肠球菌耐受胆盐能力均较好。虽然各菌株耐药谱不同,但各菌株均对青霉素类、氟喹诺酮类、利福平、糖肽类、硝基呋喃类敏感。140只清洁级昆明小鼠随机分为7组,雌雄各半。将7株细菌冻干粉以101。CFU·g-,15 g·Kg-’的剂量给小鼠灌胃给药,灌胃2次,两周后观察未见小白鼠死亡表明细菌对小白鼠无急性毒性。将细菌驯化为耐受利福平的细菌,确定试验犬体内没有耐利福平的细菌后,每天补给5 mL 109CFU·mL-1草酸高效降解菌的耐利福平菌株,时间为10 d。结果表明,在饲喂第1d就能在犬粪便中分离到各菌株,且停止饲喂后,第20 d仍能在犬粪便中分离到各菌株。各菌株饲喂1d、5d、10d时细菌量差异不显著(P>0.05),停止饲喂后,15 d,20 d时细菌量差异显著(P<0.05)。结合细菌草酸降解能力及各试验结果,筛选出CL72和CS21做分子鉴定,使用16srRNA通用引物对两株细菌的16srRNA基因扩增并测序,将获得的序列输入数据库(GenBank+EMBL+DDBJ+PDB),登录号分别为JF895185, JF895186,与现有序列比对并制作分子进化树后,发现其分别与屎肠球菌、乳酸乳球菌乳酸亚种的相似性均为99%,与全自动细菌鉴定仪的鉴定结果一致。这两株细菌将用于下一步试验。
     试验5食源性草酸过多草酸钙结石动物造模
     采用0.5%和1%两种不同浓度草酸诱导犬肾草酸钙结石模型,检测0 d,15 d,30d各组犬24 h尿总钙和尿草酸,尿尿素氮,尿肌酐,血钙,血尿素氮和血肌酐,以比较这两种试验性犬食源性草酸摄入过多肾草酸钙结石模型。结果发现:在饲料中添加草酸后,1%草酸组的尿比重在第15d就显著增高(P<0.05),0.5%草酸组的尿比重在第30 d显著增高(P<0.05)。0.5%和1%试验组的犬,试验第15d尿液pH值均显著减小(P<0.05)。试验第15d及第30 d,0.5%和1%草酸组的血清钙较空白对照组均有显著降低(P<0.05),且1%草酸组的血清钙较0.5%组的血清钙降低的更显著(P<0.05)。相较于空白对照组,在整个试验期间,0.5%草酸组的血清肌酐和血清尿素氮均有升高,但差异不显著(P>0.05)。而1%草酸组的血清肌酐和血清尿素氮相较于另外两组,在饲喂草酸15d后,就有显著升高(P<0.05)。试验第15 d,1%草酸组的尿钙较空白对照组和0.5%草酸组的尿钙显著升高(P<0.05),试验第30d,0.5%草酸组的尿钙和1%草酸组的尿钙较空白对照组均显著升高(p<0.05),且1%草酸组的尿钙高于0.5%草酸组的尿钙(P<0.05)。试验第15d、30d,0.5%草酸组的尿草酸和1%草酸组的尿草酸较空白对照组均显著升高(P<0.05),且1%草酸组的尿草酸均显著高于0.5%草酸组的尿草酸(P<0.05)。试验第15 d,0.5%草酸组和1%草酸组的尿肌酐和尿尿素氮均无显著变化;试验第30 d,1%草酸组的尿肌酐和尿尿素氮显著高于空白对照组和0.5%草酸组(P<0.05)。1%组结晶成堆而且连接,上皮细胞明显肿胀、变性、坏死,管腔扩张明显。0.5%组仅有少数结晶分布,管腔内仅见散在草酸钙结晶,管腔扩大也较轻。
     试验6草酸降解菌在犬体内的草酸降解能力
     研究了草酸降解菌在体内降解草酸的能力。本地犬30条,分为5组,分别为空白对照组、0.5%草酸阳性对照组、0.5%草酸+屎肠球菌(CL72)组、0.5%草酸+乳酸乳球菌乳酸亚种(CS21)组、0.5%草酸+两株细菌的混合菌株组。细菌能够降低试验犬的尿比重,但差异不显著(P>0.05);在试验第15d和第30 d,CL72和混菌的能够预防尿液pH值显著降低(P<0.05)。CL72和混菌在试验第15d和试验第30 d均能显著降低尿液草酸浓度(P<0.05),CS21也能降低尿液草酸浓度,但差异不显著(P>0.05)CL72和混菌在试验第15d和试验第30 d均能显著降低尿液草酸浓度(P<0.05),CS21也能降低尿液草酸浓度,但差异不显著(P>0.05)。三个试验组均能够防止血液肌酐和尿素氮的升高,同时防止尿液肌酐和尿素氮的降低,但是均不显著(P>0.05)。在试验第30 d时,草酸降解菌能够防止血钙浓度的下降,但差异不显著(P>0.05)。在试验第30 d时,草酸降解菌能够显著降低尿钙水平,且差异显著(P<0.05)。
According to the report of the center of Minnesota Urolith, in 1981, calcium oxalate calculi represented only 5% of canine uroliths whereas struvite was detected in 78%. However, in 2007,41% of the urolithiasis in dogs was calcium oxalate calculi, while struvite represented 40%. In order to reduce struvite crystal formation, oxalic acid and its salts are widely distributed in dry commercially prepared dog food to make acidification of urine. Calcium oxalate calculi represent the most common type of stones in humans. Increased intestinal absorption of oxalate may lead to hyperoxaluria with significantly enhanced risk of urinary stone formation. Like human, increased dietary oxalate results in increased urinary oxalate and calcium oxalate relative supersaturation in healthy adult dogs.
     Unlike other types of stones, calcium oxalate stones, once formed, can only be removed by surgical methods. It has brought great pain to the dogs. The calcium oxalate stones could be prevented by reducing the amount of oxalic acid of the intestinal tract.
     Previous studies reported that lactic acid bacteria could reduce oxalate both in vitro and in vivo. However, only a few studies have reported the isolation of oxalate-degrading lactic acid bacteria. In addition, unlike O. formigenes, lactic acid bacteria are "generalists." The effect of the glucose concentration on the oxalate-degrading capacities of "generalists" is unclear, and further experiments are required to resolve this issue. Moreover, in these studies, the oxalate-degrading capacities of isolated strains were only evaluated individually. To our knowledge, few studies have been conducted on the oxalate-degrading capacities of mixtures of strains of different species.
     Investigation of canine urolithiasis of field cases was conducted. The compositions of urolith samples obtained from some clinics were analyzed. These results provided theoretical basis for controlling and preventing urolithiasis for clinical veterinary. Also, we want to build the animal model of hyperoxaluria and calcium oxalate calculi which were caused by diet intake too much oxalate, to isolate and identified a range of oxalate-degrading lactic acid bacteria which owe the stabile oxalate-degrading capacity and could be used as probiotics, and to use them in vivo.
     Experiment 1 The investigation of urolithiasis and composition analysis of canine urinary calculi in Nanjing Area The investigation of field cases of canine urolithiasis was obtained form 3 representative animal hospitals in Nanjing area in recent three years. In the same time, the composition of 146 canine urinary stones was studied by chemical qualitative analysis. The results indicated that:Four types of calculi were found on the base of their main constituents:52.55%(76/146) were magnesium ammonium phosphate (struvite),17.81%(26/146) were urat,2.74%(4/146) were calcium phosphate, 23.29%(34/146) were calcium oxalate,4.11%(6/146) were composite stone. It was analysed that the characters on the location of the calculi, breed, average easy-infected age, genders and food about the canine with urolithiasis, which provided clinical basis for controlling and preventing urolithiasis in Nanjing areas.
     Experiment 2 Isolation and identification of oxalate-degrading bacteria Lactobacillius were isolated on MRS-vancomycin agar, while Enterococcus were isolated on bile aesculin agar. Fecal samples were collected from 36 dogs of three different breeds. After assessing the colony morphology, gram reaction, and catalase activity, the gram-positive and catalase-negative strains were selected as lactic acid bacteria. The isolated colonies were re-streaked on MRS agar to ensure their purity. The pure isolates were transferred to MRS-ox agar, and the strains that survived were selected for the next experiment. The oxalate-degrading capacities of isolates were detected in the MRS-ox broth by ion chromatography. And all of the isolated strains were identified by a commercial biochemical assay (V1TEK compact 2, Biomerieux, French). Forty-seven strains of lactic acid bacteria included 22 isolates of Lactobacillius,6 isolates of Lactococcus,4 isolates of Leuconostoc, and 15 isolates of Enterococcus. One representative isolate each from Leuconostoc mesenteroides (RL75), Lactococcus garvieae (CD2), and Lactococcus subsp. lactic (CS21) as well as two representative isolates from Enterococcus faecium (CL71 and CL72) and three representative isolates from Enterococcus faecalis (CD 14, CS62, and CD 12) degraded more than 5% of the oxalate present. These eight strains showed significant oxalate degradation (P<0.05) in comparison with the sodium oxalate media control. These 8 isolates were selected for the next experiment.
     Experiment 3 Oxalate-degrading capacities of the isolates under different glucose concentrations The glucose consumptions of 8 isolates were observed in the MRS broth with different glucose concentrations, and a glucose concentration of 2.5 g-L-1 was regarded as insufficient, and a concentration of 20 g-L-1 was considered to be sufficient for the next experiment. There were 12 samples in each group of the same glucose concentration:each individual isolate, a mixture of the three Lactococcus, a mixture of the five Enterococcus, a mixture of eight isolates, and a medium blank. Isolates were grown in MRS broth for 24 h. The culture broths were inoculated at 5% into corresponding media containing 20 mmol·L-1 sodium oxalate and different concentrations of glucose. In comparison with the control medium, all of the individual isolates and mixtures of isolates could degrade oxalate in all three groups (P< 0.05). The oxalate degradation rates of CL72 were significantly increased (P< 0.05) among the three glucose concentrations. The oxalate degradation rate of RL75 in the medium containing 2.5 g·L-1 glucose was significantly higher than that in the medium containing 20 g·L-1 glucose and the medium containing 0 g·L-1 glucose (P<0.05). No significant differences were observed in the oxalate degradation rates of CS62, CD 14, and CS21 among the three glucose concentrations (P> 0.05). The other isolates showed higher oxalate degradation rates in media containing 2.5 g·L-1 or 20 g·L-1 glucose. The oxalate-degrading capacities of the isolates were isolate dependent. There may be different relationships between oxalate metabolism and glucose for different types of bacteria. For partial of lactic acid bacteria, the oxalate degrading rate was mainly influenced by bacterial count. The mixture of all isolates showed higher oxalate-degrading capacity than the individual isolates and other mixtures. Except RL75, the other 7 isolates were chosen for next experiments.
     Experiment 4 The potential probiotic effection, safety evaluation, and in vivo gastric transit of seven isolated oxalate-degrading LAB The potential probiotic effect of seven oxalate-degrading LAB were futher evaluated. Resistance to low pH environment, resistance to bile salts, antibiotic susceptibility, acute toxicity, and assessment of gastric transit of 7 isolates in vivo were performed. Isolates were resuspended in the MRS broth at 107 CFU·mL-1, and the pH of MRS broth was adjusted to 2.0-3.0. All of the isolates survived in the pH 2.0 MRS broth for 30 min, and in the pH3.0 MRS broth for 4 h. Among them, CL72 and CS21 had better resistance to low pH environment than other isolates. Isolates were inoculated at 107CFU·mL-1 in the MRS broth with 0.3% and 1% w/v ox-bile purified added, and their survival measured at intervals of 0 h,12 h, and 24 h. All of the isolates survived in the MRS broth with 0.3% ox-bile for 24 h, and in the MRS broth with 1% ox-bile for 12 h. Antibiotic susceptibility for isolates were assayed with the agar diffusion disk method recommended. Different isolates had different antibiotic susceptibility. All of the isolates were sensitive to Penicillins, Fluoroquinolones, Rifampicin, Glycopeptides, and Nitrofurans. One hundred and forty Kunming mouse of clean grade of each sex were equally divided into 7 groups, fed the different eight strains at dose based on the maximum achievable concentration (>1010 CFU·mL-1) and the maximum dose volume (15 g·Kg-1). We observed no adverse effects and no deaths after 20 days. Necropsy showed no anomalous findings. Isolates were cultured onto MRS agar plates containing rifampicin to gain the rifampicin-resistant isolates. The rifampicin-resistant isolates were resuspended to a dose of 109 CFU·mL-1. Five mL resuspended isolates were administered to dogs for 10 days. Canine faecal pellets were collected prior to feeding (Day 0) and on Days 1,5,10,15, and 20. The CFU·g-1 was determined by plating onto MRS agar containing rifampicin, in order to facilitate uncomplicated identification of the rifampicin-resistant isolates from all other LAB. Prior to feeding rifampicin-resistant isolates, no rifampicin-resistant isolates were detected on culture plates. No significant difference was observed between transit levels on d 1,5, or 10 (P>0.05). Ten days after the experiments, the rifampicin-resistant isolates also could be isolated from the faecal pellets. Significant differences were observed between the faecal pellets on d 10,15, or 20 (P<0.05). CL72 and CS21 were selected for the next experiment. These 2 isolates were identified based on 16S rRNA sequence analysis. Contrasting the 16S rRNA sequence in the data base (GenBank+EMBL+DDBJ+PDB), the result showed that the CL72 belong to Enterococcus faecium, and CS21 belong to Lactococcus subsp. lactic. Sequence analysis of CL72 and CS21 were submitted to GenBank. The access numbers in data base (GenBank+EMBL+DDBJ+PDB) were JF895185 (CL72) and JF895186 (CS21), individually. These results were consistent with the results of commercial biochemical assay. These two isolates were chosen for next experiment.
     Experiment 5 Establishment of hyperoxaluria and calcium oxalate calculus models in canie Two concentrations of oxalate were used to build the animal models. The urine calcium, urine oxalate, urine BUN, urine CA, serum BUN, and serum CA were detected on d 0,15, and 30. And when the experiment finished, the histopathological changes of kidney were monitored. The result showed that the urine specific gravity of 1% oxalate group significantly increased on d 15 (P< 0.05), while the urine specific gravity of 0.5% oxalate group significantly increased on d 30 (P<0.05). The urine pH of both oxalate concentrations group significantly decreased on d 15 (P<0.05). On d 15 and d 30, the serum calcium significantly decreased when compared to the control group (P<0.05); and the serum calcium of 1% oxalate group significantly decreased than 0.5% group (P< 0.05). The serium BUN and serium CA of 0.5% group showed no difference among d 0,15, and 30 (P>0.05); while the serum BUN and CA of 1% significantly increased on d 15 (P< 0.05). On d 15, the urine calcium of 1% group significantly increased (P<0.05) when compared to the control group; while on d 30, the urine calcium of two group both increased significantly (P<0.05). On d 15 and d 30, the urine oxalate concentration of both oxalate concentration group significantly increased (P<0.05), and the urine oxalate concentration of 1% group were significiantly higher than that of 0.5% group. On d 15, the urine BUN and the urine CA showed no difference with the control group (P>0.05); while on d 30, the urine BUN and CA of 1% oxalate group showed significiantly increase (P< 0.05). The crystal in 1% oxalate group were piling and connecting. The epithelial cells were swelling, degeneration, necrosis, lumen significiantly expansed.
     Experiment 6 In vivo oxalate degradation of selected oxalate-degrading bacteria in a canine model Thirty local dogs were randomly allotted to groups A, B, C, D, E. Group A was designed as control group and only fed with commercial canine food,0.5% oxalate was provided in group B,0.5% oxalate+Enterococcus faecium (CL72) was provided in group C,0.5% oxalate+Lactococcus subsp. lactic (CS21) was provided in group D, and 0.5% oxalate+mixture was provided in group E. Blood and urine samples were collected to analyze the concentration of Ca, BUN, CA, oxalate. The results showed that during the experiment, the urine specific gravity of the three oxalate-degrading LAB groups showed no difference(P>0.05). The urine oxalate concentration in CL72 and mixture isolate group showed significiant decreased than the 0.5% oxalate group. The urine BUN, urine CA, serum BUN, serum CA in all of the three oxalate-degrading LAB showed no difference with the 0.5% oxalate group (P>0.05). On d 30, the urine calcium of the three oxalate-degrading LAB group showed significiant decrease (P<0.05), while the serum calcium showed no difference (P>0.05).
引文
[1]Basavaraj D R, Biyani C S, Browning AJ, et al The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones [J]. EAU-EBU update series,2007, 5:126-136
    [2]Ogawa Y, Miyazato T, Hatano T. Oxalate and urinary stones [J]. World J. Surg.2000,24:1154-1159
    [3]Holmes R P. Oxalate synthesis in humans:assumptions, problems, and unresolved issues [J]. Mol. Urol,2000,4:329-332
    [4]Yuen J W M, Gohel M D, Poon N W, et al The initial and subsequent inflammatory events during calciμm oxalate lithiasis [J]. Clin. Chimica Acta, Available online,2010
    [5]Penniston K L, Nakada SY. Effect of dietary changes on urinary oxalate excretion in hyperoxaluric calcium oxalate formers [J]. J. Urology,2008,4:480-481
    [6]Vanachayangkui P, Butterweck V D, Khan S R. Hyperoxaluria is reduced and crystal deposition prevented by a herbal extract in hyperoxaluric rats [J]. J. Urology,2009,4:523-531
    [7]Penniston K L, Nakada SY. Effect of dietary changes on urinary oxalate excretion and calciμm oxalate supersaturation in patients with hyperoxaluric stone formation [J]. Urology,2009,73: 484-489
    [8]张宇霞.产甲酸草酸杆菌OxC基因的克隆/测序及其核心区的原核表达[M].2007
    [9]Osborne C A, Lulich J P, Kruger J M, et al Analysisi of 451,891 canine uroliths, feline uroliths, and feline urethral plugs from 1981 to 2007:perpectives from the Minnesota urolith center [J]. Vet Clin Small Anim,2008,39:183-197
    [10]Stevenson A E, Hynds W K, Markwell P J. The relative effects of supplemental dietary calcium and oxalate on urine composition and calcium oxalate relative supersaturation in healthy adult dogs [J]. Res. Vet. Sci,2003,75:33-41
    [11]Sidhu H, Hoppe B, Hesse A, et al Absence of Oxalobacter formigenes in cystic fibrosis patients:A risk factor of hyperoxaluria [J]. Lancet,1998,352:1026-1029
    [12]Weese J S, Weese H E, Yuricek L, et al Oxalate degradation by intestinal lactic acid bacteria in dogs and cats [J]. Vet. Microbiol,2004,101:161-166
    [13]Murphy C, Murphy S, O'Brien F. Metabolic activity of probiotics-Oxalate degradation [J]. Vet. Microbiol,2009,136:100-107
    [14]Hokama S, Honma Y, Toma C, et al Oxalate-degrading Enterococcus faecalis. Microbiol [J]. Immunol,2000,44:235-240
    [15]Wang Y B, Tian Z Q, Yan J T, et al Effect of probiotics, Enteroccus faecium, on Tilapia (Oreochromis niloticus) growth performance and immune response [J]. Aquaculture,2008,277: 203-207
    [16]Foulquie Moreno M R, Sarantinopoulos P, Tsakalidou E, et al The role and application of enterococci in food and health [J]. International Journal of Food Microbiology,2006,106:1-24
    [17]Strompfova V, Laukova A, Ouwehand A C. Selection of enterococci for potential canine probiotic additives [J]. Veterinary Microbiology,2004,100:107-114
    [18]Lun S H, Willson P J. Expression of green fluorescent protein and its application in pathogenesis studies of serotype 2 Streptococcus suis [J]. J Microbio Methods,2004,56:401-412
    [19]Pinheiro L B, Gibbs M D, Vesey G, et al Fluorescent reference strains of bacteria by chromosomal integration of a modified green fluorescent protein gene [J]. Appl Microbiol Biotechnol,2008,77: 1287-1295
    [1]Ettinger S J, Feldman E C.Textbook of veterinary internal medicine (5th) [M]. Pliadelphia:W B Saunders Company,2000
    [2]张宁宁,刘伟,林德贵.犬尿石症流行现状的调查与分析[J].中国兽医杂志,2006,42(11):43-44
    [3]孙卫东,王金勇,刘永旺,等.南京地区犬尿石症的调查及尿结石成分的分析[J].中国兽医学报,2007,27(6):935-941
    [4]侯加法,小动物外科学[M].中国农业出版社,1995:158-161
    [5]陈白希,兽医x线诊断学[M].中国农业出版社,1994:186-187
    [6]工纯正,徐智章.超声诊断学(第二版)[M].人民卫生出版社,1998:302-327
    [7]Pressler B M, Mohammadian L A, Li E, et al In vitro prediction of canine urolith mineral composition using computed tomographic mean beam attenuation measurements [J]. Vet Radiol Mltrasound,2004,45 (3):189-197
    [8]Urolithiasis in dogs. IV:Survey of interrelations among breed, mineral composition, and anatomic location of calculi, and presence of urinary tract infection [J]. Am J Vet Res,1998,59 (5):650-660
    [9]Osborne C A, Polzin D J. Nonsurgical management of canine obstructive urolithopathy [J]. Vet Clin North Am Small Anim Pract,1986,16 (2):333-347
    [10]张秀明,现代临床生化检验学[M].北京:人民军医出版社,2001
    [11]Bailey C B.Silica metabolism and silica urolithiasis in Ruminants:A review [J]. Canadian Journal of Animal Science,1981,61 (2):219~235
    [12]J.Kevin Kealy Hester McAllister.谢富强主译,犬猫X线与B超诊断技术(第四版)[M].辽宁科学技术出版社,2006:86-118
    [13]Houston D M, Moore A E, Favrin M G, et al Canine urolithiasis:a look at over 16000 urolith submissions to the Canadian Veterinary Urolith Centre from February 1998 to April 2003 [J]. Can Vet J,2004,45 (3):225-230
    [14]李发志.犬泌尿道阴性结石的诊断与手术[J].畜牧与兽医,2001,06:28-29
    [15]钱蕴秋.超声诊断学[M].西安:第四军医大学出版社,2002,7
    [16]甘辉群,谭菊,刘明生,等.犬膀胱结石的影像诊断技术[J].畜牧与兽医,2007,39:37
    [17]孙卫东,王金勇,王小龙.饲喂棉饼致山羊尿结石的B超影像观察与临床应用[J].畜牧与兽医,2006,11:43-44
    [18]中国医学影像技术研究.X线CT诊断学[M].中国医学科技出版社,2006:528-532
    [19]曹履诚,章绍舜.尿石症基础与临床研究[M].济南:山东科学技术出版社,1990
    [20]叶章群,邓耀良,董诚.泌尿系结石[M].北京:人民卫生出版社,2003
    [21]Rose G A, Woodfine C. The thermogravimetric analysis of renal stones (in clinical practice) [J]. Brit J Urol,1976,48:403-407
    [22]Wang X L, Canfield J,Gallagher C H, et al Mltrastructure and chemical composition of calcite urinary calculi in Chinese swamp buffalo [J]. Research in veterinary science,1985,39:373-377
    [23]王志宏,徐学明,杜鹃,等.尿路结石成分与发样和土壤中有关元素相关性分析[J].吉林大学学报(医学版),2002,28(5):489-491
    [24]Manning R A, Blaney B J. Identification of uroliths by infrared spectroscopy [J]. Australian Veterinary Journal,1986,63 (12):393-396
    [25]孙卫东,王金勇,叶承荣,等.傅立叶变换红外光谱对动物尿结石成分的分析研究[J].扬州大学学报(农业与生命科学版),2006,27(2):1-3
    [26]王小龙,林承毅,张根娣,等.饲喂棉饼所致水牛尿结石化学组成与显微结构[J].南京农业大学学报,1993,16(增刊):127-133
    [27]Edwins R. The use of polarized light crystals in analysis of calculi and in the study of crystals in tissue A preliminary report on the method emplosed [J]. J Urol,2002,168:831-832
    [28]陈斌,白进良,陈一戊,等.原子力显微镜对泌尿系结石超微结构的研究[J].现代泌尿外科杂志,2002,7(4):205-208
    [29]沈绍基,宋天锐.阴极发光技术在尿石分析上的应用[J].中华泌尿外科杂志,1995,16(5):265-267
    [30]朱绍兴.生物化学和分子生物学技术在尿石症研究中的应用[J].国外医学泌尿系统分册,1998,18(1):38-40
    [31]林本夫,常树忠,原丽红,等.犬尿石症的诊治[J].畜牧与兽医,2005,04:42-43
    [32]杨万莲。犬尿道膀胱结石的诊治[J].中国兽医杂志,2004,40(1):38-39.
    [33]周秋平,金银姬,石益兵,等.56例犬尿结石的检验及成因分析[J].畜牧与兽医,2003,35(4):35-36
    [34]刘春燕,曹荣峰,杨蕊,等.犬膀胱结石的B-超诊断及治疗[J].黑龙江畜牧兽医,2002,10:27-28
    [35]高利,吕占军,张久宏,等.B型超声对北京小型犬膀胱的诊断研究[J].黑龙江畜牧兽医,2001,03:42-43
    [36]赵常喜,朱紫芳,秦声庆.低能量ESWL治疗尿路结石[J].皖南医学院学报,2006,03:23-25
    [37]Caywood D D, Osborne C A. Surgical removal of canine uroliths [J]. Vet Clin North Am Small Anim Pract,1986,16 (2):389-407
    [38]Kaplan A, Szabo L L, Ophein K E. Clinical chemistry interpretation and techniques [M].2nd edition,Philadelphia, Lea and Febiger.1979,125-128
    [39]李发志,胥洪灿.犬膀胱结石的诊治[J].中国兽医杂志,1998,24(6):55-56
    [40]刘永旺,钱存忠.手术治疗犬膀胱结石28例[J].畜牧与兽医,2002,34(12):29-30
    [41]卓国荣,丁明星.手术治疗公犬膀胱尿道结石[J].四川畜牧兽医,2006,32(12):51-52
    [1]Lulich J P, Osborne C A, Nagode L A, et al Evaluation of urine and serum metabolites in miniature schnauzers with calcium oxalate urolithiasis [J]. American Journal of Veterinary Research,1991,52: 1581-1590
    [2]Simpson D E. Citrate excretion:A window on renal metabolism [J]. American Journal of Physiology, 1983,244:223-234
    [3]Nakagawa Y, Abram V, Kezdy F J, et al Purification and characterization of the principal inhibitor of calcium oxalate monohydrate crystal growth in human urine [J]. Journal of Biological Chemistry, 1983,258:12594-12599
    [4]Deganello S. The interaction between nephrocalcin and Tamm-Horsfall proteins with calcium oxalate dehydrate [J]. Scanning Microscopy,1993,7:1111-1118
    [5]Holmes R P, Kennedy M. Estimantion of the oxalate content of foods and daily oxalate intake [J]. Kidney International,2000,57:1662-1667
    [6]Kumar R, Ghoshal U, Singh G., et al Infrequence of colonization with Oxalobacter formigenes in inflammatory bowel disease:possible role in renal stone formation [J]. J. Gastroenterol. Hepatol, 2004
    [7]Asplin J R, Favus A J, Coe F L. Nephrolithiasis. In:Brenner, B.M. (Ed.), The Kindey [J]. WB Saunders, Philadelphia,2000:1774-1819
    [8]Hagler L, Herman R H. Oxalate metabolism I [J]. Americal Journal of Clinical Nutrition,1973,26: 758-765
    [9]Menon M, Parular B G, Drach G W. Urinary lithiasis:etiology, diagnosis, and medical management. In:Walsh, P.C., Retik, A.B., Vaμghan, E.D. (Eds.), Campbells Urology. WB Saunders, Philadelphia, 1998:2661-2733
    [10]Holmes R P, Goodman H O, Assimos D G. Dietary oxalate and its intestinal absorption [J]. Scanning Microscopy,1995,9:1109-1120
    [11]Menon M, Mahle J. Oxalate metabolism and renal calculi [J]. J Urol,1982,127:148-151
    [12]Richardson K E, Farinelli M P. The pathways of oxalate biosynthesis [M]. In:Smith L H, Robertson W q Finlayson B. Eds. Uroliathiasis:clinical and basic research. New York:Plenum Press,1981: 855-863
    [13]Hesse A, Steffes H L, Graf C. Pathogenic factors of urinary stone formation in animals [J]. J. Anim. Phys. Anim. Nutr,1998,80:108-119
    [14]Osborne C A, Lulich J P, Kruger J M, et al Analysisi of 451,891 canine uroliths, feline uroliths, and feline urethral plugs from 1981 to 2007:perpectives from the Minnesota urolith center [J]. Vet Clin Small Anim,2008,39:183-197
    [15]Buffington C A, Chew D J. Intermittent alkaline urine in a cat fed an acidifying diet [J]. J. Am. Vet. Med.Assoc,1996,209:103-104
    [16]Hodgkinson A. Oxalic Acid in Biology and Medicine [M]. Academic Press, London,1977
    [17]Stevenson A E, Hynds W K, Markwell P J. The relative effects of supplemental dietary calcium and oxalate on urine composition and calcium oxalate relative supersaturation in healthy adult dogs [J]. Res. Vet. Sci,2003,75:33-41
    [18]Bai S C, Sampson D A, Morris J G, et al Vitamin B6 requirement of growing kittens [J]. Journal of Nutrition,1989,119:1020-1027
    [1]Metchnikoff E. Optimistic studies [M]. New York:Putman's Sons,1908:161-183
    [2]Lilly D M, Stillwell R H. Growth 2 promoting factors produced by microorganisms [J]. Science, 1965,147:747-748
    [3]Parker R B. Probiotics, the other half of the antibiotic story [J]. Anim. Nutr. Health,1974,29:4-8
    [4]Fuller R. Probiotics in man and animals [J]. Appl Bacterial,1989,66:365-378
    [5]Havenaar R, Brink T B. Probiotics:a general view:Lactic acid bacteria in health and disease:The Science Basis [M]. Chapman& Hall,1992:209-224
    [6]Salminen S, Isolauri E, Salminen E. Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges [J]. Antonie Van Leeuwenhoek,1996,70 (2):347-358
    [7]Guarmer F, Schaafsma G J. Probiotics [J]. Int J Food Microbiol,1998,39:237-238
    [8]小学馆,上野川,修一.免疫肠内细菌[M].平凡社,2003
    [9]方立超,魏泓.益生菌的研究进展[J].中国生物制品学杂志,2007,20(6):463-466
    [10]张董燕,季海峰,徐炜玲.益生菌对动物肠道微生物生态学影响的研究进展[J].中国畜牧兽医,2007,34(3):15-17
    [11]郭兴华.益生菌基础与应用[M].北京:化学工业出版社,2002:12-25
    [12]Douglas L C, Sanders M E. Probiotics and prebiotics in dietetics practice [J]. J Am Diet Assoc, 2008,108:510-521
    [13]任贵强.乳酸菌抗感染与影响肠道菌群的研究[D].内蒙古内蒙古农业大学,2006
    [14]Piano M D, Morelii L M, Strozzi G P, et.al Probiotics:from research to consumer [J]. Digest Liver Dis,2006,38 (2):S248-S255
    [15]Tovar D, Zambonino J, Cahu C, et al Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae [J]. Aquaculture,2002,204: 113-123
    [16]Guerra N P, Bernardez P F, Mendez J, et al Production of four potentially probiotic lactic acid bacteria and their evaluation as feed additives for weaned piglets [J]. Anim Feed Sci Tech,2007, 134 (1-2):89-107
    [17]苏勇,姚文,朱伟云.益生菌Lactobacil lusamylovorus Sl对仔猪后肠菌群的影响[J].微生物学报,2006,46(6):961-966
    [18]张董燕,季海峰,徐炜玲.益生菌对动物肠道微生物生态学影响的研究进展[J].中国畜牧兽医,2007,34(3):15-17
    [19]Guarner F, Malagelada J. Gut flora in health and disease [J]. The Lancet,2003,360:512-519
    [20]Haberer P, du Toit M, Dicks L.M.T. et al Effect of potentially probiotic lactobacilli on feacal enzyme activity in minipigs on a high fat, high-cholesterol diet-a preliminary in vivo trial [J]. Int Food Micro,2003,27:1-5
    [21]Matar C, Nadathur S S, TBakalinsky A, et al Antimutagenic Effects of milk fermented by Ladtobacillus helveticus L89 and a protease-deficient derivative [J]. J Dairy Sci,1997,80: 1965-1970
    [22]Zabala M R, Martin A L, Haza L, et al Anti-proliferative effect of two lactic acid bacteria strains of human origin on the growth of a myeloma cell line [J]. Lett Appl Microbiol,2001,32(4):287-292
    [23]白天红,孟祥晨.益生菌制剂及其发酵性乳制品[J].中国乳品工业,2004,32(8):32-34
    [24]赵佳锐,杨虹.益生菌降解胆固醇的作用及机理研究进展[J].微生物学报,2005,45(2):315-319
    [25]张德珍,潘道东,戴传超.一株降胆固醇乳酸菌的鉴定及其在模拟胃肠环境中抗性的研究[J].食品科学,2004,25(11):281-284
    [26]Mittal D, Kumar R. Gut-Inhabiting Bacterium Oxalobacter formigenes:Role in Calcium Oxalate Urolithiasis [J]. Journal of Endourology,2004,18 (5):418-424
    [27]Asplin J R, Favus A J, Coe F L. Nephrolithiasis [M]. In:Brenner, BM. (Ed.), The Kidney. WB Saunders, Philadelphia,2000:1774-1819
    [28]Blumenfrucht M J, Cheeks C, Wedeen R P. Multiorgan crystal deposition following intravenous oxalate infusion in rat [J]. J Urol,1986,135 (6):1274-1279
    [29]Robertson W G, Peacock M, Heyburn P J. The significance of mild hyperoxaluria in calcium stone-formation. In raose GA, Robertson WG, Watts REW (eds):Oxalate in Human Biochemistry and Clinical Pathology [J]. London. The Wellcome Foundatin,1979,173
    [30]Williams H E, Wandzilak T R. Oxalate synthesis transport and hyperoxaluric syndromes [J]. J. Urol, 1989,141:742-747
    [31]Holmes R P, Goodman H O, Assimos D G. Contribution of dietary oxalate to urinary oxalate excretion [J]. Kidney Int,2001,59:270-276
    [32]Holmes R P. Oxalate synthesis in humans:Assumption, problems and unresolved issues [J]. Mol Urol,2000,4:329
    [33]Wedeen R P, Levendoglu-Tugal O, Batuman V, Cheeks C. Oxalate accumulation in rat renal cortical slices [J]. Proc Soc Exp Biol Med,1984,177 (1):120-125
    [34]叶章群,邓耀良,董诚.泌尿系结石[M].北京:人民卫生出版社,2003
    [35]Williams H E, Wandzilak T R. Oxalate synthesis, transport and the hyperoxaluric syndromes [J]. J Urol,1989:141-742
    [36]Mittal R D, Kumar R, Bid H K, et al Effect of antibiotics on Oxalobacter formigenes of human gastrointestinal tract [J]. J Endourol,2005,19 (1):102-106
    [37]Allison M J, Dawson K A, Mayberry W R, et al Oxalobacter formigenes gen.nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract [J]. Arch Microbiol,1985,141 (1): 1-7
    [38]蔡妙英.细菌名称[M].北京:科学出版社,1996
    [39]蔡妙英,卢运玉,赵玉峰.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    [40]Dehning L, Schink B. Two new species of anaerobic oxalate-fermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov., from sediment samples [J]. Arch. Microbiol,1989,153:79-84
    [41]Smith R L, Strohmaier F E, Oremland R S. Isolation of anaerobic oxalate-degrading bacteria from freshwater lake sediments [J]. Arch. Microbiol,1985,141:8-13
    [42]Daniel S L, Hartman P A, Allison M J. Microbial degradation of oxalate in the gastrointestinal tracts of rats [J]. Appl. Environ. Microbiol,1987,53:1793-1797
    [43]Smith L H. The pathophysiology and medical treatment of urolithiasis [J]. Semin Nephol,1990,10: 31-52
    [44]Dawson K A, Allison M J. Hartman P A. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from rumen [J]. Appl Environ Microbiol,1980,40:833-839
    [45]Daniel S L, Hartman P A, Allison M J. Microbial degradation of oxalate in the gastrointestinal tracts of rats [J]. Appl. Environ. Microbiol,1987,53:1793-1797
    [46]Doane L A, Liebman M, Caldwell D R. Microbial oxalate degradation:effects on oxalate and calcium balance in humans [J]. Nutr Res,1989,9:957-964
    [47]Smith R L, Strohmaier F E, Oremland R S. Isolation of anaerobic oxalate-degrading bacteria from fresh water lake sediments [J]. Arch Microbiol,1985,141:8-13
    [48]Jensen N S, Allison M J. In Abstracts of the 94th General Meeting of the American Society for Microbiolog:Studies on the diversity among anaerobic oxalate-degrading bacteria now in the species Oxalobacter formigenes [C].1994, Abstr.I-12:255
    [49]Sidhu H, Allison M, Peck A B. Identification and classification of Oxalobacter formigenes strains by using oligonucleotide probes and primers [J]. J Clin Microbiol,1997,35 (2):350-353
    [50]韩见知,章咏裳,李家贵.肠道食草酸杆菌与草酸钙结石的关系[J].中华泌尿外科杂志,1995,16(6):366-367
    [51]陈志强,郭辉,叶章群,等.人肠道产草酸甲酸杆菌的分离培养[J].中国试验外科杂志,2005,22(11):1402-1403
    [52]Kleinschmidt K, Mahlmann A, Hautmann R. Anaerobic oxalate degrading bacteria in the gut decreases faecal and urinary oxalate concentrations in stone formers [M]. In:Ryall R, Bais R, Marshall V R, Rofe A M, Smith L H, Walker V R (eds):Urolithiasis 2. New York:Plenum Press, 1993:439-441
    [53]Sidhu H, Schmidt M E, Cornelius J G, et al Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gutrecolonization or enzyme replacement therapy [J]. J AM Soc Nephrol, 1999,14:334-340
    [54]Kwak C, Jeong J H, Lee, et al Molecular identification of Oxalobacter formigenes with the polymerase chain reaction in fresh or frozen fecal samples [J]. BJU Int,2001,88:627-632
    [55]Kumar R, Mukherjee M, Bhandari M, et al Role of Oxalobacter formigenes in calcium oxalate stone disease:A study from North India [J]. Eur Urol,2002,41:318-322
    [56]Troxell S A, Sidhu H, Kaul P, et al Oxalobacter formigenes colonization of calcium oxalate formers and its relation in to urinary oxalate [J]. J Endourol,2003,17:173-176
    [57]Sidhu H, Allison M J, Chow J M, et al Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes [J]. J Urol,2001,166:1487-1491
    [58]Baetz A L, Allison M J. Purification and characterization of formyl-coenzyme A transferase from Oxalobacter formigenes [J]. J Bacteriol,1990,172 (7):3537-3540
    [59]Baetz A L, Allison M J. Purification and characterization of oxalyl-coenzyme A transferase from Oxalobacter formigenes [J]. J Bacteriol,1989,171 (5):2605-2608
    [60]Ruan Z S, Anantharam V, Crawford I T, et al Identification, purification and reconstitution of OxlT, the oxalate:formate antiport protein of Oxalobacter formigenes [J]. J Biol Chem,1992,267: 10537-10543
    [61]Cornick N A, Allison M J. Assimilation of oxalate, acetate, and CO2 by Oxalobacter formigenes [J]. Can J Microbiol,1996,42:1081-1086
    [62]Duncan S H, Richardson A J, Kaul P, et al Oxalobacter formigenes and its potential role in human health [J]. Appl Environ Microbiol,2002,68 (8):3841-3847
    [63]Sidhu H, Hoppe B, Hesse A, et al Absence of Oxalobacter formigenes in cystic fibrosis patients:a risk facter for hyperoxaluria [J]. Lancet,1998,352 (9133):1926-1029
    [64]Marteau P. Survival of lactic acid bacteria in a dynamic modle of the stomach and small intestine: validation and the effects of bile [J]. J Dairy Sci,1997,80:1031-1037
    [65]顾欣.肠道菌群与草酸钙结石的形成[J].国外医学泌尿系统分册,2004,24(4):103-106
    [66]Kumar R, Ghoshal U C, Singh G, et al Infrequency of colonization with Oxalobacter formigenes in inflammatory bowel disease:possible role in renal stone formation [J]. J Gastroenteral Hepatol, 2004,19(12):1403-1409
    [67]Schleifer K H, Kilpper-Balz R. Transfer of Streptococcusfaecalis and Streptococcus faecium to the genus Enterococcusnom. rev. as Enterococcus faecalis comb. nov. and Enterococcusfaecium comb. nov [J]. Int. J. Syst. Bacteriol,1984,34:31-34
    [68]Devriese L A, Pot B, Collins M D. Phenotypic identificationof the genus Enterococcus and differentiation of phylogeneticallydistinct enterococcal species and species groups [J]. J. Appl. Bacteriol,1993,75:399-408
    [69]Devriese L A, Pot B. The genus Enterococcus. In:Wood, B.J.B., Holzapfel, W.H. (Eds.), The Lactic Acid Bacteria. The Genera of Lactic Acid Bacteria [J]. Blackie Academic,1995,2:327-367
    [70]Hokama S, Honma Y, Toma C, et al Oxalate-degrading Enterococcus faecalis [J]. Microbiol. Immunol.2000,44:235-240
    [71]金世彬.乳酸菌的科学与技术[J].中国乳品工业,1998,26(2):14
    [72]杨洁彬,郭兴华,张篪,等.乳酸菌-生物学基础及应用[M].北京:中国轻工业出版社,1996
    [73]凌代文,东秀珠.乳酸细菌分类鉴定及试验方法[M].北京:中国轻工业出版社,1999
    [74]Campieri C, Campieri M, Bertuzzi V, et al Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration [J]. Kidney Int,2001,60:1097-1105
    [75]Weese J S, Palmer A. Presence of Oxalobacter formigenes in the stool of healthy dogs [J]. Veterinary Microbiology,2010,101:161-166
    [76]Kleerebezem M, Boekhorst J, van Kranenburg R, et al Complete genome sequence of Lactobacillus plantarum WCFS1 [J]. Proc Natl Acad Sci USA,2003,100:1990-1995
    [77]Pridmore R D, Berger B, Desiere,F, et al The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533 [J]. Proc Natl Acad Sci USA,2004,101:2512-2517
    [78]Altermann E, Russell W M, Azarate-Peril M A, et al Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM [J]. Proc Natl Acad Sci USA,2005,102: 3906-3912
    [79]Claesson M J, Li Y, Leahy S, et al Multireplicon genome architecture of Lactobacillus salivarius [J]. Proc Natl Acad Sci USA,2006,103:6718-6723
    [80]Turroni S, Vitali B, Bencazzoli C, et al Oxalate consumption by lactobacilli:evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus [J]. J. Appl. Microbiol,2007,103:1600-1609
    [81]Devriese L A, Hommez J, Wijfels R, et al Composition of the enterococcal and streptococcal intestinal flora of poultry [J]. J. Appl. Bacteriol,1991,71:46-50
    [82]Strompfova V, Laukova A, Ouwehand A C. Selection of enterococci for potential canine probiotic additives [J]. Vet. Microbiol,2004,100:107-114
    [83]Mittal R D, Kumar R K. Gut-inhabiting bacterium Oxalobacter formigenes:role in calcium oxalate urolithiasis [J]. J. Endurology,2004,18:418-424
    [84]Wang Y B, Tian Z Q, Yao J T, et al Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response [J]. Aquaculture,2008,277: 203-207
    [85]Advisory Committee on Novel Foods and Process,1996. Report on Enterococcus faecium strain K77D MATF. Advisory Committee on Novel Food and Processes. Ergon House and Nobel House, 17 Smith Square, London SW13JR, UK.
    [86]Giraffa G, Sisto F. Susceptibility to vancomycin of enterococci isolated from dairy products [J]. Letter Applied Microbiology,1997,25:335-338
    [1]周秋平,金银姬,石益兵,等.56例犬尿结石的检验及成因分析[J].畜牧与兽医,2003,5(4):35-37
    [2]孙卫东,王金勇,刘家国,等.南京市犬尿石症的调查[J].中国兽医杂志,2007,43(1):43-44
    [3]Bove K C. Urolithiasis. In:Canine Nephrology [M]. Media, PA:Harwal,1984:355-379
    [4]侯加法.小动物临床营养学(犬尿石症分册)[M].南京:20-21
    [5]张宁宁,刘伟,林德贵.犬尿石症流行现状的调查与分析[J].中国兽医杂志,2006,42(11):41-42
    [6]叶章群,邓耀良,董诚.泌尿系结石[M].北京:人民卫生出版社,2003:40
    [7]Buffington C A, Chew D J. Intermittent alkaline urine in a cat fed an acidifying diet [J]. J.Am. Vet. Med.Assoc,1996,209:103-104
    [8]Hodgkinson A. Oxalic Acid in Biology and Medicine [M]. Academic Press:London:1977
    [9]Steven A E, Hynds W K, Maekwell P J, The relative effects of supplemental dietary calcium and oxalate on urine composition and calcium oxalate relative supersaturation in healthy adult dogs [J]. Res. Vet. Sci,2003,75:33-41
    [10]Hesse A, Steffes H J, Graf C, Pathogenic factors of urinary stone formation in animals [J]. J. Anim. Phys. Anim. Nutr,1998,80:108-119
    [11]Lekcharoensuk C, Osborne C A, Lulich J P, et al Association between dietary factors and calcium oxalate and magnesium ammoniun phosphate urolithiasis in cats [J]. J. Am.Vet. Med.Assoc,2001, 219:1228-1237
    [12]Thonpson M E, Lewir-Smith M R, Kalasinsky V F, et al Characterization of melamine containing and calcium oxalate crystals in three dogs with suspected pet food induced nephrotoxicosis [J]. Vet Pathol,2008,45 (3):417-426
    [13]穆洪云,董君艳,娄红军,等.犬尿石症的成因[J].中国工作犬业,2006,06:23-24
    [14]Osborne C A, Lulich J P, Kruger J M, et al Analysisi of 451,891 canine uroliths, feline uroliths, and feline urethral plugs from 1981 to 2007:perpectives from the Minnesota urolith center [J]. Vet Clin Small Anim,2008,39:183-197
    [15]潘丹丹,袁占奎,夏兆飞.109例犬下泌尿道结石症回顾性分析[J].中国兽医杂志,2009,45(2):61-62
    [16]沈向真,侯加法,王小龙.犬膀胱结石的化学成分分析研究[J].畜牧与兽医,2003,35(9):3-5
    [17]马风宁,何家扬.化学定性与红外光谱分析尿路结石成[J].现代泌尿外科杂志,2007,4:266-267
    [18]李云龙.南京地区206尿石标本化学成分分析[M].2006
    [19]廖茂良,范东波,陈怡丹.232例尿路结石的成分分析[J].浙江检验医学,2010,8(3):33-35.
    [20]Ettinger S J, Feldman E C. Textbook of veterinary internalmedicine (5th) [M]. Pliladelphia:W B Saunders Company,2000
    [21]Doreen M, Andrew E P, Michael G, et al Canine urolithiasis:A look at over 16000 urolith submissions to t he Canadian Veterinary Urolith Centre from February 1998 to April 2003 [J]. Can Vet J,2004,45:225-230
    [22]Chalermpol L, Jody P, Carl A, et al Patient and environmental factors associated with calcium oxalate urolithiasis in dogs [J]. J Am Vet Med Ass,2000,217 (4):515-519
    [1]Mittal R D, Kumar R K. Gut-inhabiting bacterium Oxalobacter formigenes:role in calcium oxalate urolithiasis [J]. J. Endurology,2004,18:418-424
    [2]Osborne C A, Lulich J P, Kruger J M, et al Analysisi of 451,891 canine uroliths, feline uroliths, and feline urethral plugs from 1981 to 2007:perpectives from the Minnesota urolith center [J]. Vet Clin Small Anim,2008,39:183-197
    [3]Wilson D M, Smith L H, Erickson S B, et al Renal oxalate handling in normal subjects and patients with idiopathic renal lithiasis:primary and secondary hyperoxaluria [M]. In:Walker VR, Sutton RAL, Cameron ECB, Pak CYC, Rogertson WG, eds. Urolithiasis, New York:Plenum,1989:453
    [4]Seftel A, Resnick M I. Metabolic evaluation of urolithiasis [J]. Urol Clin North Am,1990,17: 159-169
    [5]Ogawa Y, Miyazato T, Hatano T. Oxalate and urinary stones [J]. World J. Surg,2000,24:1154-1159
    [6]Sidhu H, Schmidt E M, Cornelius J G., et al Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract dwelling bacterium Oxalobacter formigenes: Possible prevention by gut recolonization or enzyme replacement therapy [J]. J. Am. Soc. Nephrol, 1999,110:334-340
    [7]Sidhu H, Allison M J, Chow J M, et al Rapid reversal of hyperoxaluria in a rat model after probiotic administration of oxalobacter formigenes [J]. J. Urol,2001,166:1487-1491
    [8]Campieri C, Campieri M, Bertuzzi V, et al Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration [J]. Kidney Int,2001,60:1097-1105
    [9]Hoppe B, Beck B, Gatter N, et al Oxalobacter formigenes:a potential tool for the treatment of primary hyperoxaluria type 1 [J]. Kidney Int,2006,70:1305-1311
    [10]Allison M J, Dawson K A, Mayberry W R, et al Oxalobacter formigenes gen. nov., sp. nov.:oxalate degrading anaerobes that inhabit the gastrointestinal tract [J]. Arch. Microbiol,1985,141:1-7
    [11]Cornelius J G, Peck A B. Colonization of the neonatal rat intestinal tract from environmental exposure to the anaerobic bacterium Oxalobacter formigenes [J]. J. Med. Microbiol,2004,53: 249-254
    [12]Kwak C, Jeong B C, Lee J H, et al Molecular identification of Oxalobacter formigenes with the polymerase chain reaction in fresh or frozen fecal sample [J]. BJU Int,2001,88:627-632
    [13]Weese J S, Weese H E, Yuricek L, et al Oxalate degradation by intestinal lactic acid bacteria in dogs and cats [J]. Vet. Microbiol,2004,101:161-166
    [14]Kwak C, Kim H K, Kim E C, et al Urinary oxalate levels and the enteric bacterium Oxalobacter formigenes in patients with calcium oxalate urolithiasis [J]. European Urology,2003,44:475-481
    [15]Sidhu H, Enatska L, Ogden D S, et al Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formigenes, using a polymerase chain reaction based detection system [J]. Mol. Diagn,1997,2:89-97
    [16]Sidhu H, Hoppe B, Hesse A, et al Absence of Oxalobacter formigenes in cystic fibrosis patients:A risk factor of hyperoxaluria [J]. Lancet,1998,352:1026-1029
    [17]Murphy C, Murphy S, O'Brien F, et al Metabolic activity of probitics-Oxalate degradation [J]. Vet. Microbiol,2009,136:100-107
    [18]Hokama S, Honma Y, Toma C, et al Oxalate-degrading Enterococcus faecalis [J]. Microbiol Immunol,2000,44:235-240
    [19]Devriese L A, Hommez J, Wijfels R, et al Composition of the enterococcal and streptococcal intestinal flora of poultry [J]. J. Appl. Bacteriol,1991,71:46-50
    [20]Strompfova V, Laukova A, Ouwehand A C. Selection of enterococci for potential canine probiotic additives [J]. Vet. Microbiol,2004,100:107-114
    [21]Maia O B, Duarte R, Silva A M, et al Evaluation of the components of a commercial probiotic in gnotobiotic mice experimentally challenged with Salmonella enterica subsp. enterica ser [J]. Typhimurium. Vet. Microbiol,2001,79:183-189
    [22]Wang Y B, Tian Z Q, Yao J T, et al Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response [J]. Aquaculture,2008,277: 203-207
    [23]Giraffa G, Sisto F. Susceptibility to vancomycin of enterococci isolated from dairy products [J]. Letter Applied Microbiology,1997,25:335-338
    [24]Advisory Committee on Novel Foods and Process. Report on Enterococcus faeciμm strain K77D MATF. Advisory Committee on Novel Food and Processes. Ergon House and Nobel House,17 Smith Square, London SW13JR, UK.1996
    [25]Zentek J. Bakterienflora des caninen Intestinaltrakts [J]. Kleintierpraxis,2000,45:523S-534S
    [26]Suchodolski J S, Ruaux C G., Steiner J M, et al Assessment of the qualitative variation in bacterial microflora among compartments of the intestinal tract of dogs by use of a molecular fingerprinting technique [J]. Am. J. Vet. Res,2005,66:1556-1562
    [27]Turroni S, Vitali B, Bencazzoli C, et al Oxalate consμmption by lactobacilli:evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus [J]. J. Appl. Microbiol,2007,103:1600-1609
    [28]Jonsson S, Ricagno S, Lindqvist Y, et al Kinetic and mechanistic characterization of the formyl-CoA transferase from Oxalobacter formigenes [J]. J. Biol Chem,2004,279:36003-36012
    [29]Berthold C L, Moussatche P, Richards N G J, et al Structural bases for activation of the thiamine diphosphate-dependent enzyme oxalyl-CoA decarboxylase by adenosine diphosphate [J]. J. Biol Chem,2005,280:41645-41654
    [30]Kleerebezem M., Boekhorst J, van Kranenburg R, et al. Complete genome sequence of Lactobacillus plantarum WCFS1 [J]. Proc Natl Acad Sci USA,2003,100:1990-1995
    [31]Pridmore, R D, Berger B, Desiere F, et al The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533 [J]. Proc Natl Acad Sci USA,2004,101:2512-2517
    [32]Altermann E, Russell W M, Azarate-Peril MA, et al Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM [J]. Proc Natl Acad Sci USA,2005,102: 3906-3912
    [33]Claesson M J, Li Y, Leahy S, et al Multireplicon genome architecture of Lactobacillus salivarius [J]. Proc Natl Acad Sci USA,2006,103:6718-6723
    [1]Campieri C, Campieri M, Bertuzzi V, et al Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration [J]. Kidney Int,2001,60:1097-1105
    [2]Weese J S, Weese H E, Yuricek L, et al Oxalate degradation by intestinal lactic acid bacteria in dogs and cats [J]. Vet. Microbiol,2004,101:161-166
    [3]Murphy C, Murphy S, O'Brien F, et al Metabolic activity of probitics-Oxalate degradation [J]. Vet. Microbiol,2009,136:100-107
    [4]Hokama S, Honma Y, Toma C, et al Oxalate-degrading Enterococcus faecalis [J]. Microbiol. Immunol,2000,44:235-240
    [5]Berg, R D. Bacterial translocation from the gastrointestinal tract [J]. Trends in Microbiology,1995,3: 149-154
    [6]Dimroth P, Schink B. Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria [J]. Arch. Microbiol,1998,170:69-77
    [7]Mittal, R D, Kumar, R K. Gut-inhabiting bacterium Oxalobacter formigenes:role in calcium oxalate urolithiasis [J], J. Endurology,2004,18:418-424
    [1]Guarner F, Schaafsma G.J. Probiotics [J]. Int J Food Microbiol,1998,39 (3):237-238
    [2]方立超,魏泓.益生菌的研究进展[J].中国生物制品学杂志,2007,20(6):463-466
    [3]Szajewska H, Skorka A, Ruszczynski M, et al Meta-analysis:Lactobacillus GG for treating acute diarrhea in children [J]. Aliment Pharmacol Ther,2007,25 (8):871-881
    [4]Jin L Z, Marquardt R R, Baidoo S K. Inhibition of Enterotoxigenic Escherichia coli K88, K99 and 987P by the Lactobacillus isolates from Porcine Intestine [J]. J Sci Food Agr,2000,80:619-624
    [5]Perdigon G, Vintini E, Alvarez S, et al Study of the Possible mechanisms involved in the mucosal immune system activation by Lactic acid bacteria [J]. J Diary Sci,1999,82:1108-1114
    [6]Balcazar J L, de Blas I, Ruiz-Zarzuela I, et al Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta) [J]. Br J Nutr,2007,97 (3):522-527
    [7]Taranto M P, Medici M, Perdigon G, et al Effect of Lactobacillus reuteri on the prevention of hypercholesterolemia in mice [J]. J Dairy Sci,2000,83:401-403
    [8]孟和毕力格,张和平,陈永福,等.嗜酸乳杆菌MG2-1对大鼠血清脂质代谢的影响研究[J].微生物学报,2005,45(6):865-870
    [9]Zabala M R, Martin A L, Haza L, et al Anti-proliferative effect of two lactic acid bacteria strains of human origin on the growth of a myeloma cell line [J]. Lett Appl Micrbiol,2001,32 (4):287-292
    [10]胡东良.乳酸菌的抗肿瘤、抗变异原及免疫增强作用[J].中国乳品工业,1997,25 (6):11-14
    [11]Devriese, L A, Hommez, J, Wijfels, R., et al Composition of the enterococcal and streptococcal intestinal flora of poultry [J]. J. Appl. Bacteriol,1991,71:46-50
    [12]Strompfova, V, Laukova, A, Ouwehand, A C. Selection of enterococci for potential canine probiotic additives [J]. Vet. Microbiol,2004,100:107-114
    [13]Maia, O B, Duarte, R, Silva, A M, et al Evaluation of the components of a commercial probiotic in gnotobiotic mice experimentally challenged with Salmonella enterica subsp. enterica ser [J]. Typhimurium. Vet. Microbiol,2001,79:183-189
    [14]Wang, Y B, Tian, Z Q, Yao, J T, et al Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response [J]. Aquaculture,2008,277: 203-207
    [15]Giraffa G, Sisto F. Susceptibility to vancomycin of enterococci isolated from dairy products [J]. Letter Applied Microbiology,1997,25:335-338
    [16]Advisory Committee on Novel Foods and Process. Report on Enterococcus faecium strain K77D MATF. Advisory Committee on Novel Food and Processes. Ergon House and Nobel House,17 Smith Square, London SW13JR, UK.1996
    [17]Matsuzaki T, Yamazaki R, Hashimoto S, et al The effect of oral feeding of Lactobacillus casei strains Shirota on immunoglobulin E production in mice [J]. J Dairy Sci,1998,81 (1):48-53
    [18]FAO/WHO Health and Nutritional Properties of Probiotics in Food including Power Milk with Live Lactic Acid Bacteria. Report of a Joint FAO/WHO Expert Consultion on Evaluation of Health and Nutritional Propertries of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, 2001
    [19]Murphy C, Murphy S, O'Brien F, et al Metabolic activity of probitics-Oxalate degration [J]. Vet. Microbiol,2009,136:100-107
    [20]Floch M H, Binder H J, Filburn B, et al The effect of bile acids on intestinal microflora [J]. Am J Clin Nutr,1972,25:1418-1426
    [21]Sander M E, Walker D C, Walker K M. Performance of commercial cultures in fluid milk application [J]. J Dairy Sci,1996,79:943-955
    [22]Gilliland S E, Walker D K. Factors to consider when selecting a culture of Lavtobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans [J]. J Dairy Sci,1990,73: 905-911
    [23]Madden J A J, Plummer S F, Tang J, et al Effect of probiotics on preventing disruption of the intestinal microflora following antibiotic therapy:a double-blind, placebo-controlled pilot study [J]. International Immunopharmacology,2005,5:1091-1097
    [24]Sullivan A, Nord C E. Probiotics and gastrointestinal diseases [J]. Journal of Internal Medicine, 2005,257:78-92
    [25]Saarela M, Mogensen G, Fonden R, et al Probiotics bacteria:safety, functional and technological properties [J]. Journal of Biotechnology,2000,84:197-215
    [26]Jorgensen J H, Hindler J F. New consensus guidelines from the clinical and laboratory standards institute for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria [J]. Clinical Infectious Diseases,2007,44:280-286
    [27]陈志辉,俞月琴.抗菌药物临床应用新论[M].上海:同济大学出版社,1994:168
    [28]冯大伟,周家春.益生乳酸菌的纸片扩散法药敏性试验评价[J].微生物学通报,2010,37(3):454-464
    [29]刘汉明.抗生素的合理应用[M].西安:陕西科学技术出版社,1981:250
    [30]Woodford N, Johnson A P, Morrison D, et al Current perspective on glycopeptides resistance [J]. Clinical Microbiology Reviews,1995,8:585-615
    [31]胡兴戎.糖肽类抗生素的作用机制及肠球菌的糖肽耐药机制[J].国外医药抗生素分册,2001,22(3):116-120
    [32]李平兰,潘伟好,吕燕妮,等.微生态制剂中常用乳酸菌对抗生素的药敏性研究[J].中国农业大学学报,2004,9(1):16-20
    [33]张秀珍,主编.当代细菌检验与临床[M].北京:人民卫生出版社,1999
    [34]Katla A K, Kruse H, Johnsen G, et al Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products [J]. International Journal of Food Microbiology,2001,67:147-152
    [35]Zhou J S, Pillidge C J, Gopal P K, et al Antimicrobial susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains [J]. International Journal of Food Microbiology,2005,98: 211-217
    [36]张芳,李玉敏,崔会景.79株肠球菌耐药特点分析[J].中华医院感染学杂志,2006,16(2):229-231
    [37]郭绪平.110株粪肠球菌的分布及耐药性分析[J].检验医学与临床,2006,3(1):7-8
    [38]鲁辛辛,刘向玮,李大为.微生物基因分类鉴定的方法学进展[J].中国试验诊断学,2003,7(3):201-206
    [39]洪帮兴,江丽芳,胡玉山,等.23S rRNA基因序列分析及其在细菌鉴别诊断中的应用[J].中华微生物学和免疫学杂志,2004,24(3):241
    [40]Lane DJ.16S/23S rRNA sequencing [M]. In:Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester,1991:115-175
    [41]Claudia M, Jaime R, Romilio T. Espejo. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio [J]. Microbiology,2002,148: 1233-1239
    [42]GB 15193.3--2003.食品安全性毒理学评价程序和方法[S].北京:中国标准出版社,2003:17-23
    [43]孙洁宇,高鹏飞,麻士卫,等.益生菌Lactobacillus casei Zhang冻干粉对小鼠急性毒性的研究[J].中华农业科技导报,2009,11(5):77-82
    [44]梁春梅,高鹏飞,陈震,等.益生菌B.animalis V9冻干粉安全性毒理学研究[J].中华微生物态学杂志,2010,22(6):481488
    [1]Lyon E S, Borden T A, Vermeulen C W. Experimental oxalate lithiasis produced with ethylene glycol [J]. Invest Urol,1966,4(2):143-151
    [2]De W R, Boeve E R, Van M P P, et al Experimental nephrolithiasis in rat s:the effect of ethylene glycol and vitamin D3 on the induct ion of renal calcium oxalate crystals [J]. Scanning Microsc, 1996,10 (2):591-601
    [3]Pragasam V, Kalaiselvi P, Sμmitra K, et al Counteraction of oxalate induced n it rosative stress by supplement at ion of L2 arginine, a potent antilithic agent [J]. Clin Ch im Acta,2005,354 (122): 159-166
    [4]Marengo S R, Chen D H, Kaung H L, et al. Decreased renal expression of the putative calcium oxalate inhibitor Tamm Horsfall protein in the ethylene glycol rat model of calcium oxalate urolithiasis [J]. J U rol,2002,167 (5):2192-2197
    [5]Miyake O, Yoshioka T, Yoshimura K, et al Expression of Tamm Horsfall protein in stone-forming rat models [J]. Br J Uro,1998,81:14-19
    [6]Itoh Y, Yasui T, Okada A, et al Preventive effect s of green tea on renal stone formation and the role of oxid at ivestress in nephrolithiasis [J]. J Urol,2005,173 (1):271-275
    [7]邓耀良,李山,吴闯,等.芭蕉芯和维生素B6对小鼠草酸钙结晶的抑制作用[J].中华泌尿外科杂志,1996,17(2):103-105
    [8]曹正国,刘继红,段永芳,等.几种试验性大鼠肾草酸钙结石模型的比较研究[J].华中科技大学学报(医学版),2002,31(5):556-563
    [9]朱小南,潘敬运,胡本荣,等.膀胱结石大鼠模型和尿石通丸防治膀胱结石的作用[J].中药药理与临床,1997,13(6):42-44
    [10]Kumar S, Sigmon D, Miller T, et al A new model of nephrolithiasis involving tubular dysfunction/injury [J]. J Urol,1991,146:1384
    [11]Robertson W G. Risk factors in calcium stone disease of the urinary tract [J]. Brit J Urol,1978,50 (3):449-456
    [12]彭婕,田晶,谈恒山,等.饲料对大鼠尿液中草酸含量的影响[J].江苏药学与临床研究,2005,15(3):4-7
    [13]王叔咸,吴阶平.肾脏病学[M].北京:人民卫生出版社,1987:680-685
    [14]Koul H, Kennington L, Honeymen T, et al Activat ion of cmyc gene mediate the mitogenic effects of oxlate in LLC-PK1 cells, a line of renal epithelial cells [J]. Kidney Int,1996,50(5):1525-1530
    [15]Wiessner J H, Hasegawa A T, Hung L Y, et al Mechanisms of calcium oxalate crystal attachment to injured renal collecting duct cells [J]. Kidney Int,2001,59 (2):637-644
    [16]Thamilselvan S, Hackett R L, Khan S R. Lipid peroxidation in ethylene glycol induced hyperroxaluria and calcium oxalat e nephrolithiasis [J]. J Urol,1997,157(3):1059-1063
    [17]Huang H S, Chen C F, Chien C T, et al Possible biphasic changes of free radicals in ethylene glycol-induced nephrolithiasis in rat [J]. BJU Int,2000,85 (9):1143-1149
    [18]Grasel F, Gargia Ferragut L, Costa Bauza A, et al Development of calcium oxalate crystals on urothelium:effect of free radicls [J]. Nephron,1998,78 (3):296-301
    [1]Strzelecki T, Menon M. The uptake of oxalate by rat liver and kidney mitochondria [J]. J. Biol Chem, 1986,261 (26):12197-12201
    [2]Campieri C, Campieri M, Bertuzzi V, et al Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration [J]. Kidney Int,2001,60 (3):1097-1105
    [3]Sarica K, Erbagci A, Yagci F, et al Limitation of apoptotic changes in renal tubular cell injury induced by hyperoxaluria [J]. Urol Res,2004,32 (4):271-277
    [4]Kwak C, Jeong B C, Lee J H, et al Molecular identification of oxalobacter formigenes with the polymerase chain reaction in fresh or frozen fecal samples [J]. BJU Int,88:627
    [5]Hokama S, Honma Y, Toma C, Ogawa Y. Oxalate-degrading Enterococcus faecalis [J]. Micrebiol Immunol 2000,44:235
    [6]Smith L H. The pathophysiology and medical treatment of urolithiasis [J]. Semin Nephrol,1990,10: 31-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700