用户名: 密码: 验证码:
有机无机肥配施对土壤微生物与养分动态及作物生长的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用连续2年的田间小区试验,研究探明不同有机无机肥配施处理对作物生长的影响,并从土壤肥力、养分淋失和作物生理特性等方面揭示其作用机理,为猪粪型有机肥的应用,并减少环境污染提供科学依据。以氮素施用量为计算标准,分别以稻草、猪粪、沼渣沼液和猪粪堆肥与化肥配施,磷、钾折算,确保各处理N、P、K肥料施用量相等。双季稻试验共设8个处理:T1(10%的稻草N+90%的化肥N);T2(20%猪粪N+80%的化肥N);T3(20%猪粪堆肥N+80%的化肥N);T4(20%的沼渣沼液N+80%的化肥N);T5(10%的猪粪堆肥N+90%的化肥N);T6(30%猪粪堆肥N+70%的化肥N);T7(施纯化肥);CK(不施肥)。旱地试验采用春玉米-小白菜轮作,共设7个处理:Ta(20%的猪粪N+80%的化肥N);Tb(20%的猪粪堆肥N+80%的化肥N);Tc(20%的沼渣沼液N+80%的化肥N);Td(10%猪粪堆肥N+90%的化肥N);Te(30%的猪粪堆肥N+70%的化肥N);Tf(施纯化肥);CK(不施肥)。主要研究结果如下:
     1.与施纯化肥相比,有机无机肥配施可增加稻田和旱地土壤可培养微生物数量及土壤微生物量碳(SMNC)和土壤微生物量氮(SMBN)含量,提高SMNC向土壤有机碳(SOC)和SMBN向总氮(TN)转化的潜力,从而增加SOC与TN累积量。以20%的猪粪堆肥N+80%的化肥N效果最明显,2年后,与施纯化肥相比,稻田土壤可培养细菌、真菌和放线菌数量分别提高38.07%、9.9%和27.01%, SMBC、SMBN、SOC、TN含量可分别提高125.62%、134.26%、60.47%和13.44%;旱地土壤可培养细菌、真菌和放线菌数量分别提高了447.85、60.87和160.8倍,SMBC、SMBN、SOC、TN含量可分别提高97.51%、68.26%、16.49%和7.95%。有机无机肥配施下的稻田土壤中SMBC、SMBN和SOC三者间呈极显著正相关(P<0.01),旱地土壤中的SMBC、SMBN、SOC和TN四者之间也有显著(P<0.05)或极显著(P<0.01)正相关。
     2.有机无机肥配施有利于稻田和旱地土壤N、P、K养分和有机质(OM)含量增加,减缓土壤酸化进程。2年后,以稻草或猪粪与化肥配施有利于增加稻田土壤碱解N含量,以猪粪堆肥与化肥配施有利于促进稻田土壤P、K的累积,且土壤K素和OM含量随猪粪堆肥用量的增加而增加;以猪粪堆肥与化肥配施能明显提高旱地土壤中P、K和OM含量,且在供试的配比范围内,其土壤全P、速效P、速效K和OM含量均随猪粪堆肥配施量的增加而增加;20%的猪粪N+80%的化肥N处理的旱地土壤全N、速效N分别较Tf提高了18.54%和8.14%。
     3.稻田氮素淋溶以有机态氮为主,旱地土壤地表径流以无机态氮为主,且矿质氮淋溶和径流损失均以硝态氮为主。合理的有机无机肥配施有利于降低稻田渗漏液中TN、TP、NH4+-N、NO3--N浓度,减少旱地地表氮磷径流损失,促进水稻、春玉米和小白菜对养分的吸收并提高肥料利用率。水稻试验表明,与T7相比,T3的稻田渗漏液中TN、TP、NH4+-N、NO3--N浓度明显降低,N、P、K养分累积量分别提高7.83,0.33,3.14 g.kg-1,氮磷钾肥料利用率分别提高5.22,0.55和3.50个百分点。旱地试验表明,以猪粪堆肥与化肥配施最有利于减少氮素流失,且其流失量随猪粪堆肥配施量的增加而降低;以20%的猪粪堆肥或沼渣沼液与化肥配施可降低磷素径流损失,过高或过低配比的猪粪堆肥及猪粪与化肥配施对降低磷素径流损失的效果不明显;Tb、Tc第2年的作物(春玉米+小白菜)地上部氮素总累积量分别较Tf提高了20.28%和34.32%,两年总氮肥利用率分别较Tf提高了2.96和2.75个百分点。
     4.有机无机肥配施有利于改善水稻、春玉米和小白菜叶片光合特性,提高其功能叶NR和SPS酶活性,促进产量提高并改善品质。三种作物试验的结果均表明,以猪粪堆肥与化肥配施较其他有机无机肥配施处理具有较明显优势。与T7相比,T3的早稻孕穗期功能叶NR酶活性提高了65.06%,蜡熟期SPS活性提高了7.70%,游离氨基酸含量提高43.87 mg·kg-1,产量增加19.65%。第2年春玉米试验表明,Tb的叶片净光合速率、蒸腾速率分别较Tf提高了13.35%和9.81%;灌浆期功能叶NR和SPS活性分别较Tf提高了17.96%和9.98%;籽粒中粗蛋白、粗淀粉含量分别提高30.4%和7.48%,硝酸盐含量降低了49.97%,增产7.94%。第2年小白菜试验表明,与Tf相比,Tb的叶片净光合速率、蒸腾速率和气孔导度分别提高了18.35%、4.16%和1.53%,胞间CO2浓度降低16.48%;移栽后第10d,叶片NR活性提高69.5%;移栽后第20d,叶片SPS活性提高8.24%;产量提高0.85%;Te最有利于改善小白菜品质,其小白菜体内可溶性糖、Vc含量分别提高22.82%、46.02%,硝酸盐含量降低29.93%。
This study aims to investigate effect mechanisms of organic and inorganic combination fertilizer on soil microorganisms, nutrient dynamics and crops growth of rice, spring maize and cabbage. Two years field plot trials were conducted to explain the function mechanism based on soil fertility, nutrient leaching loss and crop physiological characteristics. Nitrogen (N) application amount is used as standard calculation for application amount of rice straw, pig feces, biogas and pig manure composting respectively, phosphorus (P) and potassium (K) application amount of organic and inorganic fertilizer were converted as chemical P and K fertilizer also, aims to equal amounts of nutrient application. There are 8 treatments for two years double cropping rice trial:T1 (10% rice straw N+90% chemical N); T2 (20% pig feces N+80% chemical N); T3 (20% pig manure composting nitrogen+80% chemical N); T4 (20% biogas N+80% chemical N); T5 (10% pig manure composting N+90% chemical N); T6 (30% pig manure composting N+70% chemical N); T7 (chemical fertilizer); CK (no fertilizer). There are 7 treatments for two years spring maize/cabbage rotation trial:Ta (20% pig feces N+80% chemical N); Tb (20% pig manure composting N+80% chemical N); Tc (20% biogas N+80% chemical N); Td (10% pig manure composting N+90% chemical N); Te (30% pig manure composting N+70% chemical N); Tf (chemical fertilizer); CK (no fertilizer). The main results are showed as below:
     1. Compared with chemical fertilizer application, combination application of organic and inorganic fertilizer increased the number of cultivable bacteria, fungi, actinomycetes, the contents of soil microbial biomass carbon (SMBC) and soil microbial biomass N (SMBN) in paddy and dryland soil are increased also, the potentiality of SMBC transformed into soil organic carbon (SOC) and SMBN transformed into soil total nitrogen(TN) are improved, and accumulation amount of SOC and TN are increased also. And the effects of T3 and Tb treatments are the highest. Two years later, compared with chemical fertilizer treatment, the number of cultivable bacteria, fungi and actinomycetes in paddy soil are increased by 38.07%, 9.9% and 27.01% respectively, and increased by 447.85,60.87 and 160.8 times in dryland soil, the contents of SMBC, SMBN, SOC and TN in paddy soil are increased by 125.62%,134.26%,60.47% and 13.44%, and increased by 97.51%,68.26%, 16.49% and 7.95% in dryland soil respectivly. There are significant positive correlation between SMBC, SMBN and SOC under combinations application of organic and inorganic fertilizer in paddy soil (p<0.01), and positive correlation between SMBC, SMBN, SOC and TN in dryland soil are significant also (p<0.01 or p<0.05).
     2. Combination application of organic and inorganic fertilizer is benefit to increase of N, P, K and organic matter (OM) content in paddy soil and dryland soil. Combination application of rice straw or pig manure and chemical fertilizer is benefit to increase of available N contents after two years later, P and K accumulation are accelerated by combination application of pig manure composting and chemical fertilizer in paddy soil. K and OM contents are increased with application of pig manure composting increasing. P, K and OM contents are accelerated by combination application of pig manure composting and chemical fertilizer. While the contents TN and available N of Ta are 18.54% and 8.14% higher than Tf.
     3. Organic N is the main form of N leakage loss from paddy field, while mineral N is the main form of N surface runoff loss from dryland field, and a large portion of mineral N loss are nitrate N in paddy and dryland soil. Reasonable combination application of organic and inorganic fertilizer is benefit to reduce amount of TN, TP, NH4+-N and NO3--N leakage loss from paddy field, and reduce the N and P loss, nutrient uptake of rice, spring maize and cabbage are accelerated and utilization rate of fertilizer is increased. The rice results showed that compared with T7, concentration of TN, TP, NH4+-N and NO3--N leakage loss from paddy field of T3 are obviously reduced, N, P, K uptake are increased by 7.83,0.33 and 3.14 g.kg-1, Utilization rate of N, P, K fertilizer are increased by 5.22%,0.55% and 3.50% respectively. The dryland results showed that N runoff loss of combination application of pig manure composting and chemical fertilizer is more reduced than other treatments. Larger amount of organic fertilizer application with smaller amount of N runoff loss. Phosphorus runoff loss can be reduced by combination application of pig manure composting or biogas by 20% and chemical fertilizer. Compare with Tf, N uptake of Tb and Tc in dryland crops are increased by 20.38% and 34.32% in the second year, and the total N utilization rate during two years are increased by 2.96% and 2.75% respectively.
     4. Combined application of organic and inorganic fertilizer is benefit to improve photosynthetic characteristics of rice, spring maize and cabbage, nitrate reductase (NR) and phosphate synthase (SPS) activity of functional leaves are increased, and crop yields and quality are improved also. All the above results showed that combination application of pig manure composting and chemical fertilizer has obviously advantages than other treatments. Compared with T7, NR activity of T3 in early rice flag leaves at booting stage is increased by 65.06%, SPS activity is increased by 7.70%, free amino acid contents is increased by 43.87 mg·kg-1, grain yield is increased by 19.65%. The second year of spring maize trial showed that compared with Tf, net photosynthetic rate and transpiration rate of Tb are increased by 13.35% and 9.81%, NR and SPS activities in spring maize functional leaves at filling stage are increased by 17.96% and 9.98%, crude protein and raw starch contents in spring maize corn are increased by 30.4% and 7.48%, while nitrates content is decreased by 49.97%, yield is increased by 7.94%. The second year of cabbage trial showed that compared with Tf, net photosynthetic rate, transpiration rate and stomatal conductance of Tb are increased by 18.35%,4.16% and 1.53% respectively, intercellular CO2 concentration is decreased by 16.48%; NR activity is increased by 69.5% after 10 days transplanting, and SPS activity in functional leaves is increased by 8.24% after 20 days ransplanting; yield is increased by 0.85%. Te is benefit for cabbage quality improvement, soluble sugar and vitamin C content of cabbage are increased by 22.82% and 46.02% respectively, nitrate accumulation is decreased by 29.39%.
引文
[1]卞有生.2003.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社.
    [2]卞有生.2004.生态农业中废弃物的处理与再生利用(第二版)[M].北京:化学工业出版社.
    [3]蔡阿兴,蒋其鳌,常运诚,等.1999.沼气肥改良碱土及其增产效果研究[J].土壤通报,30(1):4-6.
    [4]蔡绵聪.2003.生物有机肥对花椰菜生产的影响[J].佛山科学技术学院学报:自然科学版,21,(1):67-69.
    [5]曹林奎,陆贻通.2001.生物有机肥料对温室蔬菜硝酸盐和土壤盐分累积的影响[J].农村生态环境,17(3):45-57.
    [6]常志州,马艳,黄红英,等.2005.辅以拮抗菌的有机肥对辣椒疫病生防效果的研究[J].土壤肥料,(2):28-30.
    [7]陈伯清,高军,叶月,等.2009.生物有机肥修复设施蔬菜栽培土壤障碍的研究进展[J].长江蔬菜(学术版),1 b:4-7.
    [8]陈军文,刘强,荣湘民,等.2005.不同栽培法对饲用稻氮代谢关键酶活性的影响[J].湖南农业大学学报,31(3):238-241.
    [9]陈龙正,梁亮,徐海,等.2009.小白菜光合性能与硝酸还原酶活性关系的研究[J].西北植物学报,29(11):2256-2260.
    [10]陈龙正,梁亮,徐海,等.2010.铵态氮影响小白菜硝酸盐积累及其机制研究[J].华北农学报,25(6):221-224.
    [11]陈新平,邹春琴,刘亚萍,等.2000.菠菜不同品种累积硝酸盐能力的差异及其原因[J].植物营养与肥料学报,6(1):30-34.
    [12]仇少君,彭佩钦,荣湘民,等.淹水培养条件下土壤微生物生物量碳、氮和可溶性有机碳、氮的动态[J],应用生态学报,2006,17(11):2052-2058.
    [13]邓家琴,罗红剑,张文菊.2008.沼肥与畜粪作水稻基肥的效果比较[J].农技服务25(9):48.
    [14]都韶婷,章永松,林咸永,等.2007.蔬菜积累的硝酸盐及其对人体健康的影响[J].中国农业科学,40(9):2007-2014.
    [15]范艳艳,王芳,吕红豪,等.2009.有机无机肥配施及供氮水平对萝卜硝酸盐累积的影响[J].长江蔬菜(学术版),(24):67-70.
    [16]付美云,朱进春,曾蕾,等.2009.猪粪与生活垃圾堆肥试验研究[J].湖南农业科学,(9):72-74.
    [17]高峰,曹林奎,张浩.2003.生物有机肥在茄子上的应用[J].上海农业学报.19(2):55-57.
    [18]高洪军,彭畅,李强,等.2010.长期施肥对黑土养分供应能力和土壤生产力的影响[J].玉米科学,18(6):107-110.
    [19]高峻岭,李祥云,宋朝玉,等.2007.不同有机肥配比对大葱产量及品质的影响[J].北方园艺,(11):40-42.
    [20]高峻岭,宋朝玉,李祥云,等.2008.不同有机肥配比对蔬菜产量和品质及土壤肥力的影响[J].中国土壤与肥料,(1):48-51.
    [21]高云超,潘木水,田兴山,等.2005.猪场粪污发酵微生物肥及其肥效试验[J].广东农业科学,(2):52-54.
    [22]高振宁.2001.保护生态环境.发展有机农业[J].农村生态环境,17(2):1-4.
    [23]耿玉辉,卢文喜,姜亦梅.2007.有机培肥土壤对优势流中养分淋失的影响[J].农业环境科学学报26(4):1454-1458.
    [24]耿玉亮,刘予文.2000.温室番茄生产施用沼肥的试验[J].中国沼气18(1):31-32.
    [25]郭开秀,姚春霞,陈亦,等.2011.上海市秋季蔬菜硝酸盐含量及风险摄入评估[J],环境科学,32(4):1177-1181.
    [26]郭全忠,常权记,惠永安,等.2010.猪粪生物发酵作有机肥及在设施蔬菜生产中的应用[J].西北农业学报,19(10):202-206.
    [27]郭庭双,李晓芳.1993.我国农业秸秆资源的综合利用[J].饲料工业,14(8):48-50.
    [28]郭文龙,党菊香,吕家珑,等.2005.不同年限蔬菜大棚土壤性质演变与施肥问题的研究[J].干旱地区农业研究,23(1):85-89.
    [29]韩鲁佳,闰巧娟,刘向阳等.2002.中国农作物秸秆资源及其利用现状[J].农业工程学报,18(3):87-91.
    [30]何淑平,靳亚忠,张兴梅.2005.酚二磺酸比色法测定叶菜类硝酸盐的探讨[J].17(2):37-40.
    [31]和琳,何锋,何策熙,等.2003.生物有机肥的开发和应用[J].腐植酸,(5):27-31.
    [32]侯红乾,刘秀梅,刘光荣,等.2011,有机无机肥配施比例对红壤稻田水稻产量和土壤肥力的影响[J].中国农业科学,44(3):516-523
    [33]侯云鹏,秦裕波,尹彩侠,等.2009.生物有机肥在农业生产中的作用及发展趋势[J].吉林农业科学,34(3):28-29,64.
    [34]胡诚,曹志平,胡婵娟等.2007.不同施肥管理措施对土壤碳含量及基础呼吸的影响.中国生态农业学报,15(5):63-66.
    [35]胡建利,王德建,王灿,等.2009.不同施肥方式对水稻产量构成及其稳定性的影响[J],中国生态农业学报,17(1):48-53.
    [36]胡绍德,朱仲海,陈刚,等.2002.茶树施用生物有机肥效果初报[J].广东茶业,(6):18-19.
    [37]胡亚林,汪思龙,颜绍道(2006).影响土壤微生物活性与群落结构因素研究进展[J].土壤通报,37(1):170-176.
    [38]胡艳霞,孙振均,周法永,等.2002.蚯蚓粪对黄瓜苗期土传病害的抑制作用[J].生态学报,22(7):1106-1114.
    [39]黄东风,王果,李卫华,等.2008.不同施肥模式对蔬菜产量、硝酸盐含量及菜地氮磷流失的影响[J].水土保持学报,22(5):5-10.
    [40]黄鹏,侯叔音,陈兴文.2011.配施矿物质有机肥及化肥减量对玉米水肥资源利用率的影响[J].中国农学通报,27(9):295-29.
    [41]黄启飞,高定,丁德蓉,等.2002.城市垃圾堆肥对Cr污染土坡的修复效应[J].应用生态学报,13(2):166-170.
    [42]黄伟生,彭佩钦,黄道友,等.2007.洞庭湖区不同土地利用方式耕作土壤氮素含量与循环[J].中国生态农业学报,15(4):49-52.
    [43]黄志农,何英豪.2000.水稻高产栽培中肥料运筹对害虫种群的生态学效应[J].昆虫知识,37(3):129-133.
    [44]姬鸿斌,贺华.2002.生物有机肥的研究及利用[J].化工科技市场,25(11):23-24.
    [45]纪雄辉,郑圣先,石丽红,等.2008.洞庭湖区不同稻田土壤及施肥对养分淋溶损失的影响 [J].土壤学报,45(4):663-670.
    [46]贾伟,周怀平,解文艳,等.2008.长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响[J].植物营养与肥料学报,14(4):700-705.
    [47]江苏省农科院综合实验室.1986.GB 6195-86,水果、蔬菜维生素C含量的测定法[S].北京:中国标准出版社,1-2.
    [48]蒋卫杰,余宏军,李红.2005.不同有机肥种类对生菜硝酸盐含量的影响[J].中国蔬菜,(8):10-12.
    [49]孔凡红.2004.防治棚室瓜果根结线虫病有何妙招[J].西北园艺:蔬菜,(3):50.
    [50]孔庆波,聂俊华,张青.2005.生物有机肥对调亏灌溉下冬小麦苗期生长的影响[J].河南农业科学,(2):51-53.
    [51]孔文杰.2011.有机无机肥配施对蔬菜轮作系统重金属污染和产品质量的影响[J].植物营养与肥料学报,17(4):977-984.
    [52]孔祥波,徐坤.2008.不同肥料对生姜产量及叶片光合作用和叶绿素荧光特性的影响[J].植物营养与肥料学报,(02):367-372.
    [53]孔祥波,徐坤,尚庆文,等.2007.生物有机肥对生姜生长及产量、品质的影响[J].中国土壤与肥料,(02):64-67.
    [54]郎晓峰,徐阳春,沈其荣.2008.不同有机无机复混肥对土壤供氮和玉米生长的影响[J].生态与农村环境学报,24(3):33-38.
    [55]雷泽周,石光森,喻瑜,等.1993.新改坡瘠地玉米高产施肥研究[J],西南农业大学学报,15(4):311-313.
    [56]李国良,张政勤,姚丽贤,等.2010.养殖场鸡粪在蔬菜上的合理安全施用技术研究[J].植物营养与肥料学报,16(2):470-478.
    [57]李合生,孙群,赵世杰,等.2000.植物生理生化实验原理和技术[M].北京:高等教育出版社.
    [58]李洪连,黄俊丽,袁红霞.2002.有机改良剂在防治植物土传病害中的应用[J].植物病理学报,32(4):289-295.
    [59]李能芳,郑万刚,李焕秀.2002.不同肥料对莴笋硝酸盐含量及生长特性的影响[J].四川农业大学学报,20(4):351-353.
    [60]李清伟,吕炳南,李慧莉,等.2007.猪粪好氧堆肥研究的进展[J].农机化研究,(1):63-65.
    [61]李庆康,张永春,杨其飞.2003.生物有机肥肥效机理及前景展望[J].中国生态农业学报,(4):78-80.
    [62]李庆召,王定勇,朱波,等.2004.川中紫色土早坡地磷素的输出特征研究[J].水土保持学报,15(6):97-99.
    [63]李世清,李生秀,邵明安,等.2004.半干旱农田生态系统长期施肥对土壤有机氮组分和微生物体氮的影响[J].中国农业科学,37(6):859-864.
    [64]李世清,凌莉,李生秀.2000.影响土壤中微生物体氮的因子[J].土壤与环境,9(2):15-162.
    [65]李淑仪,邓许文,陈发,等.2007.有机无机肥配施比例对蔬菜产量和品质及土壤重金属含量的影响[J].生态环境,16(4)-1125-1134.
    [66]李万星,刘永忠,曹晋军,等.2011.肥料与密度对玉米农艺性状和产量的影响[J].中国农学通报,27(15):194-198.
    [67]李伟,蔺树生,谭豫之等.2000.作物秸秆综合利用的创新技术[J].农业工程学报, (11):14-17.
    [68]李文学,王震宇,张福锁,等.2001.低温对缺钼冬小麦幼苗生长的影响Ⅱ.对氮代谢的影响[J].植物营养与肥料学报,7(1):88-92.
    [69]李先,刘强,荣湘民,等.2010.有机肥对水稻产量和品质及氮肥利用率的影响[J].湖南农业大学学报,36(3):258-262.
    [70]李新江,金伊洙,李志民.2005.有机肥对菜豆产量及品质的影响研究[J].吉林蔬菜,(6):34-35.
    [71]李轶,刘庆玉,张玉龙,等.2007.沼肥对保护地土壤酶及其呼吸强度的影响[J].中国土壤与肥料,(5):44-47.
    [72]李轶,张玉龙,谷士艳,等.2007.施用沼肥对保护地土壤微生物群落影响的研究[J].可再生能源,25(2):44-46.
    [73]李玉文,周北羽,马凤鸣,等.2005.生物有机肥料对红松育苗地土壤微生态环境的影响[J].东北农业大学学报,(9):49-50.
    [74]李远,单正军,余德微.2002.我国畜禽养殖业的环境影响与管理政策初探[J].中国生态农业学报,10(2):136.
    [75]李忠芳,徐明岗,张会民,等.2010.长期施肥和不同生态条件下我国作物产量可持续性特征[J].应用生态学报,21(5):1264-1269.
    [76]李宗新,董树亭,王空军,等.2008.不同施肥条件下玉米田土壤养分淋溶规律的原位研究[J].应用生态学报,(01):65-70.
    [77]梁平.2008.不同来源有机肥对玉米品质及重金属吸收的调控研究[D].吉林农业大学.
    [78]廖海秋,施卫明,严蔚东,等.1998.有机无机肥配施对潜育性水稻土肥力水平的影响[J].土壤通报,29(6):248-249.
    [79]林德喜,范晓晖,胡锋,等.2006.长期施肥后简育湿润均腐土中磷素形态特征的研究.土壤学报,43(4):605-610.
    [80]林治安,谢承陶,张雪瑶,等.2000.不同施肥条件下土壤养分演变规律与作物增产效果研究[J].自然资源学报,(15):42-49.
    [81]刘更另,金维续.1991.中国有机肥料[M].北京:中国农业出版社.
    [82]刘海.2010.有机肥与化肥配施对作物产量和紫色土肥力的影响[D],西南大学.
    [83]刘杰,张杨珠,曾希柏.2010.施肥措施对不同母质侵蚀红壤的修复效应[J].湖南农业大学学报,36(2):218-223.
    [84]刘苗,孙建,李立军,等.2010.不同施肥处理对粮饲兼用玉米品质及产量的影响[J],华北农学报.25(6):225-228
    [85]刘勤,张斌,谢育平,等.2008.施用鸡粪稻田土壤氮磷养分淋洗特征研究[J].中国生态农业学报,16(1):91-95.
    [86]刘云开,青先国,罗先富,等.2004.肥料运筹对优质稻湘晚籼13号整精米率的影响[J].湖南农业大学学报,30(4):322-324.
    [87]娄翼来,关连珠,王玲莉,等.2007.不同植烟年限土壤pH和酶活性的变化[J].植物营养与肥料学报,13(3):531-534.
    [88]鲁艳红,杨曾平,郑圣先,等.2010.长期施用化肥、猪粪和稻草对红壤水稻土化学和生物化学性质的影响[J].应用生态学报,21(4):921-929.
    [89]陆引罡,王家顺,赵承,等.2008.有机-无机专用混配肥对烤烟产量和养分利用率的影响[J].土壤通报,39(2):334-337.
    [90]马光庭.2004.生态有机肥与农业可持续发展[J].中国生态农业学报,12(3):191-193.
    [91]马强,刘中良,周桦,等.2011.不同施肥模式对作物-土壤系统养分收支的影响[J].中国生态农业学报,19(3):520-524.
    [92]马艳,常志州,黄红英,等.2005.堆肥防治植物病害的研究[J].土壤肥料,(2):3-6.
    [93]马志宏,刘秀珍.2008.不同有机肥对乌塌菜产量及品质的影响[J].山西农业大学学报,28(2):480-482.
    [94]孟军,任喜英,葛家麒,等.1999.有机肥对玉米生产效应的研究[J],东北农业大学学报,(3):235-239.
    [95]倪进治,徐建民,谢正苗,等.2001.不同有机肥料对土壤生物活性有机质组分的动态影响[J].植物营养与肥料学报,7(4):374-378.
    [96]聂军,郑圣先,杨曾平,等.2010.长期施用化肥、猪粪和稻草对红壤性水稻土物理性质的影响[J].中国农业科学,43(7):1404-1413
    [97]宁建凤,徐培智,杨少海,等.2011.有机无机肥配施对菜地土壤氮素径流流失的影响[J].水土保持学报,25(3):17-21.
    [98]潘梅香.2009.有机肥种类特性及其在蔬菜生产中的科学施用技术[J].现代农业科技,(13):136,138.
    [99]庞欣,张福锁,王敬国.2000.不同供氮水平对根际土壤微生物生物量氮及微生物活度的影响[J].植物营养与肥料学报,6(4):476-45.
    [100]彭娜,王开峰,谢小立,等.2009.长期有机无机肥配施对稻田土壤基本理化性状的影响[J].中国土壤与肥料,(2):6-10.
    [101]彭佩钦,仇少君,侯红波,等.2011.15N交叉标记有机与无机肥料氮的转化与残留[J].生态学报,31(3):0858-0865.
    [102]彭佩钦,仇少君,童成立.2007.长期施肥对水稻土耕层微生物生物量氮和有机氮组分的影响[J].环境科学,28(8):1816-1821.
    [103]彭佩钦,吴金水,黄道友,等.2006.洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响[J].生态学报,26(7):2261-2266.
    [104]彭佩钦,张文菊,童成立,等.2005.洞庭湖典型湿地土壤碳、氮和微生物碳、氮及其垂直分布[J].水土保持学报,19(1):50-54.
    [105]钱靖华,田宁宁,任远.2006.规模化猪场粪污治理存在的问题及对策[J].生态养殖,42(20):57-69.
    [106]乔俊,颜廷梅,薛峰,等.2011.太湖地区稻田不同轮作制度下的氮肥减量研究[J].19(1):24-31.
    [107]荣湘民,蒋健容,朱红梅,等.2001.红壤旱地有机与无机肥料配合施用效果[J],湖南农业大学学报(自然科学版),27(6):453-456.
    [108]上海植物生理学会.1986.植物生理学实验手册[M],上海:上海科技出版杜,84-102.
    [109]盛荣,肖和艾,丁龙君,等.2010.施肥对红壤旱地和稻田土壤可培养微生物和微生物生物量磷的影响[J].31(5):626-629.
    [110]石丽红,纪雄辉,李洪顺,等.2010.湖南双季稻田不同氮磷施用量的径流损失[J].中国农业 气象,(4):551-557.
    [111]史雅娟,刘敏超,吴成.2001.施用沼肥对油菜硝酸盐含量及土壤速效氮的影响[J].农业现代化研究,22(4):242-245.
    [112]隋跃宇,焦晓光,高崇生,等.2009.土壤有机质含量与土壤微生物量及土壤酶活性关系的研究[J].土壤通报,45(5):1036-1039.
    [113]孙波,赵其国,张桃林,等.1997.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标[J].土壤,29(5):225-234.
    [114]孙凤霞,张伟华,徐明岗,等.2010.长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响[J].应用生态学报,21(11):2792-2798.
    [115]孙瑞莲,朱鲁生,赵秉强,等.2004.长期施肥对土壤微生物的影响及其在养分调控中的作用[J].应用生态学报,15(10):1907-1910.
    [116]孙中涛,姚良同,孙凤鸣,等.2005.微生物肥料对棉田土壤生态与棉花生长的影响[J].中国生态农业学报,(7):54-56.
    [117]汤春纯,李海平,夏照明.2007.配施有机肥对提高棉花产量和肥料利用率的影响[J].湖南农业科学,(6):123-124.
    [118]唐国勇,彭佩钦,苏以荣,等.2006.洞庭湖区不同利用方式下农田土壤有机碳含量特征[J].长江流域资源与环境,15(2):219-222.
    [119]唐继伟,林治安,许建新,等.2006.有机肥与无机肥在提高土壤肥力中的作用.中国土壤与肥料,(3):44-47.
    [120]陶世洪.2005.沼肥对早熟蜜柑土壤肥力及产量品质的影响[J].广西农业科学,(04):344-346.
    [121]田春杰,陈家宽,钟扬.微生物系统发育多样性及其保护生物学意义[J].应用生态学报,2003,14(4):609-612.
    [122]田艳洪,刘文志,王北兰,等.2011.生物有机肥在大豆和玉米上应用效果研究[J],现代化农业,(2):8-10.
    [123]通乐嘎,李成芳,杨金花,等.2010.免耕稻田田面水磷素动态及其淋溶损失[J].农业环境科学学报,29(3):527-533.
    [124]万良新.2001.腐殖酸在红中生物有机肥作用机理的探讨[J].江西园艺,(2):11-12.
    [125]汪仁,邢月华,包红静.2010.施用有机肥对春玉米生育后期叶片酶活性的影响[J],杂粮作物,30(4):299-301.
    [126]汪涛,朱波,武永锋,等.2005.不同施肥制度下紫色土坡耕地氮素流失特征[J].水土保持学报,19(5):65-68.
    [127]王艾平,邓接楼.2006.生物有机肥对水稻产量和品质影响的研究[J].作物杂志,(05):28-30.
    [128]王伯仁,徐明岗,文石林.2005.长期不同施肥对旱地红壤性质和作物生长的影响[J].水土保持学报,19(1):97-100,144.
    [129]王凤文.2006.有机肥料对保护地辣椒品质的影响[J].北方园艺,(4):33-34.
    [130]王富国,宋琳,冯艳,等.2011.不同种植年限酸化果园土壤微生物学性状的研究[J].土壤通报,42(1):46-50.
    [131]王国安,江建仁,周秋林,等.2008.湘阴县蔬菜基地土壤肥力状况初步研究[J].湖南农业科学,(5):79-81.
    [132]王见月,刘庆花,李俊良,等.2010.胶东果园土壤酸度特征及酸化原因分析[J].中国农学通报,26(16):164-169.
    [133]王建湘,周杰良.2007.不同有机肥种类对小白菜品质及产量的影响[J].上海蔬菜,(1):63-64.
    [134]王敬国.1995.植物营养的土壤化学[M].北京:中国农大出版社,34-60.
    [135]王静,郭熙盛,王允青,等.2010.保护性耕作与平衡施肥对巢湖流域稻田氮素径流损失及水稻产量的影响研究[J].29(6):1164-1171.
    [136]王军,陈能场,詹振寿,等.2010.不同种植方式对烟田氮素径流损失的影响[J].水土保持学报,(5):68-73.
    [137]王立刚,李维炯,邱建军,等.2004.生物有机肥对作物生长、土壤肥力及产量的效应研究[J].土壤肥料,(5):12-16.
    [138]王玲,黄世文,刘经荣,等.2006.沼肥在水稻生产上的应用效果分析[J].江西农业学报,(05):42.
    [139]王孝娣,王海波,秦菲菲,等.2005.生物有机肥对日光温室草莓生长发育的影响[J].落叶果树,(2):8-10.
    [140]王新林,张春凤,李雅贤,等.2002.牡丰西瓜生物有机肥应用效果简报[J].牡丹江师范学院学报:自然科学版,(3):15.
    [141]王秀丽,孙波.2008.红壤旱地施用有机肥的氮素淋失过程[J].土壤学报,(04):745-748.
    [142]王艳玲,何园球,李成亮,等.2008.有机无机肥配施对红壤磷库重建质量的长期效应[J].土壤,40(3):399-40.
    [143]魏宗强,李吉进,吴绍华.2011.露天鸡粪好氧堆肥氮素的径流及淋洗损失[J].水土保持学报,25(2):44-47.
    [144]翁惠玉,任平合,武宗信,等.1989.浅施有机肥与玉米高产关系的研究[J].山西农业科学,(9):9-10.
    [145]吴光磊.2008.有机无机肥配施对玉米产量和品质的影响及生理基础[D].山东农业大学
    [146]吴姗眉,倪苗娟.1990.有机-无机态氮在微型农业生态系统的转移和循环研究[J].应用生态学报,1(1):67-74.
    [147]吴淑杭,徐亚同,凌云.2006.猪粪便生态型处理与资源化技术研究[J].农业环境科学学报,25(增刊):168-171.
    [148]吴晓晨,李忠佩,张桃林,等.2009.长期施肥对红壤性水稻土微生物生物量与活性的影响[J].土壤,41(4):594-599.
    [149]席北斗.2006.有机固体废弃物管理与资源化技术[M].北京:国防工业出版社.
    [150]夏扬,秦江涛,朱晓军,等.2009.不同有机物添加方式下水稻对干旱胁迫的响应[J].土壤,41(1):118-125.
    [151]向平安,黄璜,燕惠民,等.2005.湖南洞庭湖区水稻生产的环境成本评估[J].应用生态学报,16(11):2178-2193.
    [152]肖永庆.2005.现代化养猪的粪便处理与资源化途径[J].农业环境保护,17(6):281-283.
    [153]谢迎新,王小明,王化岑,等.2009.无机与有机肥配施对小麦籽粒产量和淀粉糊化特性的影响[J].麦类作物学报,39(2):299-302.
    [154]徐同高,周立祥,常志州,等.2006.基质对番茄和黄瓜苗期生长及病害发生的影响[J].江 苏农业科学,(1:)69-72.
    [155]徐永刚,宇万太,马强,等.2011.不同轮作模式下土壤氮磷淋移和蔬菜硝酸盐、亚硝酸盐积累[J].生态学杂志,30(6):1107-1113
    [156]徐祖祥.2009.长期定位施肥对水稻、小麦产量和土壤养分的影响[J].浙江农业学报,21(5):485-489.
    [157]徐祖祥.2010.有机无机肥配施对土壤物理性状的影响[J].灌溉排水学报,29(2):11-13,21.
    [158]许光辉,郑洪元.1986.土壤微生物分析方法手册[M].北京:农业出版社.
    [159]薛菁芳,汪景宽,李双异,等.2006.长期地膜覆盖和施肥条件下玉米生物产量及其构成的变化研究[J].玉米科学,14(5):66-70.
    [160]颜慧,钟文辉,李忠佩,等.2008.长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响[J].土壤通报,(1):71-75.
    [161]杨苞梅,李国良,姚丽贤,等.2011.有机肥施用模式对蔬菜产量、品质及土壤酶活性的影响[J].土壤通报,42(1):70-76.
    [162]杨卓亚,陈清火,徐荣文.2001.生物有机肥在果树上的应用效果研究[J].耕作与栽培,(6):44-46.
    [163]姚槐应,何振立,陈国潮,等.1999.红壤微生物量在土壤-黑麦草系统中的肥力意义[J].应用生态学报,10(6):725~728.
    [164]要文倩,秦江涛,张继光,等.2010.江西进贤水田长期施肥模式对水稻养分吸收利用的影响[J].土壤,42(3):467-472.
    [165]叶北朝,胡润,康启忠,等.2007.沼肥对早稻经济性状·产量及品质的影响[J].安徽农业科学,(04):1072-1073.
    [166]叶静,安藤丰,符建荣,等.2008.几种新型有机肥对菜用毛豆产量、品质及化肥氮利用率的影响[J].浙江大学学报(农业与生命科学版),(03):289-295.
    [167]叶静,俞巧钢,杨梢娜,等.2011.有机无机肥配施施对杭嘉湖地区稻田氮素利用率及环境效应的影响[J].水土保持学报,25(3):87-91
    [168]叶美欢,罗应平.2005.绿源生物有机肥在水稻上的肥效试验[J].广西农业科学,6(1):35-37.
    [169]尤彩霞,陈清,任华中,等.2006.不同有机肥及有机无机配施对日光温室黄瓜土壤酶活性的影响[J].土壤学报,16(4):521-523.
    [170]尤彩霞,陈清,张福墁,等.2005.有机肥对日光温室黄瓜产量和品质影响研究[J].北方园艺,(5):48-49.
    [171]余江敏,李伏生,韦彩会,等.2008.根区局部灌溉对有机无机肥配施土壤微生物和玉米水分利用的影响[J].干旱地区农业研究,26(6):63-69.
    [172]俞巧钢,陈英旭,张秋玲,等2006.DMPP对菜地土壤氮素淋失的影响研究[J].水土保持学报,20(4):40-43.
    [173]俞巧钢,叶静,马军伟,等.2011.不同施氮水平下油菜地土壤氮素径流流失特征研究[J].水土保持学报,25(3):22-25.
    [174]袁颖红,李辉信,黄欠如,等.2007.长期施肥对红壤性水稻土活性碳的影响[J].生态环境,16(2):554-559.
    [175]张碧波,廖林正.2005.生姜青粘病的生态防治研究[J].西南农业大学学报(自然科学版),27(3):305-308.
    [176]张春兰,吕卫光.1999.生物有机肥减轻设施栽培黄瓜连作障碍的效果[J].中国农学通报,15(6):67-69.
    [177]张定一,闫翠萍.1993.氮、磷、有机肥对小麦白粉病影响的研究[J].耕作与栽培,(6):55-59,61.
    [178]张建国,聂俊华,杜振宇.2004.专用复合生物有机肥对烤烟产量和品质的效应[J].湖南农业大学学报(自然科学版),30(2):115-119.
    [179]张维理,武淑霞,冀宏杰,等.2004.中国农业面源污染形势估计及控制对策Ⅰ.21世初期中国农业面源污染的形势估计[J].,中国农业科学,37(7):1008-1017.
    [180]张维理,徐爱国,冀宏杰,等.2004.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析[J].中国农业科学,37(7):1026-1033.
    [181]张维理,冀宏杰kolbe H,等.2004.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制[J].中国农业科学,37(7)1018-1025.
    [182]张无敌,宋洪川,丁琪,等.2001.沼气发酵残留物防治农作物病虫害的效果分析[J].农业现代化研究,22(3):167-170.
    [183]张翔,朱洪勋,孙春河,等.1997.有机与无机肥料配施对玉米籽粒品质和生产力的影响[J],中国农学通报,13(5):31-33.
    [184]张亚丽,张娟,沈其荣,等.2002.秸秆生物有机肥的施用对土壤供氮能力的影响[J].应用生态学报,13(12):1575-1578.
    [185]张玉平,刘强,荣湘民,等.2006.几个早稻品种(组合)氮代谢关键酶活性的比较研究[J].湖南农业大学学报(自然科学版),32(2):177-181.
    [186]张云贵,刘宏斌,李志宏,等.2006.长期施肥条件下华北平原农田硝态氮淋失风险的评价[J].植物营养与肥料学报,11(6):711-716.
    [187]章家恩,刘文高.2001.微生物资源的开发利用与农业可持续发展[J].土壤与环境,10(2):154-157.
    [188]章永松,林咸永,罗程安.1998.有机肥(物)对土壤中磷的活化作用及机理研究[J].植物营养与肥料学报,4(2):151-155.
    [189]章永松,林咸永,倪吾钟.等.1996.有机肥对土壤磷吸附-解吸的直接影响[J].植物营养与肥料学报,3(2):200-205.
    [190]赵建生,焦晓燕,杨治平,等.2006.有机肥料使用量对土壤环境、夏甘蓝产量和品质的影响[J].华北农学报,21(5):123-126.
    [191]赵金芝,蔡春荣,郜战宁.2005.浅谈农业生产中加强有机肥料的利用价值[J].土壤肥料,(1):30-34.
    [192]赵明,蔡葵,孙永红,等.2010.不同施肥处理对番茄产量品质及土壤有效态重金属含量的影响[J].农业环境科学学报,29(6):1072-1078.
    [193]赵庆雷,王凯荣,马加清,等.2009.长期不同施肥模式对稻田土壤磷素及水稻磷营养的影响[J].作物学报,35(8):1539-1545.
    [194]中国科学院上海植物生理研究所.1999.现代植物生理学实验指南[M].北京:科学出版社.
    [195]钟希琼,王惠珍,邓日烈,等.2005.生物有机肥对蔬菜生理性状和品质的影响[J].佛山科学 技术学院学报,(6):74-76.
    [196]周柳强,黄美福,谭宏伟.2006.长效氮肥一次基施在春玉米上的试验效果[J].磷肥与复肥,(1):75-76.
    [197]周晓琳,薛登峰,刘树堂,等.2009.长期定位施肥对夏玉米酶活性的影响[J],玉米科学,17(3):116-119,123.
    [198]周焱,罗安程.2004.有机肥对大棚蔬菜品质的影[J].浙江农业学报,16(4):210-212.
    [199]朱斌诚.1993.沼液浸种对增强水稻抗冷害机理的研究[J].中国沼气,11(3):32-39.
    [200]朱利群,田一丹,李慧,等.2009.不同农艺措施条件下稻田田面水总氮动态变化特征研究[J].水土保持学报,23(6):85-89.
    [201]朱新开,盛海君,夏小燕,等.2006.稻麦轮作田氮素径流流失特征初步研究[J].生态与农村环境学报,22(1):38-41,66.
    [202]邹长明,孙善军,支婧婧,等.2008.配方施肥和有机肥对玉米生长和产量的影响[J],安徽农学通报,14(21):108-109.
    [203]Aldahmani J, Abbasi P, Sahin F, et al.2005.Reduction of bacterial leaf spot severity on radish, lettuce. and tonmato plants grown in cotnpost amended potting mixes [J]. Canadian Journal of Plant Pathology,27(2):186-193.
    [204]Aoyama M, Nozawa T.1993.Microbioimas nitrogen and mineralization immobilization processes of nitrogen in soils incubated with various organic materials[J]. Soil Sci Plant Nutr, 39:23-32.
    [205]Archer DL.2002. Evidence that ingested nitrate and nitrite are beneficial to health[J].Journal of Food Protection,65(5):872-875.
    [206]Avalakki UK, Strong WM, Saffigna PG.1995. Measurements of gaseous emissions from denitrification of applied nitrogen-15. Ⅱ. Effects of temperature and added straw. Aust. J. Soil. Res.,33:89-99
    [207]Balezentiene L, Klimas E.2009. Effect of organic and mineral ertilizers and land management on soil enzyme activities[J].Agron Res.7:191-197.
    [208]Baxter CJ, Foyer CH, Turner J, et al.2003.Elevated sucrose phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development [J]. Journal of Experimental Botany,54:1813-1820.
    [209]Bending GD, Turner MK, Burns IG.1998. Fate of nitrogen from crop residues as affected by biochemical quality and the microbial biomass. Soil Biol. Biochem.,30:2055-2065
    [210]Bengtsson G, Bergwall C. Fate of 15N labelled nitrate and ammonium in a fertilized forest[J]. soil. Soil Biol. Biochem.2000,32:545-557.
    [211]Berecz K, Kismanyoky T, Debreczeni K.2005. Effect of organic matter recycling in long-term fertilization trials and model pot experiments[J].Comm. Soil Sci.Plant Anal,36 (1-3):191-202.
    [212]Bjarnason S. Immabilization and remineralization of ammonium and nitrate after addition of different energy sources to soil[J]. Plant and Soil,1987,97:381-389.
    [213]Bloom J, Amador V, Bartolini F, et al.2003. Proteasome-mediated degradation of p21 via N-termina ubiquitinylation[J]. Cell.115:71-82.
    [214]Boink A, Speijers G.2001.Health effects of nitrates and nitrites[J].Acta Horticulture,56(3): 29-36.
    [215]Bonde TA, Rosswall T.1987.Seasonal variation of potentially mineralizable nitrogen in cropping systerms[J].soil Sci. Soc. Am.J.,51(6):1058-1564.
    [216]Bosatta E, Agren GI.1999. Soil organic matter quality interpreted thermodynamically. Soil Biol. Biochem.,31:1889-1891.
    [217]Brookes PC, Andrea L, Pruden G., et al.1985.Chloroform fumigation and release of soil nitrogen:Arapid direct extraction method to measure microbial nitrogen in soil[J].Soil Boil. Biochem.,17(6):837-842.
    [218]Bulluck LR, Brosius M, Evanylo GK,et al.2002. Organic and syntheic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms [J]. Appl.Soil Ecol.,19(2):147-160.
    [219]Burger M, Jackson LE,2003. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems Soil Biol. Biochem.35:29-36.
    [220]Buyanovsky GA and Wagner GH.1998. Changing role of cultivated land in the global carbon cycle. Biol. Fertil. Soils,27:242-245.
    [221]Cambardella CA, Elliott ET.1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J.,56:777-782.
    [222]Cambardella CA.1998. Experimental verification of simulated soil organic mater pools. Pp.519-526. In R. Lal et al.(ed). Soil processes and the carbon cycle. CRC Press, Boca Raton, FL.
    [223]Campbell et al.1991,Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin black chernozem [J]. Can.J. Soil Sci.,71:363-376.
    [224]Cao LK, Lu YT, Li YH.2002.Effects of biological organic fertilizer applied to greenhouse vegetables[J]. Journal of shanghai jiaotong university(agricultural.science).20(3):181-185.
    [225]Carter MR,2002. Soil quality for sustainable land management:organic matter and aggregation interactions that maintain soil function. Agron. J.,94:38-47.
    [226]DENG Wen, QING Xian-guo, YANG Yu.2010.Effects of Applying Organic Fertilizer on Rice Lodging Resistance and Yield[J].Agricultural Science & Technology,11 (2):98-101.
    [227]DU Lian-feng, ZHAO Tong-ke, ZHANG Cheng-ju, et al,2011. Investigations on Nitrate Pollution of Soil, Groundwater and Vegtable from Three Typical Farmlands in Beijing Region, China[J]. Agricultural Sciences in China,10 (3):423-430.
    [228]Feng K, Lu HM, Sheng HJ,et al.2004.,Effect of organic ligands on biological availability of inorganic phosphorus in soils[J].Pedosphere,14 (1):85-92.
    [229]Filippi C, Picci G.1997.Bagnolis Effect of compost amendment and nitrogen fertilization on tracheo- fusariosis of carnation plants [J]. Agricultural Mediterranean.127.220-226.
    [230]Garcia C, Hernandez T, Costa F,et al.1992.Evaluation of the marturity of municipal waste compost using simple chemical parameters[J].Comm Soil Sci Plant Anal,23(13-14):1501-1512.
    [231]GB 18406.1-2001,农产品质量无公害蔬菜安全要求国家标准[S].
    [232]Gong W, Yan XY, Wang JY, et al.Long-term manure and fertilizer effects oil soil organic matter fractions and microbes under a wheat-maize cropping system in northern China[J]. Geoderma,2009,149(3/4):318-324.
    [233]Hao MD, Fan J, Wang QJ, et al.2007.Wheat grain yield and yield stability in a long-term fertilization experiment on the Loess Plateau[J].Pedosphere,17(2):257-264.
    [234]Hirose S.1973.Mineralization of organic nitrogen various plant residues in the soil under upland conditions[J].J Sci Manure Jpn,44:157-163.
    [235]Horst IE, Locke J, Krause CR, et al.2005.Suppression of Botrytis blight of begonia by Trichoderma hamatum 382 in peat and comtx 3st-ramended potting mixes [J]. Plant disease. 89(11):1195-1200.
    [236]Huang J. li H, Yuan H.2006. Effect of organic amendments on Verticillium wilt of cotton [J]. Crop protection,25 (11):1167-1173.
    [237]Inubushi K, Brookes PC, Jenkinson DS.1991. Soil microbial biomass C, N and inhydrin-N in aerobic and anerobic soil measured by the fumigation extraction method[J]. Soil Biol Biochem,23:737-741.
    [238]Jawson MD, Elliott LF, Papendick RI, et al.1989. The decomposition of 14C-labeled wheat straw and 15N-labeled microbial material. Soil Biol. Biochem,21:417-422.
    [239]Joergenson RG 1995. Carbon and nitrogen relationships in the microbial biomoss of soils in beech forests. Biol,Fertil.Soils,9(2):141-147.
    [240]Jouany C, Colomb B, Bosc M.1996.Long-term effects of potassium fertilization on yields and fertility status of calcareous soils of South-west France[J].European Journal of Agronomy.5(3/4):287-294.
    [241]Keerthisinghe G, De Datta SK.1985.Mengel K. Importance of exchangeable and none-xchangeable soil NH4+ in nitrogen nutrition of lowland rice[J].Soil Science,140:194-201.
    [242]Lalfakzuala R, Kayang H, Dkhar MS.2008.The effects of fertilizers on soil microbial components and chemical properties under leguminous cultivation[J]. Am-Euras J Agric Environ Sci..3:314-324.
    [243]Lemoine R.2000. Sucrose transporters in plants:Update on function and structure [J]. Biochim Biophys Acta,1465:246-262.
    [244]Lewis JA, Larkin RP.1997. Extruded granular formulation with biomass of biocontrol Gliocladium virens and Trichodermaspp. to reduce damping-off of eggplant caused by Rhizoctonia solani and saprophytic growth of the pathogen in soilless mix[J].Biocontrol Science and Technology,7(1):49-60.
    [245]Li DJ, Wang XM.2007.Nitric oxide emission from a typical vegetable field in the Pearl River Delta. C hina [J].Atmospheric Envronment,41(40):9498-9505.
    [246]Li SX, Wang ZH, Hu TT, et al.2009.Chapter 3 Nitrogen in dryland soils of China and its management [J].Advances in Agronomy,101:123-181.
    [247]Ling Yuan, Dejun J, Bao, et al (2011). Influence of fertilizers on nitrogen mineralization and utilization in the rhizosphere of wheat[J]. Plant Soil,343:187-193.
    [248]Liu W, Xu ZJ, Chen W-F,et al.2001. Effect of different N-level on plant senescence and grain yield of rice varieties with different panicle types [J].Shenyang Agric Univ,32(4): 243-246.
    [249]Ma Q, Yu WT, Shen SM, et al.2010. Effects of fertilization on nutrient budget and nitrogen use sfficiency of farmland soil under different precipitation in Northeastern China[J].Nutrient Cycling in Agroecosystems,88(3):315-327.
    [250]Magette WL, Monitoring, InRitter WF, Shirmohammadi A.2000. Agricultural Non-point Source Polluti n. London; LEWIS Publishers.205-328.
    [251]Marika T, Jaak T, Mari I.2008. Soil microbiologic and biochemical properties for assessing the effect of agricultural managements practices in Estonian cultivated soils[J].European Journal of Soil Biology,44:231-237.
    [252]Marschner P, Kandeler E, Marschner B.2003.Structure and function of the soil microbial community in a long-termfertilizer experimen[J]. Soil Biology & Biochemistry,35: 453-461.
    [253]Maynard Abigail A, Hill David E.1994. Impact of compost on vegetable yields[J].Pro-Quest Agriculture Journals, (3):66.
    [254]Michel V, Dutheil A, Aneay A. et al.2006. The use of compost and green manure to control soil borne diseases of strawberry [J]. Bulletin OILB/SROP,25(9):59-66.
    [255]Moldes A, Cendon Y, Barral MT.2007. Evaluation of municipal solid waste compost as a plant growing media component,by applying mixture design[J]. Bioresource technology,98 (16):3069-3075.
    [256]Monokrousos N, Papatheodorou EM, Diamantopoulos JD. et al (2006) Soil quality variables in organically and conven-tionally cultivated field sites[J]. Soil Biol Biochem 38:1282-1289.
    [257]Montanari M, Ventura M, Innocenti G.2004. Exploitation of spent mushroom compost in biological control against melon Fusarium wilt disease [J].Bulletin OILP/SROP,27(8):247-250.
    [258]Mostaghimi S, Brannan KM, Dillaha TA, Bruggeman AC.2000.Best management practices for non-point source pollution control:selection and assessment. In:Ritter W F. Shirmohamm adi A. Agricultural Non-point Source Pollution, London:LEWIS Publishers. 257-304.
    [259]Muramoto J.1999.Comparison of nitrate content in leafy vegetables from organic and conventional farms in California [EB/OL]. http://www.Agroeeology.Ory/people/joji /research/leaf nitrate.pdf.6.
    [260]Ndegwa PM, Zhu J, Luo AC.2002.Stratification of solids, nitrogen and phosphorus in swine manure in deep pits under slatted floors [J].Bioresource Technology,83:203-211.
    [261]Nell TM, Finlay A.1996.Suppressive effect of sonle growing medium amendments on cyclamens Fusarium wilt [J]. Pests & Disease,2:670-686.
    [262]Ocion JA, Brookes PC, Jenkin DS.1991.Field incorporation of straw and its effects on soil inorganic N[J]. Soil Biot Biochemm,23:171-176.
    [263]Odongo N E, Hyoung-ho K, Choi H, et al.2007. Improving rock phosphate availability through feeding mixing and processing with composting manure [J]. Bioresource technology.98(15):2911-2918.
    [264]Osunla SQ.1990. Effect of organic soil amendments on the incidence of stalk rot of maize[J]. Plant and Soil,127:237-241.
    [265]Palm CA, Myers RJK, Nandws SM.1997.Combined usu of organic and inorganic nutrient sources for soil fertility maintenance and replenishment[M]//Buresh R J,Sanchez P A,Calhoun F.Replenishing soil fertility in Aferica.Soil Science Society of America.Special publication no.51.Madisom,193-217.
    [266]Pechova B, Prugar J, Medved M, et al.1998. Process of nitrate accumulation in vegetables crops [J]. Scientia Agricultural Bohemica,29(2):93-118.
    [267]Powlson DS, Brookes PC, Christien BT.1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem.,19:159-164.
    [268]Pu GX, Saffigna PG, Strong WM.1999. Potential for denitrification in cereal soils of northern Australia after legume or grass-legume pastures. Soil Biol. Biochem.,31:667-675
    [269]Pu GX, Saffigna PG, Xu ZH.2001. Denitrification, leaching and immobilisation of added 15N under different residue management regimes in a young hoop pine plantation of subtropical Australia. Nutr. Cycl. Agroeco.,59:199-207.
    [270]Regima AP, Ladha JK, Pathak H, et al.2002.Yield and soil fertility trends in 20-year rice-rice-wheat experiment in Nepal[J].Soil Science Society of America Journal Abstruct, 66(5):857-867.
    [271]Ribaudo M, Cattaneo A, Agapoff J.2004. Cost of meeting manure nut rient application standards in hog production:The roles of E Q IP and fertilizer offsets[J].Review of Agricultural Economics,26(4):430-444.
    [272]Ross DJ, Sparling GP.1995. Microbial biomass C and N in litter and mineral soil under pinus radiata on a coastal stand:Influence of stand age and harvest measurement[J]. Plant and Soil,175:167-177.
    [273]Safflgna PG.1989. Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an Australian veritsol. Soil Biol. Biochem,21:754-766.
    [274]Shisanya CA, Mucheru MW, Mugendi DN,et al.2009. Effects of organic and inorganic nutrient sources on soil mineral nitrogen and maize yields in central highlands of kennya[J].Soil Tiliage Research,103(2):239-246.
    [275]Smith JL, Paul EA.1990.The significance of soil microbial biomass estimation[A] In:Bollag J M. Stotzky G eds. Soil Biochem [C]. New York:Marcel Dekker,6:357-396.
    [276]Tester CF.1990.Organic amendment with effects on physical and chemical proretiers of a sandy soil[J].Soil Science Society of American Journal,54:827-831.
    [277]Trinsoutrot I, Recous S, Mary B, et al.2000. C and N fluxes of decomposing 13C and N Brassica napus L.:effects of residue composition and N content. Soil Biol. Biochem,32: 1717-1730.
    [278]US Environmental Protection Agency.2003.Non-point Source Pollution from Agriculture. Http://epa.gov/region8/water/nps/npsurb.html.
    [279]Van Veen JA, Ladd JN, and Amato M.1985. Turnover of carbon and nitrogen through the microbial biomass in a sandy loan and a clay soil incubated with [14C(U)] glucose and [15N](NH4)2SO4 under different moisture regimes. Soil Biol. Biochem.,17:747-756.
    [280]Wander MM, Bidhart MG.2000. Tillage practice influences on the physical protection, bioavailability and composition of particulate organic matter. Biol. Fertil. Soils,32:360-367.
    [281]Witter E, Martensson AM. Garcia FV.1993.Size of the soil microbial biomass in a long-term field experiment as affected by different N-fertilizers and organic manures. Soil Biology and Biochemistry,25 (6):659-669.
    [282]Yadav RL, Dwivedi BS, Pandey PS.2000 Rice-wheat cropping system:Assessment of sustainability under green manuring and chemical fertilizer inputs[J].Field crops Research, 65(1):15-30.
    [283]Yu WT, Jiang ZS, Zhou H,et al.Effects of nutrient cycling on grain yields and potassium balance[J]. Nutrient Cycling in Agroecosystems,2009,84(3):203-213.
    [284]Yuan L, Huang JG, Yu SQ (1997) Responses of nitrogen and related enzyme activities to fertilization in the rhizosphere of wheat[J]. Pedosphere 7:141-148.
    [285]Zakarauskaite D, Vaisvila Z,Motuzas A et al (2008) The influence of long-term application of mineral fertilizers on the biological activity of soil enzyme[J]. Ekologija 54:173-178.
    [286]ZHANG Qi-chun,WANG Guang-huo(2006). Effect of different fertilization treatments on ecologi-cal characteristics of microorganism in paddy soil[J]. Zhejiang Univ. SCIENCE A 7 (Suppl. Ⅱ):376-380.
    [287]Zhou XG, Evens KI.2006.Suppression of Fusarium Wilt of Water melon Enhaneed by Hairy Vetch Green Manure and Partial Cuhivar Resistance [J].Plant health progress, (4): 113-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700